
Locks, Semaphores,
and Producer-

Consumer Problem
CS 571: Operating Systems (Spring 2020)

Lecture 3

Yue Cheng

Some material taken/derived from:
• Wisconsin CS-537 materials created by Remzi Arpaci-Dusseau.
Licensed for use under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Review: Threads

2Y. Cheng GMU CS571 Spring 2020

Threads

• Processes vs. threads
• Parent and child processes do not share address

space

• Inter-process communication w/ message passing or
shared memory

• Threads created by one process share address
space, open files, global variables, etc.

• Much cheaper and more flexible inter-thread
communication and cooperation

3Y. Cheng GMU CS571 Spring 2020

A Simple Example Using pthread

4Y. Cheng GMU CS571 Spring 2020

Thread Trace 1

5Y. Cheng GMU CS571 Spring 2020

Thread Trace 1

6Y. Cheng GMU CS571 Spring 2020

Thread Trace 1

7Y. Cheng GMU CS571 Spring 2020

Thread Trace 1

8Y. Cheng GMU CS571 Spring 2020

Thread Trace 1

9Y. Cheng GMU CS571 Spring 2020

Thread Trace 2

10Y. Cheng GMU CS571 Spring 2020

Thread Trace 2

11Y. Cheng GMU CS571 Spring 2020

Thread Trace 2

12Y. Cheng GMU CS571 Spring 2020

Thread Trace 2

13Y. Cheng GMU CS571 Spring 2020

Thread Trace 2

14Y. Cheng GMU CS571 Spring 2020

Thread Trace 2

15

What would a 3rd thread trace look like?
Y. Cheng GMU CS571 Spring 2020

Synchronization

• Race Conditions

• The Critical Section Problem

• Synchronization Hardware and Locks

• Semaphores

16Y. Cheng GMU CS571 Spring 2020

17

Threaded Counting Example

$ git clone https://github.com/tddg/demo-ostep-code
$ cd demo-ostep-code/threads-intro
$ make
$./t1 <loop_count>

Try it yourself

Y. Cheng GMU CS571 Spring 2020

https://github.com/tddg/demo-ostep-code

Back-to-Back Runs
Run 1…
main: begin (counter = 0)
A: begin
B: begin
A: done
B: done
main: done with both (counter = 10706438)

Run 2…
main: begin (counter = 0)
A: begin
B: begin
A: done
B: done
main: done with both (counter = 11852529)

18Y. Cheng GMU CS571 Spring 2020

What exactly Happened??

19Y. Cheng GMU CS571 Spring 2020

What exactly Happened??

% otool -t -v thread_rc [Mac OS X]
% objdump -d thread_rc [Linux]

…
0000000100000d52 movl 0x2f8e %eax
0000000100000d58 addl $0x1, %eax
0000000100000d5b movl %eax, 0x2f8e

…

20

counter = counter + 1;

