
Scheduling:
RR, Priority, MLFQ,

and Lottery
CS 571: Operating Systems (Spring 2020)

Lecture 5

Yue Cheng

Some material taken/derived from:
• Wisconsin CS-537 materials created by Remzi Arpaci-Dusseau.
Licensed for use under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

• CPU scheduling worksheet posted on BB

2Y. Cheng GMU CS571 Spring 2020

Review: FIFO, SJF

3Y. Cheng GMU CS571 Spring 2020

Workload Assumptions

1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The run-time of each job is known

4Y. Cheng GMU CS571 Spring 2020

FIFO

• First-In, First-Out: Run jobs in arrival (time) order

5Y. Cheng GMU CS571 Spring 2020

First-In, First-Out: Run jobs in arrival (time) order
Def: waiting_time = start_time – arrival_time

Process Burst Time
P1 5
P2 5
P3 5

o Suppose that the processes arrive in order: P1 , P2 , P3
The Gantt Chart for the schedule:

o Waiting time for P1 = 0; P2 = 5; P3 = 10
o Average waiting time: 5

FIFO

6

P1 P2 P3

5 10 150

Y. Cheng GMU CS571 Spring 2020

First-In, First-Out: Run jobs in arrival (time) order
What is the average turnaround time? (Q2)?
Def: turnaround_time = completion_time – arrival_time

Process Burst Time
P1 5
P2 5
P3 5

o Suppose that the processes arrive in order: P1 , P2 , P3
The Gantt Chart for the schedule:

o Waiting time for P1 = 0; P2 = 5; P3 = 10
o Average waiting time: 5

FIFO

7

P1 P2 P3

5 10 150

Y. Cheng GMU CS571 Spring 2020

First-In, First-Out: Run jobs in arrival (time) order
What is the average turnaround time? (Q2)?
Def: turnaround_time = completion_time – arrival_time

Process Burst Time
P1 5
P2 5
P3 5

o Suppose that the processes arrive in order: P1 , P2 , P3
The Gantt Chart for the schedule:

FIFO

8

P1 P2 P3

5 10 150

Y. Cheng GMU CS571 Spring 2020

FIFO

9

P1 P2 P3

5 10 150

First-In, First-Out: Run jobs in arrival (time) order
What is the average turnaround time? (Q2)?
Def: turnaround_time = completion_time – arrival_time

Process Burst Time
P1 5
P2 5
P3 5

o Suppose that the processes arrive in order: P1 , P2 , P3
The Gantt Chart for the schedule:

Average turnaround time: (5+10+15)/3 = 10

Workload Assumptions

1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The run-time of each job is known

10Y. Cheng GMU CS571 Spring 2020

Workload Assumptions

1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The run-time of each job is known

11Y. Cheng GMU CS571 Spring 2020

Example: Big First Job
JOB arrival_time run_time

P1 ~0 80

P2 ~0 5

P3 ~0 5

12

What is the average turnaround time? (Q3)

Y. Cheng GMU CS571 Spring 2020

Example: Big First Job
JOB arrival_time run_time

P1 ~0 80

P2 ~0 5

P3 ~0 5

13

P1 P2 P3

80 85 900

Y. Cheng GMU CS571 Spring 2020

Example: Big First Job
JOB arrival_time run_time

P1 ~0 80

P2 ~0 5

P3 ~0 5

14

P1 P2 P3

80 85 900

Average turnaround time: (80+85+90) / 3 = 85

Y. Cheng GMU CS571 Spring 2020

Convoy Effect

15Y. Cheng GMU CS571 Spring 2020

Better Schedule?

