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• CPU scheduling worksheet posted on BB
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Review: FIFO, SJF
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Workload Assumptions

1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The run-time of each job is known
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FIFO

• First-In, First-Out: Run jobs in arrival (time) order
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First-In, First-Out: Run jobs in arrival (time) order
Def: waiting_time = start_time – arrival_time

Process Burst Time
P1 5
P2 5
P3 5

o Suppose that the processes arrive in order: P1 , P2 , P3  
The Gantt Chart for the schedule:

o Waiting time for P1 = 0; P2 = 5; P3 = 10
o Average waiting time: 5

FIFO
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P1 P2 P3

5 10 150
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First-In, First-Out: Run jobs in arrival (time) order
What is the average turnaround time? (Q2)?
Def: turnaround_time = completion_time – arrival_time

Process Burst Time
P1 5
P2 5
P3 5

o Suppose that the processes arrive in order: P1 , P2 , P3  
The Gantt Chart for the schedule:

o Waiting time for P1 = 0; P2 = 5; P3 = 10
o Average waiting time: 5

FIFO
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P1 P2 P3

5 10 150
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First-In, First-Out: Run jobs in arrival (time) order
What is the average turnaround time? (Q2)?
Def: turnaround_time = completion_time – arrival_time

Process Burst Time
P1 5
P2 5
P3 5

o Suppose that the processes arrive in order: P1 , P2 , P3  
The Gantt Chart for the schedule:

FIFO
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P1 P2 P3

5 10 150
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FIFO

9

P1 P2 P3

5 10 150

First-In, First-Out: Run jobs in arrival (time) order
What is the average turnaround time? (Q2)?
Def: turnaround_time = completion_time – arrival_time

Process Burst Time
P1 5
P2 5
P3 5

o Suppose that the processes arrive in order: P1 , P2 , P3  
The Gantt Chart for the schedule:

Average turnaround time: (5+10+15)/3 = 10



Workload Assumptions

1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The run-time of each job is known
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Workload Assumptions

1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The run-time of each job is known
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Example: Big First Job
JOB arrival_time run_time

P1 ~0 80

P2 ~0 5

P3 ~0 5
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What is the average turnaround time? (Q3)
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Example: Big First Job
JOB arrival_time run_time

P1 ~0 80

P2 ~0 5

P3 ~0 5

13

P1 P2 P3

80 85 900
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Example: Big First Job
JOB arrival_time run_time

P1 ~0 80

P2 ~0 5

P3 ~0 5

14

P1 P2 P3

80 85 900

Average turnaround time: (80+85+90) / 3 = 85
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Convoy Effect
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Better Schedule?
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P1P2 P3
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Passing the Tractor

• New scheduler: SJF (Shortest Job First)

• Policy: When deciding which job to run, choose 
the one with the smallest run_time
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Example: SJF
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JOB arrival_time run_time

P1 ~0 80

P2 ~0 5

P3 ~0 5

What is the average turnaround time with SJF? (Q4)
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Example: SJF
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JOB arrival_time run_time

P1 ~0 80

P2 ~0 5

P3 ~0 5

P1P2 P3

5 10 900
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Example: SJF
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JOB arrival_time run_time

P1 ~0 80

P2 ~0 5

P3 ~0 5

P1P2 P3

5 10 900

Average turnaround time: (5+10+90) / 3 = 35
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Workload Assumptions

1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The run-time of each job is known
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Workload Assumptions

1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The run-time of each job is known
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Shortest Job First (Arrival Time)
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JOB arrival_time run_time

P1 ~0 80

P2 ~15 20

P3 ~15 10

What is the average turnaround time with SJF? (Q5)
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Shortest Job First (Arrival Time)
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JOB arrival_time run_time

P1 ~0 80

P2 ~15 20

P3 ~15 10

P1 P3 P2

80 90 1100
[P2, P3 arrive at 15]
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Shortest Job First (Arrival Time)

25

JOB arrival_time run_time

P1 ~0 80

P2 ~15 20

P3 ~15 10

Average turnaround time: (80+75+95) / 3 = ~83.3

P1: 80
P2: 75
P3: 95

P1 P3 P2

80 90 1100
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A Preemptive Scheduler