Y. Cheng GMU CS571 Spring 2020

Concurrent Access to the Same
Memory Address

21

OS Thread 1 Thread 2

Time

Enter into critical section
movl 0x2f8e, %eax
addl $0x1, %eax

50
51

Value

Y. Cheng GMU CS571 Spring 2020

Concurrent Access to the Same
Memory Address

22

OS Thread 1 Thread 2

Time

Enter into critical section
movl 0x2f8e, %eax
addl $0x1, %eax

50
51

Value

Y. Cheng GMU CS571 Spring 2020

Interrupt
Save T1’s state
Restore T2’s state

Concurrent Access to the Same
Memory Address

23

OS Thread 1 Thread 2

Time

Enter into critical section
movl 0x2f8e, %eax
addl $0x1, %eax

50
51

Value

Y. Cheng GMU CS571 Spring 2020

Interrupt
Save T1’s state
Restore T2’s state

movl 0x2f8e, %eax
addl $0x1, %eax
movl %eax, 0x2f8e

Concurrent Access to the Same
Memory Address

24

OS Thread 1 Thread 2

Time

Enter into critical section
movl 0x2f8e, %eax
addl $0x1, %eax

50
51

Value

Y. Cheng GMU CS571 Spring 2020

Interrupt
Save T1’s state
Restore T2’s state

movl 0x2f8e, %eax
addl $0x1, %eax
movl %eax, 0x2f8e

50
51
51

Concurrent Access to the Same
Memory Address

25

OS Thread 1 Thread 2

Time

Enter into critical section
movl 0x2f8e, %eax
addl $0x1, %eax

50
51

Value

Y. Cheng GMU CS571 Spring 2020

Interrupt
Save T1’s state
Restore T2’s state

movl 0x2f8e, %eax
addl $0x1, %eax
movl %eax, 0x2f8e

50
51
51

Interrupt
Save T2’s state
Restore T1’s state

Concurrent Access to the Same
Memory Address

26

OS Thread 1 Thread 2

Time

Enter into critical section
movl 0x2f8e, %eax
addl $0x1, %eax

50
51

Value

Y. Cheng GMU CS571 Spring 2020

Interrupt
Save T1’s state
Restore T2’s state

movl 0x2f8e, %eax
addl $0x1, %eax
movl %eax, 0x2f8e

50
51
51

Interrupt
Save T2’s state
Restore T1’s state

movl %eax, 0x2f8e

Concurrent Access to the Same
Memory Address

27

OS Thread 1 Thread 2

Time

Enter into critical section
movl 0x2f8e, %eax
addl $0x1, %eax

50
51

Value

Y. Cheng GMU CS571 Spring 2020

Interrupt
Save T1’s state
Restore T2’s state

movl 0x2f8e, %eax
addl $0x1, %eax
movl %eax, 0x2f8e

50
51
51

Interrupt
Save T2’s state
Restore T1’s state

movl %eax, 0x2f8e 51

Concurrent Access to the Same
Memory Address

28

OS Thread 1 Thread 2

Time

Enter into critical section
movl 0x2f8e, %eax
addl $0x1, %eax

50
51

Value

Y. Cheng GMU CS571 Spring 2020

Interrupt
Save T1’s state
Restore T2’s state

movl 0x2f8e, %eax
addl $0x1, %eax
movl %eax, 0x2f8e

50
51
51

Interrupt
Save T2’s state
Restore T1’s state

movl %eax, 0x2f8e 51

29

• Observe: In a time-shared system, the exact
instruction execution order cannot be predicted
• Deterministic vs. Non-deterministic

• Any possible orders could happen, which result
in different output across runs

Takeaway

Y. Cheng GMU CS571 Spring 2020

30

• Situations like this, where multiple processes are
writing or reading some shared data and the final
result depends on who runs precisely when, are
called race conditions
• A serious problem for any concurrent system using

shared variables

• Programmers must make sure that some high-
level code sections are executed atomically
• Atomic operation: It completes in its entirety without

worrying about interruption by any other potentially
conflict-causing process

Race Conditions

Y. Cheng GMU CS571 Spring 2020

The Critical-Section Problem
• N processes/threads all competing to access the

shared data

• Each process/thread has a code segment, called
critical section (critical region), in which the shared
data is accessed

• Problem – ensure that when one process is
executing in its critical section, no other process is
allowed to execute in that critical section

• The execution of the critical sections by the
processes must be mutually exclusive in time

Y. Cheng GMU CS571 Spring 2020 31

Mutual Exclusion

Y. Cheng GMU CS571 Spring 2020 32

Solving Critical-Section Problem
Any solution to the problem must satisfy four conditions!
Mutual Exclusion:

No two processes may be simultaneously inside the same
critical section

Bounded Waiting:
No process should have to wait forever to enter a critical
section

Progress:

No process executing a code segment unrelated to a given
critical section can block another process trying to enter the
same critical section

Arbitrary Speed:
No assumption can be made about the relative speed of
different processes (though all processes have a non-zero
speed)

Y. Cheng GMU CS571 Spring 2020 33

Using Lock to Protect Shared Data

• Suppose that two threads A and B have
access to a shared variable “balance”