16

P1P2 P3

Y. Cheng GMU CS571 Spring 2020

Passing the Tractor

• New scheduler: SJF (Shortest Job First)

• Policy: When deciding which job to run, choose
the one with the smallest run_time

17Y. Cheng GMU CS571 Spring 2020

Example: SJF

18

JOB arrival_time run_time

P1 ~0 80

P2 ~0 5

P3 ~0 5

What is the average turnaround time with SJF? (Q4)

Y. Cheng GMU CS571 Spring 2020

Example: SJF

19

JOB arrival_time run_time

P1 ~0 80

P2 ~0 5

P3 ~0 5

P1P2 P3

5 10 900

Y. Cheng GMU CS571 Spring 2020

Example: SJF

20

JOB arrival_time run_time

P1 ~0 80

P2 ~0 5

P3 ~0 5

P1P2 P3

5 10 900

Average turnaround time: (5+10+90) / 3 = 35
Y. Cheng GMU CS571 Spring 2020

Workload Assumptions

1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The run-time of each job is known

21Y. Cheng GMU CS571 Spring 2020

Workload Assumptions

1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The run-time of each job is known

22Y. Cheng GMU CS571 Spring 2020

Shortest Job First (Arrival Time)

23

JOB arrival_time run_time

P1 ~0 80

P2 ~15 20

P3 ~15 10

What is the average turnaround time with SJF? (Q5)

Y. Cheng GMU CS571 Spring 2020

Shortest Job First (Arrival Time)

24

JOB arrival_time run_time

P1 ~0 80

P2 ~15 20

P3 ~15 10

P1 P3 P2

80 90 1100
[P2, P3 arrive at 15]

Y. Cheng GMU CS571 Spring 2020

Shortest Job First (Arrival Time)

25

JOB arrival_time run_time

P1 ~0 80

P2 ~15 20

P3 ~15 10

Average turnaround time: (80+75+95) / 3 = ~83.3

P1: 80
P2: 75
P3: 95

P1 P3 P2

80 90 1100

Y. Cheng GMU CS571 Spring 2020

A Preemptive Scheduler

• Previous schedulers: FIFO and SJF are non-
preemptive

• New scheduler: STCF (Shortest Time-to-
Completion First)

• Policy: Switch jobs so we always run the one
that will complete the quickest

26Y. Cheng GMU CS571 Spring 2020

SJF

27

JOB arrival_time run_time

P1 ~0 80

P2 ~15 20

P3 ~15 10

P1 P3 P2

80 90 1100
[P2, P3 arrive at 15]

Y. Cheng GMU CS571 Spring 2020

28

P1 P2P3

15 25 1100

[P2, P3 arrive]

JOB arrival_time run_time

P1 ~0 80
P2 ~15 20
P3 ~15 10

45

P1

What is the average turnaround time with SRTF? (Q6)

STCF

Y. Cheng GMU CS571 Spring 2020

29

P1 P2P3

15 25 1100

[P2, P3 arrive]

JOB arrival_time run_time

P1 ~0 80
P2 ~15 20
P3 ~15 10

45

P1

P1: 110
P3: 10
P2: 30

Average turnaround time: (110+30+10) / 3 = 50

STCF

Y. Cheng GMU CS571 Spring 2020

30

P1 P2P3

15 25 1100

[P2, P3 arrive]

JOB arrival_time run_time

P1 ~0 80

P2 ~15 20

P3 ~15 10

45

P1

What is the average waiting time with STCF? (Q7)

STCF

Y. Cheng GMU CS571 Spring 2020

31

P1 P2P3

15 25 1100

[P2, P3 arrive]

JOB arrival_time run_time

P1 ~0 80

P2 ~15 20

P3 ~15 10

45

P1

P1: 30
P3: 0
P2: 10

Average waiting time: (30+10+0) / 3 = ~13.3

STCF

Y. Cheng GMU CS571 Spring 2020

Outline

• Scheduling algorithms
• First In, First Out (FIFO)
• Shortest Job First (SJF)
• Shortest Time-to-Completion First (STCF)

• Optimality discussion
• Round Robin (RR)
• Priority
• Multi-Level Feedback Queue (MLFQ)
• Lottery Scheduling

32Y. Cheng GMU CS571 Spring 2020

Optimality of SJF and STCF

• Non-preemptive SJF is optimal if all the
processes are ready simultaneously
oGives minimum average waiting time for a given set

of processes

33Y. Cheng GMU CS571 Spring 2020

Optimality of SJF and STCF

• Non-preemptive SJF is optimal if all the
processes are ready simultaneously
oGives minimum average waiting time for a given set

of processes

• What is the intuition behind the optimality of
STCF?

