
Condition Variables,
Classic Sync

Problem
CS 571: Operating Systems (Spring 2020)

Lecture 4

Yue Cheng

Some material taken/derived from:
• Wisconsin CS-537 materials created by Remzi Arpaci-Dusseau.
Licensed for use under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Condition Variables

2Y. Cheng GMU CS571 Spring 2020

Condition Variables

A parent waiting for its child

3Y. Cheng GMU CS571 Spring 2020

Spin-based Approach
Using a shared variable, parent spins until child set it to 1

4Y. Cheng GMU CS571 Spring 2020

Spin-based Approach
Using a shared variable, parent spins until child set it to 1

5Y. Cheng GMU CS571 Spring 2020

What’s the problem of this approach?

Condition Variables (CV)

• Definition:
• An explicit queue that threads can put themselves

when some condition is not as desired (by waiting on
the condition)
• Other thread can wake one of those waiting threads

to allow them to continue (by signaling on the
condition)

• Pthread CV

6Y. Cheng GMU CS571 Spring 2020

7

CV-based Approach

??

??

Y. Cheng GMU CS571 Spring 2020

Broken Implementation 1

8Y. Cheng GMU CS571 Spring 2020

Broken Implementation 1

9Y. Cheng GMU CS571 Spring 2020

If parent comes after child, parent
sleeps forever

Broken Implementation 1

10Y. Cheng GMU CS571 Spring 2020

Broken Implementation 1

11

Parent: x y z

Child: a b c

Y. Cheng GMU CS571 Spring 2020

Broken Implementation 1

12

Parent: x y z

Child: a b c
GOOD!

Y. Cheng GMU CS571 Spring 2020

Broken Implementation 1

13Y. Cheng GMU CS571 Spring 2020

Broken Implementation 1

14

Parent: x y

Child: a b c

Y. Cheng GMU CS571 Spring 2020

Broken Implementation 1

15

Parent: x y … sleeeeeeeeeep forever …

Child: a b c

Y. Cheng GMU CS571 Spring 2020

Broken Implementation 2

16Y. Cheng GMU CS571 Spring 2020

Broken Implementation 2

17Y. Cheng GMU CS571 Spring 2020

No mutual exclusion, hence child
may signal before parent calls
cond_wait(). In this case, parent
sleeps forever!

Broken Implementation 2

18Y. Cheng GMU CS571 Spring 2020

Broken Implementation 2

19

Parent: w x y

Child: a b

Y. Cheng GMU CS571 Spring 2020

Broken Implementation 2

20

Parent: w x y … sleeeeeeeeep forever …

Child: a b

Y. Cheng GMU CS571 Spring 2020

Broken Implementation 2

21

Parent: w x y … sleeeeeeeeep forever …

Child: a b

How to fix?

Y. Cheng GMU CS571 Spring 2020

Broken Implementation 2

22

Parent: w x y … sleeeeeeeeep forever …

Child: a b

Mutex_
lock(&

m);

Mutex_unlock(&m);

while

Y. Cheng GMU CS571 Spring 2020

Trap 1 When Using CV

23

Condition Variable
thread

wait

thread
wait

Y. Cheng GMU CS571 Spring 2020

Trap 1 When Using CV

24

Condition Variable
thread

wait

thread
waitthread

signal

Y. Cheng GMU CS571 Spring 2020

Trap 1 When Using CV

25

Condition Variable thread
wait

Y. Cheng GMU CS571 Spring 2020

Trap 1 When Using CV

26

Condition Variable thread
wait

Only one thread gets a signal

Y. Cheng GMU CS571 Spring 2020

Trap 2 When Using CV

27

Condition Variable

Y. Cheng GMU CS571 Spring 2020

Trap 2 When Using CV

28

Condition Variablethread
signal

Y. Cheng GMU CS571 Spring 2020

Trap 2 When Using CV

29

Condition Variable

Y. Cheng GMU CS571 Spring 2020

Trap 2 When Using CV

30

Condition Variable
thread

wait

Y. Cheng GMU CS571 Spring 2020

Trap 2 When Using CV

31

Condition Variable
thread

wait

waits forever…

Y. Cheng GMU CS571 Spring 2020

Trap 2 When Using CV

32

Condition Variable
thread

wait

waits forever…

Signal lost if nobody waiting at that time

Y. Cheng GMU CS571 Spring 2020

Guarantee

33

Condition Variable
thread

wait

thread
wait

Upon signal, there has to be at least one thread waiting;
If there are threads waiting, at least one thread will wake