Thread A: Thread B:
balance = balance + 1 balance = balance + 1

34Y. Cheng GMU CS571 Spring 2020

Locks

• A lock is a variable

• Two states
• Available or free

• Locked or held

• lock(): tries to acquire the lock

• unlock(): releases the lock that has been
acquired by caller

35Y. Cheng GMU CS571 Spring 2020

Building a Lock

• Needs help from hardware + OS
• A number of hardware primitives to support a

lock
• Goals of a lock
• Basic task: Mutual exclusion
• Fairness
• Performance

36Y. Cheng GMU CS571 Spring 2020

First Attempt: A Simple Flag

• How about just using loads/stores
instructions?

37Y. Cheng GMU CS571 Spring 2020

First Attempt: A Simple Flag

• How about just using loads/stores
instructions?

38

A spin lock

Y. Cheng GMU CS571 Spring 2020

First Attempt: A Simple Flag

• How about just using loads/stores
instructions?

39

A spin lock

What’s the problem?
Y. Cheng GMU CS571 Spring 2020

First Attempt: A Simple Flag

40

Failed reason: No mutual exclusion!

Flag is 0 initially

Y. Cheng GMU CS571 Spring 2020

First Attempt: A Simple Flag

41

Failed reason: No mutual exclusion!

Flag is 0 initially

Checking that Flag is 0, again…

Y. Cheng GMU CS571 Spring 2020

First Attempt: A Simple Flag

42

Failed reason: No mutual exclusion!

Flag is set to 1 by T2

Y. Cheng GMU CS571 Spring 2020

First Attempt: A Simple Flag

43

Flag is set to 1 again! Two threads both in Critical Section

Y. Cheng GMU CS571 Spring 2020

First Attempt: A Simple Flag

44

Reason:
Lock operation is not atomic!
And therefore, no mutual exclusion!

Flag is set to 1 again! Two threads both in Critical Section

Y. Cheng GMU CS571 Spring 2020

Getting Help from the Hardware

• One solution supported by hardware may be to use
interrupt capability

do {
lock()
critical section;

unlock()
remainder section;

} while (1);

45Y. Cheng GMU CS571 Spring 2020

Getting Help from the Hardware

• One solution supported by hardware may be to use
interrupt capability

do {
lock()
critical section;

unlock()
remainder section;

} while (1);

46

Are we done??

Y. Cheng GMU CS571 Spring 2020

Synchronization Hardware
• Many machines provide special hardware

instructions to help achieve mutual exclusion

• The TestAndSet (TAS) instruction tests and
modifies the content of a memory word atomically

• TAS returns old value pointed to by old_ptr and
updates said value to new

47

Operations
performed
atomically!

Y. Cheng GMU CS571 Spring 2020

Mutual Exclusion with TAS

• Initially, lock’s flag set to 0

48

A correct spin lock

Y. Cheng GMU CS571 Spring 2020

Busy Waiting and Spin Locks

49

• This approach is based on busy waiting
• If the critical section is being used, waiting processes

loop continuously at the entry point

• A binary “lock” variable that uses busy waiting is
called a spin lock
• Processes that find the lock unavailable “spin” at the entry

• It actually works (mutual exclusion)

Y. Cheng GMU CS571 Spring 2020

Busy Waiting and Spin Locks

50

• This approach is based on busy waiting
• If the critical section is being used, waiting processes

loop continuously at the entry point

• A binary “lock” variable that uses busy waiting is
called a spin lock
• Processes that find the lock unavailable “spin” at the entry

• It actually works (mutual exclusion)

• Disadvantages?
• Fairness?

• Performance?

Y. Cheng GMU CS571 Spring 2020

Busy Waiting and Spin Locks

51

• This approach is based on busy waiting
• If the critical section is being used, waiting processes

loop continuously at the entry point

• A binary “lock” variable that uses busy waiting is
called a spin lock
• Processes that find the lock unavailable “spin” at the entry

• It actually works (mutual exclusion)
• Disadvantages?
• Fairness? (A: No. Heavy contention may cause

starvation)
• Performance? (A: Busy waiting wastes CPU cycles)

Y. Cheng GMU CS571 Spring 2020

A Simple Approach: Just Yield (Win)!

