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Review: Threads
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Threads

• Processes vs. threads
• Parent and child processes do not share address 

space

• Inter-process communication w/ message passing or 
shared memory

• Threads created by one process share address 
space, open files, global variables, etc.

• Much cheaper and more flexible inter-thread 
communication and cooperation
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A Simple Example Using pthread
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Thread Trace 1
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Thread Trace 1
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Thread Trace 1
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Thread Trace 1
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Thread Trace 1
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Thread Trace 2
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Thread Trace 2
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Thread Trace 2
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Thread Trace 2
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Thread Trace 2
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Thread Trace 2
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What would a 3rd thread trace look like?
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Synchronization

• Race Conditions

• The Critical Section Problem

• Synchronization Hardware and Locks

• Semaphores
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Threaded Counting Example

$ git clone https://github.com/tddg/demo-ostep-code
$ cd demo-ostep-code/threads-intro
$ make
$ ./t1 <loop_count>

Try it yourself
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Back-to-Back Runs
Run 1…
main: begin (counter = 0)
A: begin
B: begin
A: done
B: done
main: done with both (counter = 10706438)

Run 2…
main: begin (counter = 0)
A: begin
B: begin
A: done
B: done
main: done with both (counter = 11852529)
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What exactly Happened??
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What exactly Happened??

% otool -t -v thread_rc [Mac OS X]
% objdump -d thread_rc [Linux]

…
0000000100000d52 movl 0x2f8e %eax
0000000100000d58 addl $0x1,   %eax
0000000100000d5b movl %eax,  0x2f8e

…
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counter = counter + 1;

Y. Cheng GMU CS571 Spring 2020



Concurrent Access to the Same 
Memory Address

21

OS Thread 1 Thread 2

Time

Enter into critical section
movl 0x2f8e, %eax
addl $0x1, %eax

50
51

Value
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Concurrent Access to the Same 
Memory Address
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OS Thread 1 Thread 2

Time

Enter into critical section
movl 0x2f8e, %eax
addl $0x1, %eax

50
51

Value
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Interrupt
Save T1’s state
Restore T2’s state



Concurrent Access to the Same 
Memory Address
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OS Thread 1 Thread 2

Time

Enter into critical section
movl 0x2f8e, %eax
addl $0x1, %eax

50
51

Value
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Interrupt
Save T1’s state
Restore T2’s state

movl 0x2f8e, %eax
addl $0x1, %eax
movl %eax, 0x2f8e



Concurrent Access to the Same 
Memory Address
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Concurrent Access to the Same 
Memory Address
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Concurrent Access to the Same 
Memory Address
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Concurrent Access to the Same 
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Concurrent Access to the Same 
Memory Address
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• Observe: In a time-shared system, the exact 
instruction execution order cannot be predicted
• Deterministic vs. Non-deterministic

• Any possible orders could happen, which result 
in different output across runs

Takeaway
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• Situations like this, where multiple processes are 
writing or reading some shared data and the final 
result depends on who runs precisely when, are 
called race conditions
• A serious problem for any concurrent system using 

shared variables

• Programmers must make sure that some high-
level code sections are executed atomically
• Atomic operation: It completes in its entirety without 

worrying about interruption by any other potentially 
conflict-causing process

Race Conditions
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The Critical-Section Problem
• N processes/threads all competing to access the 

shared data

• Each process/thread has a code segment, called 
critical section (critical region), in which the shared 
data is accessed

• Problem – ensure that when one process is 
executing in its critical section, no other process is 
allowed to execute in that critical section

• The execution of the critical sections by the 
processes must be mutually exclusive in time
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Mutual Exclusion
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Solving Critical-Section Problem
Any solution to the problem must satisfy four conditions!
Mutual Exclusion:

No two processes may be simultaneously inside the same 
critical section

Bounded Waiting: 
No process should have to wait forever to enter a critical 
section

Progress:

No process executing a code segment unrelated to a given 
critical section can block another process trying to enter the 
same critical section