• Previous schedulers: FIFO and SJF are non-
preemptive

• New scheduler: STCF (Shortest Time-to-
Completion First)

• Policy: Switch jobs so we always run the one 
that will complete the quickest
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SJF

27

JOB arrival_time run_time

P1 ~0 80

P2 ~15 20

P3 ~15 10

P1 P3 P2

80 90 1100
[P2, P3 arrive at 15]

Y. Cheng GMU CS571 Spring 2020



28

P1 P2P3

15 25 1100

[P2, P3 arrive]

JOB arrival_time run_time

P1 ~0 80
P2 ~15 20
P3 ~15 10

45

P1

What is the average turnaround time with SRTF? (Q6)

STCF

Y. Cheng GMU CS571 Spring 2020



29

P1 P2P3

15 25 1100

[P2, P3 arrive]

JOB arrival_time run_time

P1 ~0 80
P2 ~15 20
P3 ~15 10

45

P1

P1: 110
P3: 10
P2: 30

Average turnaround time: (110+30+10) / 3 = 50

STCF
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P1 P2P3

15 25 1100

[P2, P3 arrive]

JOB arrival_time run_time

P1 ~0 80

P2 ~15 20

P3 ~15 10

45

P1

What is the average waiting time with STCF? (Q7)

STCF
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P1 P2P3

15 25 1100

[P2, P3 arrive]

JOB arrival_time run_time

P1 ~0 80

P2 ~15 20

P3 ~15 10

45

P1

P1: 30
P3: 0
P2: 10

Average waiting time: (30+10+0) / 3 = ~13.3

STCF
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Outline

• Scheduling algorithms
• First In, First Out (FIFO)
• Shortest Job First (SJF)
• Shortest Time-to-Completion First (STCF)

• Optimality discussion
• Round Robin (RR)
• Priority
• Multi-Level Feedback Queue (MLFQ)
• Lottery Scheduling
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Optimality of SJF and STCF

• Non-preemptive SJF is optimal if all the 
processes are ready simultaneously
oGives minimum average waiting time for a given set 

of processes
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Optimality of SJF and STCF

• Non-preemptive SJF is optimal if all the 
processes are ready simultaneously
oGives minimum average waiting time for a given set 

of processes

• What is the intuition behind the optimality of 
STCF?
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Optimality of SJF and STCF

• Non-preemptive SJF is optimal if all the 
processes are ready simultaneously
oGives minimum average waiting time for a given set 

of processes

• What is the intuition behind the optimality of 
STCF?
• A: STCF is optimal, considering a more realistic 

scenario where all the processes may be arriving at 
different times
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Optimality of SJF and STCF

• Non-preemptive SJF is optimal if all the 
processes are ready simultaneously
oGives minimum average waiting time for a given set 

of processes

• What is the intuition behind the optimality of 
SRTF?
• A: SRTF is optimal, considering a more realistic 

scenario where all the processes may be arriving at 
different times
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Q: What’s the problem?
We don’t exactly know how long a job would run!
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Estimating the Length of Next CPU Burst

• Idea: Based on the observations in the recent past, 
we can try to predict

• Techniques such as exponential averaging are 
based on combining the observations in the past 
and our predictions using different weights

• Exponential averaging
• tn: actual length of the nth CPU burst
• zn+1: predicted value for the next CPU burst
• zn+1 = k.tn + (1-k).zn
• Commonly, k is set to ½
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Response Time

• Response time definition
Tresponse = Tfirst_run – Tarrival

• SJF’s average response time (all 3 jobs arrive at 
same time)
•(0 + 5 + 10)/3 = 5
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Waiting, Turnaround, Response

39

P1 P2P3

[P2, P3 arrive at 15]

P1

P1’s waiting time: 

P2’s turnaround time:

P3’s response time:

0 25 35 45 120

Y. Cheng GMU CS571 Spring 2020



Waiting, Turnaround, Response

40

P1 P2P3 P1

P1’s waiting time: 0+20=20

P2’s turnaround time: 45-15=30

P3’s response time: 25-15=10

Q: What is P1’s response time?