• When you are going to spin, just give up the
CPU to another process/thread

52Y. Cheng GMU CS571 Spring 2020

Lock Worksheet

53Y. Cheng GMU CS571 Spring 2020

Semaphores

• Introduced by E. W. Dijkstra

• Motivation: Avoid busy waiting by blocking a
process execution until some condition is
satisfied

• Two operations are defined on a semaphore
variable s:

sem_wait(s) (also called P(s) or down(s))

sem_post(s) (also called V(s) or up(s))

54Y. Cheng GMU CS571 Spring 2020

Semaphore Operations
• Conceptually, a semaphore has an integer value. This value

is greater than or equal to 0

• sem_wait(s):
s.value-- ; /* Executed atomically */
/* wait/block if s.value < 0 (or negative) */

• A process/thread executing the wait operation on a
semaphore with value < 0 being blocked until the
semaphore’s value becomes greater than 0
• No busy waiting

• sem_post(s):
s.value++; /* Executed atomically */
/* if one or more process/thread waiting, wake one */

55Y. Cheng GMU CS571 Spring 2020

Semaphore Operations (cont.)

• If multiple processes/threads are blocked on the
same semaphore ‘s’, only one of them will be
awakened when another process performs
post(s) operation

• Who will have higher priority?

Y. Cheng GMU CS571 Spring 2020 56

Semaphore Operations (cont.)

• If multiple processes/threads are blocked on the
same semaphore ‘s’, only one of them will be
awakened when another process performs
post(s) operation

• Who will have higher priority?
• A: FIFO, or whatever queuing strategy

Y. Cheng GMU CS571 Spring 2020 57

• Declare and define a semaphore:
sem_t s;
sem_init(&s, 0, 1); /* initially s = 1 */

• Routine of Thread 0 & 1:
do {

sem_wait(s);
critical section

sem_post(s);
remainder section

} while (1);

Attacking Critical Section Problem
with Semaphores

58

Binary semaphore,
which is a lock

Y. Cheng GMU CS571 Spring 2020

Attacking Critical Section Problem
with Semaphores

• Single thread using a binary semaphore

59Y. Cheng GMU CS571 Spring 2020

Attacking Critical Section Problem
with Semaphores

• Single thread using a binary semaphore

60Y. Cheng GMU CS571 Spring 2020

Attacking Critical Section Problem
with Semaphores

• Single thread using a binary semaphore

61Y. Cheng GMU CS571 Spring 2020

Attacking Critical Section Problem
with Semaphores

• Single thread using a binary semaphore

62Y. Cheng GMU CS571 Spring 2020

Attacking Critical Section Problem
with Semaphores
• Two threads using a binary semaphore

63Y. Cheng GMU CS571 Spring 2020

Attacking Critical Section Problem
with Semaphores
• Two threads using a binary semaphore

64Y. Cheng GMU CS571 Spring 2020

Attacking Critical Section Problem
with Semaphores
• Two threads using a binary semaphore

65Y. Cheng GMU CS571 Spring 2020

Attacking Critical Section Problem
with Semaphores
• Two threads using a binary semaphore

66Y. Cheng GMU CS571 Spring 2020

Attacking Critical Section Problem
with Semaphores
• Two threads using a binary semaphore

67Y. Cheng GMU CS571 Spring 2020

Attacking Critical Section Problem
with Semaphores
• Two threads using a binary semaphore

68Y. Cheng GMU CS571 Spring 2020

Attacking Critical Section Problem
with Semaphores
• Two threads using a binary semaphore

69Y. Cheng GMU CS571 Spring 2020

Attacking Critical Section Problem
with Semaphores
• Two threads using a binary semaphore

70Y. Cheng GMU CS571 Spring 2020

72

• Producer-Consumer Problem
• Semaphore version

• Condition Variable
• A CV-based version

• Readers-Writers Problem

• Dining-Philosophers Problem

Classical Problems of Synchronization

Y. Cheng GMU CS571 Spring 2020

Today

Producer-Consumer Problem
• The bounded-buffer producer-consumer problem assumes

that there is a buffer of size N

• The producer process puts items to the buffer area

• The consumer process consumes items from the buffer

• The producer and the consumer execute concurrently

producer consumer

.