Arbitrary Speed:
No assumption can be made about the relative speed of 
different processes (though all processes have a non-zero 
speed)
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Using Lock to Protect Shared Data

• Suppose that two threads A and B have 
access to a shared variable “balance”

Thread A:                       Thread B:
balance = balance + 1       balance = balance + 1
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Locks

• A lock is a variable

• Two states
• Available or free

• Locked or held

• lock(): tries to acquire the lock

• unlock(): releases the lock that has been 
acquired by caller
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Building a Lock

• Needs help from hardware + OS
• A number of hardware primitives to support a 

lock
• Goals of a lock
• Basic task: Mutual exclusion
• Fairness
• Performance
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First Attempt: A Simple Flag

• How about just using loads/stores
instructions?
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First Attempt: A Simple Flag

• How about just using loads/stores
instructions?
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A spin lock
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First Attempt: A Simple Flag

• How about just using loads/stores
instructions?
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A spin lock

What’s the problem?
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First Attempt: A Simple Flag
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Failed reason: No mutual exclusion!

Flag is 0 initially
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First Attempt: A Simple Flag
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Failed reason: No mutual exclusion!

Flag is 0 initially

Checking that Flag is 0, again…
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First Attempt: A Simple Flag
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Failed reason: No mutual exclusion!

Flag is set to 1 by T2
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First Attempt: A Simple Flag
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Flag is set to 1 again! Two threads both in Critical Section

Y. Cheng GMU CS571 Spring 2020



First Attempt: A Simple Flag
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Reason: 
Lock operation is not atomic!
And therefore, no mutual exclusion!

Flag is set to 1 again! Two threads both in Critical Section
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Getting Help from the Hardware

• One solution supported by hardware may be to use 
interrupt capability

do {
lock()
critical section;

unlock()
remainder section;

} while (1);
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Getting Help from the Hardware

• One solution supported by hardware may be to use 
interrupt capability

do {
lock()
critical section;

unlock()
remainder section;

} while (1);
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Are we done??
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Synchronization Hardware
• Many machines provide special hardware 

instructions to help achieve mutual exclusion 

• The TestAndSet (TAS) instruction tests and 
modifies the content of a memory word atomically

• TAS returns old value pointed to by old_ptr and 
updates said value to new

47

Operations 
performed 
atomically!
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Mutual Exclusion with TAS

• Initially, lock’s flag set to 0
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A correct spin lock
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Busy Waiting and Spin Locks
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• This approach is based on busy waiting
• If the critical section is being used, waiting processes 

loop continuously at the entry point

• A binary “lock” variable that uses busy waiting is 
called a spin lock
• Processes that find the lock unavailable “spin” at the entry

• It actually works (mutual exclusion)

Y. Cheng GMU CS571 Spring 2020



Busy Waiting and Spin Locks
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• This approach is based on busy waiting
• If the critical section is being used, waiting processes 

loop continuously at the entry point

• A binary “lock” variable that uses busy waiting is 
called a spin lock
• Processes that find the lock unavailable “spin” at the entry

• It actually works (mutual exclusion)

• Disadvantages?
• Fairness?

• Performance?
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Busy Waiting and Spin Locks
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• This approach is based on busy waiting
• If the critical section is being used, waiting processes 

loop continuously at the entry point

• A binary “lock” variable that uses busy waiting is 
called a spin lock
• Processes that find the lock unavailable “spin” at the entry

• It actually works (mutual exclusion)
• Disadvantages?
• Fairness? (A: No. Heavy contention may cause 

starvation)
• Performance? (A: Busy waiting wastes CPU cycles)
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A Simple Approach: Just Yield (Win)!

• When you are going to spin, just give up the 
CPU to another process/thread
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Lock Worksheet
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Semaphores

• Introduced by E. W. Dijkstra

• Motivation:  Avoid busy waiting by blocking a 
process execution until some condition is 
satisfied

• Two operations are defined on a semaphore 
variable s:

sem_wait(s) (also called P(s) or down(s))

sem_post(s) (also called V(s) or up(s))
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Semaphore Operations
• Conceptually, a semaphore has an integer value. This value 

is greater than or equal to 0

• sem_wait(s):
s.value-- ;  /*  Executed atomically */ 
/* wait/block if s.value < 0 (or negative) */

• A process/thread executing the wait operation on a 
semaphore  with value < 0 being blocked until the 
semaphore’s value becomes greater than 0
• No busy waiting

• sem_post(s):
s.value++;  /* Executed atomically */
/* if one or more process/thread waiting, wake one */
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Semaphore Operations (cont.)