[P2, P3 arrive at 15]

0 25 35 45 120
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Round Robin (RR)
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Workload Assumptions

1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The run-time of each job is known
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Workload Assumptions

1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The run-time of each job is known
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Extension to Multiple CPU & I/O Bursts

• When the process arrives, it will try to execute its 
first CPU burst
• It will join the ready queue
• The priority will be determined according to the underlying scheduling 

algorithm and considering only that specific (i.e. first) burst

• When it completes its first CPU burst, it will try to 
perform its first I/O operation (burst)
• It will join the device queue
• When that device is available, it will use the device for a time period 

indicated by the length of the first I/O burst.

• Then, it will re-join the ready queue and try to 
execute its second CPU burst
• Its new priority may now change (as defined by its second CPU burst)!
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Round Robin (RR)
• Each process gets a small unit of CPU time

(time quantum).  After this time has elapsed, the 
process is preempted and added to the end of the 
ready queue
• Newly-arriving processes (and processes that 

complete their I/O bursts) are added to the end of 
the ready queue
• If there are n processes in the ready queue and the 

time quantum is q, then no process waits more 
than (n-1)q  time units
• Performance
• q large Þ FIFO
• q small Þ Processor Sharing (The system appears to 

the users as though each of the n processes has its 
own processor running at the (1/n)th of the speed of the 
real processor)
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Not I/O Aware
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Poor use of resources
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Not I/O Aware
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Poor use of resources

I/O-intensive CPU-intensive
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I/O Aware (Overlap)
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Overlap allows better use of resources!
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• SJF’s average response time
• (0 + 5 + 10) / 3 = 5

• RR’s average response time (time quantum = 1)
• (0 + 1 + 2) / 3 = 1

49

Process Burst Time
A 5
B 5
C 5

RR
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Tradeoff Consideration

• Typically, RR achieves higher average turnaround 
time than SJF, but better response time
• Turnaround time only cares about when processes 

finish

• RR is one of the worst policies 
• -IF- turnaround time is the metric
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Choosing a Time Quantum
• The effect of quantum size on context-switching 

time must be carefully considered
• The time quantum must be large with respect to the 

context-switch time
• Turnaround time also depends on the size of the 

time quantum
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Time Quantum vs. Turnaround Time
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Q: What’s the takeaway?
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Time Quantum vs. Turnaround Time



Workload Assumptions

1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The run-time of each job is known
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Workload Assumptions

1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The run-time of each job is known
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Priority-Based Scheduling
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Priority-Based Scheduling

• A priority number (integer) is associated with each 
process

• The CPU is allocated to the process with the highest 
priority 

o(smallest integer º highest priority)
o Preemptive
o Non-preemptive
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Example for Priority-Based Scheduling
ProcessAaiBurst TimeT   Priority
P1 10 3
P2 1 1
P3 2 4
P4 1 5
P5 5 2

• Priority scheduling Gantt Chart

• Average waiting time = 8.2 
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P2 P3P5

1 180 16

P4

196

P1
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Priority-Based Scheduling (cont.)
• Priority Assignment

• Internal factors: timing constraints, memory requirements, 
the ratio of average I/O burst to average CPU burst …

• External factors: Importance of the process, financial 
considerations, hierarchy among users …

• Problem: Indefinite blocking (or starvation) – low priority 
processes may never execute

• One solution: Aging
o As time progresses increase the priority of the processes that 

wait in the system for a long time
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Multi-Level Feedback Queue (MLFQ)

60Y. Cheng GMU CS571 Spring 2020



Multi-Level Feedback Queue (MLFQ)

• Goals of MLFQ
• Optimize turnaround time

• In reality, SJF does not work since OS does not know how 
long a process will run

• Minimize response time 
• Unfortunately, RR is really bad on optimizing turnaround 

time

61Y. Cheng GMU CS571 Spring 2020



MLFQ: Basics

• MLFQ maintains a number of queues (multi-level 
queue)
• Each assigned a different priority level

• Priority decides which process should run at a given 
time
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MLFQ Example
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How to know process type 
to set priority?
1. nice
2. history
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How to Check Nice Values in Linux?