34Y. Cheng GMU CS571 Spring 2020

Optimality of SJF and STCF

• Non-preemptive SJF is optimal if all the
processes are ready simultaneously
oGives minimum average waiting time for a given set

of processes

• What is the intuition behind the optimality of
STCF?
• A: STCF is optimal, considering a more realistic

scenario where all the processes may be arriving at
different times

35Y. Cheng GMU CS571 Spring 2020

Optimality of SJF and STCF

• Non-preemptive SJF is optimal if all the
processes are ready simultaneously
oGives minimum average waiting time for a given set

of processes

• What is the intuition behind the optimality of
SRTF?
• A: SRTF is optimal, considering a more realistic

scenario where all the processes may be arriving at
different times

36

Q: What’s the problem?
We don’t exactly know how long a job would run!

Y. Cheng GMU CS571 Spring 2020

Estimating the Length of Next CPU Burst

• Idea: Based on the observations in the recent past,
we can try to predict

• Techniques such as exponential averaging are
based on combining the observations in the past
and our predictions using different weights

• Exponential averaging
• tn: actual length of the nth CPU burst
• zn+1: predicted value for the next CPU burst
• zn+1 = k.tn + (1-k).zn
• Commonly, k is set to ½

37Y. Cheng GMU CS571 Spring 2020

Response Time

• Response time definition
Tresponse = Tfirst_run – Tarrival

• SJF’s average response time (all 3 jobs arrive at
same time)
•(0 + 5 + 10)/3 = 5

38GMU CS571 Spring 2020

Waiting, Turnaround, Response

39

P1 P2P3

[P2, P3 arrive at 15]

P1

P1’s waiting time:

P2’s turnaround time:

P3’s response time:

0 25 35 45 120

Y. Cheng GMU CS571 Spring 2020

Waiting, Turnaround, Response

40

P1 P2P3 P1

P1’s waiting time: 0+20=20

P2’s turnaround time: 45-15=30

P3’s response time: 25-15=10

Q: What is P1’s response time?

[P2, P3 arrive at 15]

0 25 35 45 120

Y. Cheng GMU CS571 Spring 2020

Round Robin (RR)

41Y. Cheng GMU CS571 Spring 2020

Workload Assumptions

1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The run-time of each job is known

42Y. Cheng GMU CS571 Spring 2020

Workload Assumptions

1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The run-time of each job is known

43Y. Cheng GMU CS571 Spring 2020

Extension to Multiple CPU & I/O Bursts

• When the process arrives, it will try to execute its
first CPU burst
• It will join the ready queue
• The priority will be determined according to the underlying scheduling

algorithm and considering only that specific (i.e. first) burst

• When it completes its first CPU burst, it will try to
perform its first I/O operation (burst)
• It will join the device queue
• When that device is available, it will use the device for a time period

indicated by the length of the first I/O burst.

• Then, it will re-join the ready queue and try to
execute its second CPU burst
• Its new priority may now change (as defined by its second CPU burst)!

44Y. Cheng GMU CS571 Spring 2020

Round Robin (RR)
• Each process gets a small unit of CPU time

(time quantum). After this time has elapsed, the
process is preempted and added to the end of the
ready queue
• Newly-arriving processes (and processes that

complete their I/O bursts) are added to the end of
the ready queue
• If there are n processes in the ready queue and the

time quantum is q, then no process waits more
than (n-1)q time units
• Performance
• q large Þ FIFO
• q small Þ Processor Sharing (The system appears to

the users as though each of the n processes has its
own processor running at the (1/n)th of the speed of the
real processor)

45Y. Cheng GMU CS571 Spring 2020

Not I/O Aware

46

Poor use of resources

Y. Cheng GMU CS571 Spring 2020

Not I/O Aware

47

Poor use of resources

I/O-intensive CPU-intensive

Y. Cheng GMU CS571 Spring 2020

I/O Aware (Overlap)

48

Overlap allows better use of resources!