73Y. Cheng GMU CS571 Spring 2020

Example: Unix Pipes

• A pipe may have many writers and readers

• Internally, there is a finite-sized buffer

• Writers add data to the buffer

• Readers remove data from the buffer

74Y. Cheng GMU CS571 Spring 2020

Example: Unix Pipes

75

Buffer

end

start

Y. Cheng GMU CS571 Spring 2020

Example: Unix Pipes

76

Buffer

end

start

Write

Y. Cheng GMU CS571 Spring 2020

Example: Unix Pipes

77

Buffer

end

start

Y. Cheng GMU CS571 Spring 2020

Example: Unix Pipes

78

Buffer

end

start

Write

Y. Cheng GMU CS571 Spring 2020

Example: Unix Pipes

79

Buffer

end

start

Y. Cheng GMU CS571 Spring 2020

Example: Unix Pipes

80

Buffer

end

start

Read

Y. Cheng GMU CS571 Spring 2020

Example: Unix Pipes

81

Buffer

end

start

Y. Cheng GMU CS571 Spring 2020

Example: Unix Pipes

82

Buffer

end

start

Write

Y. Cheng GMU CS571 Spring 2020

Example: Unix Pipes

83

Buffer

end

start

Y. Cheng GMU CS571 Spring 2020

Example: Unix Pipes

84

Buffer

end

start

Read

Y. Cheng GMU CS571 Spring 2020

Example: Unix Pipes

85

Buffer

end

start

Read

Y. Cheng GMU CS571 Spring 2020

Example: Unix Pipes

86

Buffer

end

start

Read

Note: reader must wait

Y. Cheng GMU CS571 Spring 2020

Example: Unix Pipes

87

Buffer

end

start

Write

Y. Cheng GMU CS571 Spring 2020

Example: Unix Pipes

88

Buffer

end

start

Write

Y. Cheng GMU CS571 Spring 2020

Example: Unix Pipes

89

Buffer

end

start

Write

Note: writer must wait

Y. Cheng GMU CS571 Spring 2020

Example: Unix Pipes

• Implementation
• Reads/writes to buffer require locking

• When buffers are full, writers (producers) must wait

• When buffers are empty, readers (consumers) must
wait

90Y. Cheng GMU CS571 Spring 2020

Linux Pipe Commands

% ps aux | less

% cat file | grep <str>

91

Pipe

Pipe

Y. Cheng GMU CS571 Spring 2020

Producer-Consumer Model:
Parameters
• Shared data:
sem_t full, empty;

• Initially:

full = 0 /* The number of full buffers */

empty = MAX /* The number of empty buffers */

Y. Cheng GMU CS571 Spring 2020 92

First Attempt: MAX = 1

93

Put and Get routines

Y. Cheng GMU CS571 Spring 2020

First Attempt: MAX = 10?

94

Put and Get routines

Y. Cheng GMU CS571 Spring 2020

First Attempt: MAX = 10?

95

Producer 0: Running Producer 1: Runnable

fill = 0
empty = 10

Y. Cheng GMU CS571 Spring 2020

First Attempt: MAX = 10?

96

Producer 0: Running Producer 1: Runnable

fill = 0

void put(int value) {
buffer[fill] = value;
fill = (fill + 1) % MAX;

}

empty = 9

Y. Cheng GMU CS571 Spring 2020

First Attempt: MAX = 10?