• If multiple processes/threads are blocked on the 
same semaphore ‘s’, only one of them will be 
awakened when another process performs 
post(s) operation

• Who will have higher priority?
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Semaphore Operations (cont.)

• If multiple processes/threads are blocked on the 
same semaphore ‘s’, only one of them will be 
awakened when another process performs 
post(s) operation

• Who will have higher priority?
• A: FIFO, or whatever queuing strategy
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• Declare and define a semaphore:
sem_t s;  
sem_init(&s, 0, 1);  /* initially s = 1 */

• Routine of Thread 0 & 1: 
do {

sem_wait(s);
critical section

sem_post(s);
remainder section

} while (1);

Attacking Critical Section Problem
with Semaphores

58

Binary semaphore, 
which is a lock
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Attacking Critical Section Problem
with Semaphores

• Single thread using a binary semaphore
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Attacking Critical Section Problem
with Semaphores

• Single thread using a binary semaphore
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Attacking Critical Section Problem
with Semaphores

• Single thread using a binary semaphore

61Y. Cheng GMU CS571 Spring 2020



Attacking Critical Section Problem
with Semaphores

• Single thread using a binary semaphore
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Attacking Critical Section Problem
with Semaphores
• Two threads using a binary semaphore

63Y. Cheng GMU CS571 Spring 2020



Attacking Critical Section Problem
with Semaphores
• Two threads using a binary semaphore
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Attacking Critical Section Problem
with Semaphores
• Two threads using a binary semaphore
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Attacking Critical Section Problem
with Semaphores
• Two threads using a binary semaphore
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Attacking Critical Section Problem
with Semaphores
• Two threads using a binary semaphore
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Attacking Critical Section Problem
with Semaphores
• Two threads using a binary semaphore

68Y. Cheng GMU CS571 Spring 2020



Attacking Critical Section Problem
with Semaphores
• Two threads using a binary semaphore
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Attacking Critical Section Problem
with Semaphores
• Two threads using a binary semaphore
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• Producer-Consumer Problem
• Semaphore version

• Condition Variable
• A CV-based version

• Readers-Writers Problem

• Dining-Philosophers Problem

Classical Problems of Synchronization
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Producer-Consumer Problem
• The bounded-buffer producer-consumer problem assumes 

that there is a buffer of size N

• The producer process puts items to the buffer area

• The consumer process consumes items from the buffer

• The producer and the consumer execute concurrently

producer consumer

. . . . . . . .
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Example: Unix Pipes

• A pipe may have many writers and readers

• Internally, there is a finite-sized buffer

• Writers add data to the buffer

• Readers remove data from the buffer
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Example: Unix Pipes
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Buffer

end

start
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Example: Unix Pipes
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end

start

Write
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Example: Unix Pipes
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Example: Unix Pipes
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Example: Unix Pipes
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Example: Unix Pipes
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Example: Unix Pipes
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Example: Unix Pipes
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Example: Unix Pipes
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Example: Unix Pipes
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Example: Unix Pipes
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Example: Unix Pipes
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Buffer

end

start

Read

Note: reader must wait
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Example: Unix Pipes
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Example: Unix Pipes
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Example: Unix Pipes
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Buffer

end

start

Write

Note: writer must wait
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Example: Unix Pipes

• Implementation
• Reads/writes to buffer require locking

• When buffers are full, writers (producers) must wait

• When buffers are empty, readers (consumers) must 
wait
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Linux Pipe Commands

% ps aux | less

% cat file | grep <str>
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Pipe

Pipe
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Producer-Consumer Model: 
Parameters
• Shared data:
sem_t full, empty;