• % ps ax -o pid,ni,cmd
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MLFQ Example
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How to know process type 
to set priority?
1. nice
2. history

In this example, A and B are 
given high priority to run, 
while C and D may starve
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MLFQ: Basic Rules

• MLFQ maintains a number of queues (multi-level 
queue)
• Each assigned a different priority level

• Priority decides which process should run at a given 
time
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Attempt #1: Change Priority

• Workload
• Interactive processes (many short-run CPU bursts)

• Long-running processes (CPU-bound)

• Each time quantum = 10ms
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Example 1: One Single Long-Running 
Process
• A process enters at highest priority (time 

quantum = 10ms)
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Example 1: One Single Long-Running 
Process
• A process enters at highest priority (time 

quantum = 10ms)
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Example 1: One Single Long-Running 
Process
• A process enters at highest priority (time 

quantum = 10ms)
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Example 2: Along Came a Short-
Running Process
• Process A: long-running process (start at 0)

71

Process A

Y. Cheng GMU CS571 Spring 2020

Process B



GMU CS571 Spring 2020

Example 2: Along Came a Short-
Running Process
• Process A: long-running process (start at 0)

• Process B: short-running interactive process 
(start at 100)

72

Process A

Process B

Y. Cheng



Example 2: Along Came a Short-
Running Process
• Process A: long-running process (start at 0)

• Process B: short-running interactive process 
(start at 100)
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Process A

Process B
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Example 2: Along Came a Short-
Running Process
• Process A: long-running process (start at 0)

• Process B: short-running interactive process 
(start at 100)

74

Process A

Process B
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Example 3: What about I/O?

• Process A: long-running process 
• Process B: I/O-intensive interactive process 

(each CPU burst = 1ms)
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CPU-intensive Process A

I/O-intensive Process BRule 4b
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Example 4: What’s the Problem?

• Process A: long-running process 

• Process B + C: Interactive process

76

Interactive Process B

Interactive Process C
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Example 4: What’s the Problem?

• Process A: long-running process 

• Process B + C: Interactive process

77

CPU-intensive Process A
starves!
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Interactive Process B

Interactive Process C



Attempt #2: Priority Boost

• Simple idea: Periodically boost the priority of all 
processes
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CPU-intensive Process A
proceeds!

Y. Cheng

Interactive Process B

Interactive Process C



Tuning MLFQ

• MLFQ scheduler is defined by many parameters:
• Number of queues
• Time quantum of each queue
• How often should priority be boosted?
• A lot more…

• The scheduler can be configured to match the 
requirements of a specific system
• Challenging and requires experience
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Lottery Scheduling
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Lottery Scheduling

• Goal: Proportional share
• One of the fair-share schedulers

• Approach
• Gives processes lottery tickets
• Whoever wins runs
• Higher priority à more tickets
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Lottery Code
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Lottery Scheduling Example
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Job A
(1)

Job B
(1)

Job C
(100)

Job D
(200)

Job E
(100)

402 total tickets
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Lottery Scheduling Example

84

Job A
(1)

Job B
(1)

Job C
(100)

Job D
(200)

Job E
(100)

402 total tickets

winner = random(402)
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Lottery Scheduling Example

85

Job A
(1)

Job B
(1)

Job C
(100)

Job D
(200)

Job E
(100)

402 total tickets

winner = 102
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Lottery Scheduling Example
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Job A
(1)

Job B
(1)

Job C
(100)

Job D
(200)

Job E
(100)

402 total tickets

winner = 102

Is 1 > 102?
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Lottery Scheduling Example

87

Job A
(1)

Job B
(1)

Job C
(100)

Job D
(200)

Job E
(100)

402 total tickets

winner = 102

Is 2 > 102?
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Lottery Scheduling Example

88

Job A
(1)

Job B
(1)

Job C
(100)

Job D
(200)

Job E
(100)

402 total tickets

winner = 102

Is 102 > 102?
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Lottery Scheduling Example
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Job A
(1)

Job B
(1)

Job C
(100)

Job D
(200)

Job E
(100)

402 total tickets

winner = 102

Is 302 > 102?
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Lottery Scheduling Example
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Job A
(1)

Job B
(1)

Job C
(100)

Job D
(200)

Job E
(100)

402 total tickets

winner = 102

302 > 102

OS picks Job D to run!
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