Y. Cheng GMU CS571 Spring 2020

• SJF’s average response time
• (0 + 5 + 10) / 3 = 5

• RR’s average response time (time quantum = 1)
• (0 + 1 + 2) / 3 = 1

49

Process Burst Time
A 5
B 5
C 5

RR

Y. Cheng GMU CS571 Spring 2020

Tradeoff Consideration

• Typically, RR achieves higher average turnaround
time than SJF, but better response time
• Turnaround time only cares about when processes

finish

• RR is one of the worst policies
• -IF- turnaround time is the metric

50Y. Cheng GMU CS571 Spring 2020

Choosing a Time Quantum
• The effect of quantum size on context-switching

time must be carefully considered
• The time quantum must be large with respect to the

context-switch time
• Turnaround time also depends on the size of the

time quantum

Y. Cheng GMU CS571 Spring 2020 51

52Y. Cheng GMU CS571 Spring 2020

Time Quantum vs. Turnaround Time

53

Q: What’s the takeaway?

Y. Cheng GMU CS571 Spring 2020

Time Quantum vs. Turnaround Time

Workload Assumptions

1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The run-time of each job is known

54Y. Cheng GMU CS571 Spring 2020

Workload Assumptions

1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The run-time of each job is known

55Y. Cheng GMU CS571 Spring 2020

Priority-Based Scheduling

56Y. Cheng GMU CS571 Spring 2020

Priority-Based Scheduling

• A priority number (integer) is associated with each
process

• The CPU is allocated to the process with the highest
priority

o(smallest integer º highest priority)
o Preemptive
o Non-preemptive

57Y. Cheng GMU CS571 Spring 2020

Example for Priority-Based Scheduling
ProcessAaiBurst TimeT Priority
P1 10 3
P2 1 1
P3 2 4
P4 1 5
P5 5 2

• Priority scheduling Gantt Chart

• Average waiting time = 8.2

58

P2 P3P5

1 180 16

P4

196

P1

Y. Cheng GMU CS571 Spring 2020

Priority-Based Scheduling (cont.)
• Priority Assignment

• Internal factors: timing constraints, memory requirements,
the ratio of average I/O burst to average CPU burst …

• External factors: Importance of the process, financial
considerations, hierarchy among users …

• Problem: Indefinite blocking (or starvation) – low priority
processes may never execute

• One solution: Aging
o As time progresses increase the priority of the processes that

wait in the system for a long time

59Y. Cheng GMU CS571 Spring 2020

Multi-Level Feedback Queue (MLFQ)

60Y. Cheng GMU CS571 Spring 2020

Multi-Level Feedback Queue (MLFQ)

• Goals of MLFQ
• Optimize turnaround time

• In reality, SJF does not work since OS does not know how
long a process will run

• Minimize response time
• Unfortunately, RR is really bad on optimizing turnaround

time

61Y. Cheng GMU CS571 Spring 2020

MLFQ: Basics

• MLFQ maintains a number of queues (multi-level
queue)
• Each assigned a different priority level

• Priority decides which process should run at a given
time

62Y. Cheng GMU CS571 Spring 2020

MLFQ Example

63

How to know process type
to set priority?
1. nice
2. history

Y. Cheng GMU CS571 Spring 2020

How to Check Nice Values in Linux?

• % ps ax -o pid,ni,cmd

64Y. Cheng GMU CS571 Spring 2020

MLFQ Example

65

How to know process type
to set priority?
1. nice
2. history

In this example, A and B are
given high priority to run,
while C and D may starve

Y. Cheng GMU CS571 Spring 2020

MLFQ: Basic Rules

• MLFQ maintains a number of queues (multi-level
queue)
• Each assigned a different priority level

• Priority decides which process should run at a given
time

66Y. Cheng GMU CS571 Spring 2020

Attempt #1: Change Priority

• Workload
• Interactive processes (many short-run CPU bursts)

• Long-running processes (CPU-bound)

• Each time quantum = 10ms

67Y. Cheng GMU CS571 Spring 2020

Example 1: One Single Long-Running
Process
• A process enters at highest priority (time

quantum = 10ms)

68Y. Cheng GMU CS571 Spring 2020

Example 1: One Single Long-Running
Process
• A process enters at highest priority (time

quantum = 10ms)

69Y. Cheng GMU CS571 Spring 2020

Example 1: One Single Long-Running
Process
• A process enters at highest priority (time

quantum = 10ms)

70Y. Cheng GMU CS571 Spring 2020

Example 2: Along Came a Short-
Running Process
• Process A: long-running process (start at 0)

