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Condition Variables

A parent waiting for its child
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Spin-based Approach
Using a shared variable, parent spins until child set it to 1
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Spin-based Approach
Using a shared variable, parent spins until child set it to 1
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What’s the problem of this approach?



Condition Variables (CV)

• Definition: 
• An explicit queue that threads can put themselves 

when some condition is not as desired (by waiting on 
the condition)
• Other thread can wake one of those waiting threads 

to allow them to continue (by signaling on the 
condition)

• Pthread CV
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CV-based Approach

??

??
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Broken Implementation 1
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Broken Implementation 1

9Y. Cheng GMU CS571 Spring 2020

If parent comes after child, parent 
sleeps forever



Broken Implementation 1
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Broken Implementation 1
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Parent:    x     y                                   z

Child:                   a    b    c
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Broken Implementation 1
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Parent:    x     y                                   z

Child:                   a    b    c
GOOD!
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Broken Implementation 1
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Broken Implementation 1
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Parent:                      x     y

Child:       a    b    c
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Broken Implementation 1

15

Parent:                      x     y     … sleeeeeeeeeep forever …

Child:       a    b    c
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Broken Implementation 2
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Broken Implementation 2
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No mutual exclusion, hence child 
may signal before parent calls 
cond_wait(). In this case, parent 
sleeps forever!



Broken Implementation 2
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Broken Implementation 2
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Parent:     w    x            y     

Child:                  a    b  
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Broken Implementation 2

20

Parent:     w    x            y     … sleeeeeeeeep forever …

Child:                  a    b  
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Broken Implementation 2
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Parent:     w    x            y     … sleeeeeeeeep forever …

Child:                  a    b  

How to fix?
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Broken Implementation 2
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Parent:     w    x            y     … sleeeeeeeeep forever …

Child:                  a    b  

Mutex_
lock(&

m);

Mutex_unlock(&m);

while
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Trap 1 When Using CV
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Condition Variable
thread

wait

thread
wait
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Trap 1 When Using CV
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Condition Variable
thread

wait

thread
waitthread

signal
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Trap 1 When Using CV
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Condition Variable thread
wait
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Trap 1 When Using CV
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Condition Variable thread
wait

Only one thread gets a signal
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Trap 2 When Using CV
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Condition Variable
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Trap 2 When Using CV
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Condition Variablethread
signal

Y. Cheng GMU CS571 Spring 2020



Trap 2 When Using CV
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Condition Variable
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Trap 2 When Using CV
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Condition Variable
thread

wait
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Trap 2 When Using CV
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Condition Variable
thread

wait

waits forever…
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Trap 2 When Using CV
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Condition Variable
thread

wait

waits forever…

Signal lost if nobody waiting at that time
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Guarantee
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Condition Variable
thread

wait

thread
wait

Upon signal, there has to be at least one thread waiting;
If there are threads waiting, at least one thread will wake

thread
signal
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CV-based Parent-wait-for-child 
Approach
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Good Rule of Thumb
Always do 1. wait and 2. signal while holding the lock

Why: To prevent lost signal

CV-based Parent-wait-for-child 
Approach
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• Producer-consumer problem
• CV-based version

• Readers-writers problem

• Dining-philosophers problem

Classical Problems of Synchronization
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CV-based Producer-Consumer Implementation 1

Single CV and if statement

Put and Get routines
Single buffer
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CV-based Producer-Consumer Implementation 1

Single CV and if statement

Put and Get routines
Single buffer

What’s the problem of this
approach?



CV-based Producer-Consumer Implementation 1

39

C1 running
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CV-based Producer-Consumer Implementation 1
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P running
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CV-based Producer-Consumer Implementation 1
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P running
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CV-based Producer-Consumer Implementation 1
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P running
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CV-based Producer-Consumer Implementation 1
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P running
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CV-based Producer-Consumer Implementation 1
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P running
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CV-based Producer-Consumer Implementation 1
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C1 runnable
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CV-based Producer-Consumer Implementation 1
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C2 running
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CV-based Producer-Consumer Implementation 1

47

C2 running
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CV-based Producer-Consumer Implementation 1
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C2 running
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CV-based Producer-Consumer Implementation 1
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C2 running
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CV-based Producer-Consumer Implementation 1
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C1 running
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CV-based Producer-Consumer Implementation 2