thread
signal

Y. Cheng GMU CS571 Spring 2020

34Y. Cheng GMU CS571 Spring 2020

CV-based Parent-wait-for-child
Approach

35Y. Cheng GMU CS571 Spring 2020

Good Rule of Thumb
Always do 1. wait and 2. signal while holding the lock

Why: To prevent lost signal

CV-based Parent-wait-for-child
Approach

36

• Producer-consumer problem
• CV-based version

• Readers-writers problem

• Dining-philosophers problem

Classical Problems of Synchronization

Y. Cheng GMU CS571 Spring 2020

37Y. Cheng GMU CS571 Spring 2020

CV-based Producer-Consumer Implementation 1

Single CV and if statement

Put and Get routines
Single buffer

38Y. Cheng GMU CS571 Spring 2020

CV-based Producer-Consumer Implementation 1

Single CV and if statement

Put and Get routines
Single buffer

What’s the problem of this
approach?

CV-based Producer-Consumer Implementation 1

39

C1 running

Y. Cheng GMU CS571 Spring 2020

CV-based Producer-Consumer Implementation 1

40

P running

Y. Cheng GMU CS571 Spring 2020

CV-based Producer-Consumer Implementation 1

41

P running

Y. Cheng GMU CS571 Spring 2020

CV-based Producer-Consumer Implementation 1

42

P running

Y. Cheng GMU CS571 Spring 2020

CV-based Producer-Consumer Implementation 1

43

P running

Y. Cheng GMU CS571 Spring 2020

CV-based Producer-Consumer Implementation 1

44

P running

Y. Cheng GMU CS571 Spring 2020

CV-based Producer-Consumer Implementation 1

45

C1 runnable

Y. Cheng GMU CS571 Spring 2020

CV-based Producer-Consumer Implementation 1

46

C2 running

Y. Cheng GMU CS571 Spring 2020

CV-based Producer-Consumer Implementation 1

47

C2 running

Y. Cheng GMU CS571 Spring 2020

CV-based Producer-Consumer Implementation 1

48

C2 running

Y. Cheng GMU CS571 Spring 2020

CV-based Producer-Consumer Implementation 1

49

C2 running

Y. Cheng GMU CS571 Spring 2020

CV-based Producer-Consumer Implementation 1

50

C1 running

Y. Cheng GMU CS571 Spring 2020

51Y. Cheng GMU CS571 Spring 2020

CV-based Producer-Consumer Implementation 2

Single CV and while

52Y. Cheng GMU CS571 Spring 2020

CV-based Producer-Consumer Implementation 2

Single CV and while

What’s the problem of this
approach?

53

C1 running

Y. Cheng GMU CS571 Spring 2020

54

C2 running

Y. Cheng GMU CS571 Spring 2020

55

P running

Y. Cheng GMU CS571 Spring 2020

56

P running

Y. Cheng GMU CS571 Spring 2020

57

P sleeping

Y. Cheng GMU CS571 Spring 2020

58

C1 running

Y. Cheng GMU CS571 Spring 2020

59

C1 running

Y. Cheng GMU CS571 Spring 2020

60

C1 running

Y. Cheng GMU CS571 Spring 2020

61

C1 sleeping

Y. Cheng GMU CS571 Spring 2020

62Y. Cheng GMU CS571 Spring 2020

C2 running

Y. Cheng GMU CS571 Spring 2020 63

C2 sleeping

64Y. Cheng GMU CS571 Spring 2020

CV-based Producer-Consumer Implementation 3

Two CVs and while

65Y. Cheng GMU CS571 Spring 2020

CV-based Producer-Consumer Implementation 3

Two CVs and while

Using two CVs to distinguish two
types of threads; in order to properly
signal which thread should wake up

• Producer waits on empty
• Consumer waits on full

Readers-Writers Problem

66Y. Cheng GMU CS571 Spring 2020

Readers-Writers Problem

67

• A data object (e.g. a file) is to be shared among
several concurrent processes/threads

• A writer process/thread must have exclusive
access to the data object

• Multiple reader processes/threads may access
the shared data simultaneously without a
problem

Y. Cheng GMU CS571 Spring 2020

68Y. Cheng GMU CS571 Spring 2020

Reader-Writer Lock

69Y. Cheng GMU CS571 Spring 2020

Reader-Writer Lock

70Y. Cheng GMU CS571 Spring 2020

Reader-Writer Lock

Initially, # readers is 0
binary sem lock set to 1
writelock set to 1

71Y. Cheng GMU CS571 Spring 2020

Reader-Writer Lock

Initially, # readers is 0
binary sem lock set to 1
writelock set to 1

72Y. Cheng GMU CS571 Spring 2020

Reader-Writer Lock

Initially, # readers is 0
binary sem lock set to 1
writelock set to 1

73Y. Cheng GMU CS571 Spring 2020

Reader-Writer Lock

Writer cannot
be in CS when
readers are!