• Initially:

full = 0       /* The number of full buffers */

empty = MAX    /* The number of empty buffers */
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First Attempt: MAX = 1
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Put and Get routines
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First Attempt: MAX = 10?
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Put and Get routines
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First Attempt: MAX = 10?
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Producer 0: Running Producer 1: Runnable

fill = 0
empty = 10
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First Attempt: MAX = 10?
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Producer 0: Running Producer 1: Runnable

fill = 0

void put(int value) { 
buffer[fill] = value; 
fill = (fill + 1) % MAX; 

} 

empty = 9
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First Attempt: MAX = 10?
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Producer 0: Running Producer 1: Runnable

fill = 0

void put(int value) { 
buffer[fill] = value; 
Interrupted …
fill = (fill + 1) % MAX; 

} 

empty = 9
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First Attempt: MAX = 10?
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Producer 0: Sleeping Producer 1: Runnable

fill = 0

void put(int value) { 
buffer[fill] = value; 
Interrupted …
fill = (fill + 1) % MAX; 

} 

empty = 9
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First Attempt: MAX = 10?

99

Producer 0: Runnable Producer 1: Running

fill = 0

void put(int value) { 
buffer[fill] = value; 
Interrupted …
fill = (fill + 1) % MAX; 

} 

empty = 9
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void put(int value) { 
buffer[fill] = value; 
fill = (fill + 1) % MAX; 

} 

First Attempt: MAX = 10?
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Producer 0: Runnable Producer 1: Running

fill = 0
Overwrite!

void put(int value) { 
buffer[fill] = value; 
Interrupted …

fill = (fill + 1) % MAX; 
} 

empty = 8
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One More Parameter: A mutex lock

• Shared data:
sem_t full, empty;

• Initially:

full = 0;    /* The number of full buffers */
empty = MAX; /* The number of empty buffers */
mutex = 1;   /* Semaphore controlling the access  

to the buffer pool */
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Add “Mutual Exclusion”
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Add “Mutual Exclusion”

103Y. Cheng GMU CS571 Spring 2020

What if consumer
gets to run first??



Adding “Mutual Exclusion”
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Producer 0: Runnable Consumer 0: Running

empty = 10
full = 0
mutex = 1
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Adding “Mutual Exclusion”
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Producer 0: Runnable Consumer 0: Running

Consumer 0 is waiting for 
full to be greater than or 
equal to 0

empty = 10
full = 0
mutex = 0
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Adding “Mutual Exclusion”
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Producer 0: Running Consumer 0: Runnable

empty = 10
full = -1
mutex = -1

Consumer 0 is waiting for 
full to be greater than or 
equal to 0
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Adding “Mutual Exclusion”
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Producer 0: Running Consumer 0: Runnable

Deadlock!!

Producer 0 gets stuck at 
acquiring mutex which has 
been locked by Consumer 0!

empty = 10
full = -1
mutex = -1

Consumer 0 is waiting for 
full to be greater than or 
equal to 0
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Deadlocks
• A set of threads are said to be in a deadlock state 

when every thread in the set is waiting for an event 
that can be caused only by another thread in the 
set 
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A typical deadlock 
dependency graph
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Conditions for Deadlock
• Mutual exclusion

• Threads claim exclusive control of resources that require 
e.g., a thread grabs a lock

• Hold-and-wait
• Threads hold resources allocated to them while waiting for 

additional resources

• No preemption
• Resources cannot be forcibly removed from threads that 

are holding them

• Circular wait
• There exists a circular chain of threads such that each 

holds one or more resources that are being requests by 
next thread in chain
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Correct Mutual Exclusion
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Mutex wraps 
just around 
critical section!

Mutex wraps 
just around 
critical section!



Producer-Consumer Solution

• Make sure that
1.The producer and the consumer do not access the buffer 

area and related variables at the same time

2.No item is made available to the consumer if all the buffer 
slots are empty

3.No slot in the buffer is made available to the producer if all 
the  buffer slots are full
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Semaphore Worksheet
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