Single CV and while
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CV-based Producer-Consumer Implementation 2

Single CV and while

What’s the problem of this
approach?
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C1 running
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C2 running
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P running
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P running
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P sleeping
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C1 running
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C1 running
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C1 running

Y. Cheng GMU CS571 Spring 2020



61

C1 sleeping
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C2 running
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C2 sleeping
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CV-based Producer-Consumer Implementation 3

Two CVs and while
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CV-based Producer-Consumer Implementation 3

Two CVs and while

Using two CVs to distinguish two 
types of threads; in order to properly 
signal which thread should wake up

• Producer waits on empty
• Consumer waits on full



Readers-Writers Problem
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Readers-Writers Problem
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• A data object (e.g. a file) is to be shared among 
several concurrent processes/threads 

• A writer process/thread must have exclusive 
access to the data object

• Multiple reader processes/threads may access 
the shared data simultaneously without a 
problem
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Reader-Writer Lock
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Reader-Writer Lock



70Y. Cheng GMU CS571 Spring 2020

Reader-Writer Lock

Initially, # readers is 0
binary sem lock set to 1
writelock set to 1



71Y. Cheng GMU CS571 Spring 2020

Reader-Writer Lock

Initially, # readers is 0
binary sem lock set to 1
writelock set to 1
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Reader-Writer Lock

Initially, # readers is 0
binary sem lock set to 1
writelock set to 1
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Reader-Writer Lock

Writer cannot
be in CS when 
readers are!

Initially, # readers is 0
binary sem lock set to 1
writelock set to 1



rwlock_acquire_writelock(rw);
…

write is performed
…

rwlock_release_writelock(rw);
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Readers-Writers Problem: 
Writer Thread
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Readers-Writers Problem: 
Reader Thread

rwlock_acquire_readlock(rw)
…

read is performed
…

rwlock_release_readlock(rw)

Well, is this solution Okay?
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Readers-Writers Problem: 
Reader Thread

rwlock_acquire_readlock(rw)
…

read is performed
…

rwlock_release_readlock(rw)

Well, is this solution Okay?
A: Technically it works. But 
starvation may happen
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Starvation

• A process/thread that is forced to wait 
indefinitely in a synchronization program is said 
to be subject to starvation
• In some execution scenarios, that process does not 

make any progress

• Deadlocks imply starvation, but the reverse is not 
true
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Dining-Philosophers Problem
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Shared data 

sem_t forks[5];
Initially all semaphore values are 1

• 5 philosophers share a common circular 
table.  There are 5 forks (or chopsticks) 
and food (in the middle).  When a 
philosopher gets hungry, he tries to pick 
up the closest forks

• A philosopher may pick up only one fork 
at a time, and cannot pick up a fork 
already in use. When done, he puts 
down both of his forks, one after the 
other

Dining-Philosophers Problem



Dining-Philosophers Problem

• The basic loop of a philosopher

80

Critical section
??

??
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The Helper Functions

sem_t forks[5]
• Each fork initialized to 1
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Is this solution correct?
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Simplest Example of A Deadlock
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Thread 0 Thread 1Interleaving

sem_wait(fork[0])
sem_wait(fork[1])
sem_signal(fork[0])
sem_signal(fork[1])

sem_wait(fork[1])
sem_wait(fork[0])
sem_signal(fork[1])
sem_signal(fork[0])
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Simplest Example of A Deadlock
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Thread 0 Thread 1Interleaving

sem_wait(fork[0]) 
sem_wait(fork[0])
sem_wait(fork[1])
sem_signal(fork[0])
sem_signal(fork[1])

sem_wait(fork[1])
sem_wait(fork[0])
sem_signal(fork[1])
sem_signal(fork[0])
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Simplest Example of A Deadlock
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Thread 0 Thread 1Interleaving

sem_wait(fork[0])
sem_wait(fork[1])
sem_signal(fork[0])
sem_signal(fork[1])

sem_wait(fork[1])
sem_wait(fork[0])
sem_signal(fork[1])
sem_signal(fork[0])

sem_wait(fork[0]) 

sem_wait(fork[1])
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Simplest Example of A Deadlock
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Thread 0 Thread 1Interleaving