Initially, # readers is 0
binary sem lock set to 1
writelock set to 1

rwlock_acquire_writelock(rw);
…

write is performed
…

rwlock_release_writelock(rw);

74

Readers-Writers Problem:
Writer Thread

Y. Cheng GMU CS571 Spring 2020

Readers-Writers Problem:
Reader Thread

rwlock_acquire_readlock(rw)
…

read is performed
…

rwlock_release_readlock(rw)

Well, is this solution Okay?

75Y. Cheng GMU CS571 Spring 2020

Readers-Writers Problem:
Reader Thread

rwlock_acquire_readlock(rw)
…

read is performed
…

rwlock_release_readlock(rw)

Well, is this solution Okay?
A: Technically it works. But
starvation may happen

76Y. Cheng GMU CS571 Spring 2020

Starvation

• A process/thread that is forced to wait
indefinitely in a synchronization program is said
to be subject to starvation
• In some execution scenarios, that process does not

make any progress

• Deadlocks imply starvation, but the reverse is not
true

77Y. Cheng GMU CS571 Spring 2020

Dining-Philosophers Problem

78Y. Cheng GMU CS571 Spring 2020

79Y. Cheng GMU CS571 Spring 2020

Shared data

sem_t forks[5];
Initially all semaphore values are 1

• 5 philosophers share a common circular
table. There are 5 forks (or chopsticks)
and food (in the middle). When a
philosopher gets hungry, he tries to pick
up the closest forks

• A philosopher may pick up only one fork
at a time, and cannot pick up a fork
already in use. When done, he puts
down both of his forks, one after the
other

Dining-Philosophers Problem

Dining-Philosophers Problem

• The basic loop of a philosopher

80

Critical section
??

??

Y. Cheng GMU CS571 Spring 2020

The Helper Functions

sem_t forks[5]
• Each fork initialized to 1

81

Is this solution correct?

Y. Cheng GMU CS571 Spring 2020

Simplest Example of A Deadlock

82

Thread 0 Thread 1Interleaving

sem_wait(fork[0])
sem_wait(fork[1])
sem_signal(fork[0])
sem_signal(fork[1])

sem_wait(fork[1])
sem_wait(fork[0])
sem_signal(fork[1])
sem_signal(fork[0])

Y. Cheng GMU CS571 Spring 2020

Simplest Example of A Deadlock

83

Thread 0 Thread 1Interleaving

sem_wait(fork[0])
sem_wait(fork[0])
sem_wait(fork[1])
sem_signal(fork[0])
sem_signal(fork[1])

sem_wait(fork[1])
sem_wait(fork[0])
sem_signal(fork[1])
sem_signal(fork[0])

Y. Cheng GMU CS571 Spring 2020

Simplest Example of A Deadlock

84

Thread 0 Thread 1Interleaving

sem_wait(fork[0])
sem_wait(fork[1])
sem_signal(fork[0])
sem_signal(fork[1])

sem_wait(fork[1])
sem_wait(fork[0])
sem_signal(fork[1])
sem_signal(fork[0])

sem_wait(fork[0])

sem_wait(fork[1])

Y. Cheng GMU CS571 Spring 2020

Simplest Example of A Deadlock

85

Thread 0 Thread 1Interleaving

sem_wait(fork[0])
sem_wait(fork[1])
sem_signal(fork[0])
sem_signal(fork[1])

sem_wait(fork[1])
sem_wait(fork[0])
sem_signal(fork[1])
sem_signal(fork[0])

sem_wait(fork[0])

sem_wait(fork[1])

sem_wait(fork[0])