71

Process A

Y. Cheng GMU CS571 Spring 2020

Process B

GMU CS571 Spring 2020

Example 2: Along Came a Short-
Running Process
• Process A: long-running process (start at 0)

• Process B: short-running interactive process
(start at 100)

72

Process A

Process B

Y. Cheng

Example 2: Along Came a Short-
Running Process
• Process A: long-running process (start at 0)

• Process B: short-running interactive process
(start at 100)

73

Process A

Process B

Y. Cheng GMU CS571 Spring 2020

GMU CS571 Spring 2020

Example 2: Along Came a Short-
Running Process
• Process A: long-running process (start at 0)

• Process B: short-running interactive process
(start at 100)

74

Process A

Process B

Y. Cheng

GMU CS571 Spring 2020

Example 3: What about I/O?

• Process A: long-running process
• Process B: I/O-intensive interactive process

(each CPU burst = 1ms)

75

CPU-intensive Process A

I/O-intensive Process BRule 4b

Y. Cheng

GMU CS571 Spring 2020

Example 4: What’s the Problem?

• Process A: long-running process

• Process B + C: Interactive process

76

Interactive Process B

Interactive Process C

Y. Cheng

Example 4: What’s the Problem?

• Process A: long-running process

• Process B + C: Interactive process

77

CPU-intensive Process A
starves!

Y. Cheng GMU CS571 Spring 2020

Interactive Process B

Interactive Process C

Attempt #2: Priority Boost

• Simple idea: Periodically boost the priority of all
processes

78

CPU-intensive Process A
proceeds!

Y. Cheng

Interactive Process B

Interactive Process C

Tuning MLFQ

• MLFQ scheduler is defined by many parameters:
• Number of queues
• Time quantum of each queue
• How often should priority be boosted?
• A lot more…

• The scheduler can be configured to match the
requirements of a specific system
• Challenging and requires experience

79Y. Cheng GMU CS571 Spring 2020

Lottery Scheduling

80Y. Cheng GMU CS571 Spring 2020

Lottery Scheduling

• Goal: Proportional share
• One of the fair-share schedulers

• Approach
• Gives processes lottery tickets
• Whoever wins runs
• Higher priority à more tickets

81Y. Cheng GMU CS571 Spring 2020

Lottery Code

82Y. Cheng GMU CS571 Spring 2020

Lottery Scheduling Example

83

Job A
(1)

Job B
(1)

Job C
(100)

Job D
(200)

Job E
(100)

402 total tickets

Y. Cheng GMU CS571 Spring 2020

Lottery Scheduling Example

84

Job A
(1)

Job B
(1)

Job C
(100)

Job D
(200)

Job E
(100)

402 total tickets

winner = random(402)

Y. Cheng GMU CS571 Spring 2020

Lottery Scheduling Example

85

Job A
(1)

Job B
(1)

Job C
(100)

Job D
(200)

Job E
(100)

402 total tickets

winner = 102

Y. Cheng GMU CS571 Spring 2020

Lottery Scheduling Example

86

Job A
(1)

Job B
(1)

Job C
(100)

Job D
(200)

Job E
(100)

402 total tickets

winner = 102

Is 1 > 102?

Y. Cheng GMU CS571 Spring 2020

Lottery Scheduling Example

87

Job A
(1)

Job B
(1)

Job C
(100)

Job D
(200)

Job E
(100)

402 total tickets

winner = 102

Is 2 > 102?

Y. Cheng GMU CS571 Spring 2020

Lottery Scheduling Example

88

Job A
(1)

Job B
(1)

Job C
(100)

Job D
(200)

Job E
(100)

402 total tickets

winner = 102

Is 102 > 102?

Y. Cheng GMU CS571 Spring 2020

Lottery Scheduling Example

89

Job A
(1)

Job B
(1)

Job C
(100)

Job D
(200)

Job E
(100)

402 total tickets

winner = 102

Is 302 > 102?

Y. Cheng GMU CS571 Spring 2020

Lottery Scheduling Example

90

Job A
(1)

Job B
(1)

Job C
(100)

Job D
(200)

Job E
(100)

402 total tickets

winner = 102

302 > 102

OS picks Job D to run!

Y. Cheng GMU CS571 Spring 2020