sem_wait(fork[0])
sem_wait(fork[1])
sem_signal(fork[0])
sem_signal(fork[1])

sem_wait(fork[1])
sem_wait(fork[0])
sem_signal(fork[1])
sem_signal(fork[0])

sem_wait(fork[0]) 

sem_wait(fork[1])

sem_wait(fork[0])
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Simplest Example of A Deadlock
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Thread 0 Thread 1Interleaving

sem_wait(fork[0])
sem_wait(fork[1])
sem_signal(fork[0])
sem_signal(fork[1])

sem_wait(fork[1])
sem_wait(fork[0])
sem_signal(fork[1])
sem_signal(fork[0])

sem_wait(fork[0]) 

sem_wait(fork[1])

sem_wait(fork[0])
wait…

sem_wait(fork[1])
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Simplest Example of A Deadlock
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Thread 0 Thread 1Interleaving

sem_wait(fork[0])
sem_wait(fork[1])
sem_signal(fork[0])
sem_signal(fork[1])

sem_wait(fork[1])
sem_wait(fork[0])
sem_signal(fork[1])
sem_signal(fork[0])

sem_wait(fork[0]) 

sem_wait(fork[1])

sem_wait(fork[0])
wait…

sem_wait(fork[1])
wait…
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Simplest Example of A Deadlock
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Thread 0 Thread 1Interleaving

sem_wait(fork[0])
sem_wait(fork[1])
sem_signal(fork[0])
sem_signal(fork[1])

sem_wait(fork[1])
sem_wait(fork[0])
sem_signal(fork[1])
sem_signal(fork[0])

sem_wait(fork[0]) 

sem_wait(fork[1])

sem_wait(fork[0])
wait…

sem_wait(fork[1])
wait…

Q: Would the previous 5DP implementation cause exactly the 
same form of a deadlock as shown below?
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Review: Conditions for Deadlocks

• Mutually exclusive access of shared resources
• Binary semaphore fork[0] and fork[1]
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Review: Conditions for Deadlocks

• Mutually exclusive access of shared resources
• Binary semaphore fork[0] and fork[1]

• Circular waiting
• Thread 0 waits for Thread 1 to signal(fork[1]) and

• Thread 1 waits for Thread 0 to signal(fork[0])
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Review: Conditions for Deadlocks

• Mutually exclusive access of shared resources
• Binary semaphore fork[0] and fork[1]

• Circular waiting
• Thread 0 waits for Thread 1 to signal(fork[1]) and
• Thread 1 waits for Thread 0 to signal(fork[0])

• Hold and wait
• Holding either fork[0] or fork[1] while waiting on 

the other
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Review: Conditions for Deadlocks

• Mutually exclusive access of shared resources
• Binary semaphore fork[0] and fork[1]

• Circular waiting
• Thread 0 waits for Thread 1 to signal(fork[1]) and
• Thread 1 waits for Thread 0 to signal(fork[0])

• Hold and wait
• Holding either fork[0] or fork[1] while waiting on 

the other

• No preemption
• Neither fork[0] and fork[1] can be removed from 

their respective holding threads
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Why 5DP is Interesting?

• How to eat with your fellows without causing 
deadlocks
• Circular arguments (the circular wait condition)
• Not giving up on firmly held things (no preemption)
• Infinite patience with half-baked schemes (hold some 

& wait for more)

• Why starvation exists and what we can do about 
it?
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Why 5DP is Interesting?

• How to eat with your fellows without causing 
deadlocks
• Circular arguments (the circular wait condition)
• Not giving up on firmly held things (no preemption)
• Infinite patience with half-baked schemes (hold some 

& wait for more)

• Why starvation exists and what we can do about 
it?
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How to mess with your fellows!
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Dijkstra’s Solution: 
Break the Circular Wait Condition
• Change how forks are acquired by at least one 

of the philosophers

• Assume P0 – P4, 4 is the highest number
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Again, Starvation

• Subtle difference between deadlock and 
starvation
• Once a set of processes are in a deadlock, there is 

no future execution sequence that can get them out 
of it!
• In starvation, there does exist hope – some execution 

order may be favorable to the starving process 
although no guarantee it would ever occur

• Rollback and retry are prone to starvation
• Continuous arrival of higher priority process is 

another common starvation situation
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Building a Semaphore w/ CV
Worksheet
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