Y. Cheng GMU CS571 Spring 2020

Simplest Example of A Deadlock

86

Thread 0 Thread 1Interleaving

sem_wait(fork[0])
sem_wait(fork[1])
sem_signal(fork[0])
sem_signal(fork[1])

sem_wait(fork[1])
sem_wait(fork[0])
sem_signal(fork[1])
sem_signal(fork[0])

sem_wait(fork[0])

sem_wait(fork[1])

sem_wait(fork[0])
wait…

sem_wait(fork[1])

Y. Cheng GMU CS571 Spring 2020

Simplest Example of A Deadlock

87

Thread 0 Thread 1Interleaving

sem_wait(fork[0])
sem_wait(fork[1])
sem_signal(fork[0])
sem_signal(fork[1])

sem_wait(fork[1])
sem_wait(fork[0])
sem_signal(fork[1])
sem_signal(fork[0])

sem_wait(fork[0])

sem_wait(fork[1])

sem_wait(fork[0])
wait…

sem_wait(fork[1])
wait…

Y. Cheng GMU CS571 Spring 2020

Simplest Example of A Deadlock

88

Thread 0 Thread 1Interleaving

sem_wait(fork[0])
sem_wait(fork[1])
sem_signal(fork[0])
sem_signal(fork[1])

sem_wait(fork[1])
sem_wait(fork[0])
sem_signal(fork[1])
sem_signal(fork[0])

sem_wait(fork[0])

sem_wait(fork[1])

sem_wait(fork[0])
wait…

sem_wait(fork[1])
wait…

Q: Would the previous 5DP implementation cause exactly the
same form of a deadlock as shown below?

Y. Cheng GMU CS571 Spring 2020

Review: Conditions for Deadlocks

• Mutually exclusive access of shared resources
• Binary semaphore fork[0] and fork[1]

89Y. Cheng GMU CS571 Spring 2020

Review: Conditions for Deadlocks

• Mutually exclusive access of shared resources
• Binary semaphore fork[0] and fork[1]

• Circular waiting
• Thread 0 waits for Thread 1 to signal(fork[1]) and

• Thread 1 waits for Thread 0 to signal(fork[0])

90Y. Cheng GMU CS571 Spring 2020

Review: Conditions for Deadlocks

• Mutually exclusive access of shared resources
• Binary semaphore fork[0] and fork[1]

• Circular waiting
• Thread 0 waits for Thread 1 to signal(fork[1]) and
• Thread 1 waits for Thread 0 to signal(fork[0])

• Hold and wait
• Holding either fork[0] or fork[1] while waiting on

the other

91Y. Cheng GMU CS571 Spring 2020

Review: Conditions for Deadlocks

• Mutually exclusive access of shared resources
• Binary semaphore fork[0] and fork[1]

• Circular waiting
• Thread 0 waits for Thread 1 to signal(fork[1]) and
• Thread 1 waits for Thread 0 to signal(fork[0])

• Hold and wait
• Holding either fork[0] or fork[1] while waiting on

the other

• No preemption
• Neither fork[0] and fork[1] can be removed from

their respective holding threads

92Y. Cheng GMU CS571 Spring 2020

Why 5DP is Interesting?

• How to eat with your fellows without causing
deadlocks
• Circular arguments (the circular wait condition)
• Not giving up on firmly held things (no preemption)
• Infinite patience with half-baked schemes (hold some

& wait for more)

• Why starvation exists and what we can do about
it?

93Y. Cheng GMU CS571 Spring 2020

Why 5DP is Interesting?

• How to eat with your fellows without causing
deadlocks
• Circular arguments (the circular wait condition)
• Not giving up on firmly held things (no preemption)
• Infinite patience with half-baked schemes (hold some

& wait for more)

• Why starvation exists and what we can do about
it?

94

How to mess with your fellows!

Y. Cheng GMU CS571 Spring 2020

Dijkstra’s Solution:
Break the Circular Wait Condition
• Change how forks are acquired by at least one

of the philosophers

• Assume P0 – P4, 4 is the highest number

95Y. Cheng GMU CS571 Spring 2020

Again, Starvation

• Subtle difference between deadlock and
starvation
• Once a set of processes are in a deadlock, there is

no future execution sequence that can get them out
of it!
• In starvation, there does exist hope – some execution

order may be favorable to the starving process
although no guarantee it would ever occur

• Rollback and retry are prone to starvation
• Continuous arrival of higher priority process is

another common starvation situation

96Y. Cheng GMU CS571 Spring 2020

Building a Semaphore w/ CV
Worksheet

97Y. Cheng GMU CS571 Spring 2020