97

Producer 0: Running Producer 1: Runnable

fill = 0

void put(int value) {
buffer[fill] = value;
Interrupted …
fill = (fill + 1) % MAX;

}

empty = 9

Y. Cheng GMU CS571 Spring 2020

First Attempt: MAX = 10?

98

Producer 0: Sleeping Producer 1: Runnable

fill = 0

void put(int value) {
buffer[fill] = value;
Interrupted …
fill = (fill + 1) % MAX;

}

empty = 9

Y. Cheng GMU CS571 Spring 2020

First Attempt: MAX = 10?

99

Producer 0: Runnable Producer 1: Running

fill = 0

void put(int value) {
buffer[fill] = value;
Interrupted …
fill = (fill + 1) % MAX;

}

empty = 9

Y. Cheng GMU CS571 Spring 2020

void put(int value) {
buffer[fill] = value;
fill = (fill + 1) % MAX;

}

First Attempt: MAX = 10?

100

Producer 0: Runnable Producer 1: Running

fill = 0
Overwrite!

void put(int value) {
buffer[fill] = value;
Interrupted …

fill = (fill + 1) % MAX;
}

empty = 8

Y. Cheng GMU CS571 Spring 2020

One More Parameter: A mutex lock

• Shared data:
sem_t full, empty;

• Initially:

full = 0; /* The number of full buffers */
empty = MAX; /* The number of empty buffers */
mutex = 1; /* Semaphore controlling the access

to the buffer pool */

101Y. Cheng GMU CS571 Spring 2020

Add “Mutual Exclusion”

102Y. Cheng GMU CS571 Spring 2020

Add “Mutual Exclusion”

103Y. Cheng GMU CS571 Spring 2020

What if consumer
gets to run first??

Adding “Mutual Exclusion”

104

Producer 0: Runnable Consumer 0: Running

empty = 10
full = 0
mutex = 1

Y. Cheng GMU CS571 Spring 2020

Adding “Mutual Exclusion”

105

Producer 0: Runnable Consumer 0: Running

Consumer 0 is waiting for
full to be greater than or
equal to 0

empty = 10
full = 0
mutex = 0

Y. Cheng GMU CS571 Spring 2020

Adding “Mutual Exclusion”

106

Producer 0: Running Consumer 0: Runnable

empty = 10
full = -1
mutex = -1

Consumer 0 is waiting for
full to be greater than or
equal to 0

Y. Cheng GMU CS571 Spring 2020

Adding “Mutual Exclusion”

107

Producer 0: Running Consumer 0: Runnable

Deadlock!!

Producer 0 gets stuck at
acquiring mutex which has
been locked by Consumer 0!

empty = 10
full = -1
mutex = -1

Consumer 0 is waiting for
full to be greater than or
equal to 0

Y. Cheng GMU CS571 Spring 2020

Deadlocks
• A set of threads are said to be in a deadlock state

when every thread in the set is waiting for an event
that can be caused only by another thread in the
set

108

A typical deadlock
dependency graph

Y. Cheng GMU CS571 Spring 2020

Conditions for Deadlock
• Mutual exclusion

• Threads claim exclusive control of resources that require
e.g., a thread grabs a lock

• Hold-and-wait
• Threads hold resources allocated to them while waiting for

additional resources

• No preemption
• Resources cannot be forcibly removed from threads that

are holding them

• Circular wait
• There exists a circular chain of threads such that each

holds one or more resources that are being requests by
next thread in chain

109Y. Cheng GMU CS571 Spring 2020

Correct Mutual Exclusion

110Y. Cheng GMU CS571 Spring 2020

Mutex wraps
just around
critical section!

Mutex wraps
just around
critical section!

Producer-Consumer Solution

• Make sure that
1.The producer and the consumer do not access the buffer

area and related variables at the same time

2.No item is made available to the consumer if all the buffer
slots are empty

3.No slot in the buffer is made available to the producer if all
the buffer slots are full

111Y. Cheng GMU CS571 Spring 2020

Semaphore Worksheet

135Y. Cheng GMU CS571 Spring 2020

