
LDE and Threads
CS 571: Operating Systems (Spring 2020)

Lecture 2

Yue Cheng

Some material taken/derived from: 
• Wisconsin CS-537 materials created by Remzi Arpaci-Dusseau.
Licensed for use under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.



Process Creation

2

Before, PC points to 
kernel code

PC

Y. Cheng GMU CS571 Spring 2020



Process Creation

3

PC

Now, after process 
creation, CPU begins 
directly executing 
process code

Y. Cheng GMU CS571 Spring 2020



Process Creation

4

PC

Challenge: how to prevent 
process from doing “OS 
kernel stuff”?

Y. Cheng GMU CS571 Spring 2020



Limited Direct Execution (LDE)

5Y. Cheng GMU CS571 Spring 2020



Limited Direct Execution (LDE)

• Low-level mechanism that implements the user-
kernel space separation

• Usually let processes run with no OS 
involvement
• Limit what processes can do
• Offer privileged operations through well-defined 

channels with help of OS

6Y. Cheng GMU CS571 Spring 2020



Limited Direct Execution (LDE)

7Y. Cheng GMU CS571 Spring 2020



Limited Direct Execution (LDE)

8

User-level process

OS

LDE 
mechanism

Y. Cheng GMU CS571 Spring 2020



What to limit?

• General memory access
• Disk I/O
• Certain x86 instructions

9Y. Cheng GMU CS571 Spring 2020



How to limit?

• Need hardware support
• Add additional execution mode to CPU

• User mode: restricted, limited capabilities
• Kernel mode: privileged, not restricted

• Processes start in user mode
• OS starts in kernel mode

10Y. Cheng GMU CS571 Spring 2020



LDE: Remaining Challenges

1. What if process wants to do something 
privileged?

2. How can OS switch processes (or do anything) 
if it’s not running?

11Y. Cheng GMU CS571 Spring 2020



LDE: Remaining Challenges

1. What if process wants to do something 
privileged?

2. How can OS switch processes (or do anything) 
if it’s not running?

12Y. Cheng GMU CS571 Spring 2020



Taking Turns

13

Process

OS

Hardware

Y. Cheng GMU CS571 Spring 2020



Taking Turns

14

Process

OS

Hardware

Running

T1
Time:

Y. Cheng GMU CS571 Spring 2020



Taking Turns

15

Process

OS

Hardware

Running

T1
Time:

T2

Y. Cheng GMU CS571 Spring 2020



Taking Turns

16

Process

OS

Hardware

Running

T1
Time:

T2 T3

Y. Cheng GMU CS571 Spring 2020



Taking Turns

17

Process

OS

Hardware

Running

T1
Time:

T2 T3 T4

Y. Cheng GMU CS571 Spring 2020



Taking Turns

18

Process

OS

Hardware

Running

T1
Time:

T2 T3 T4

Question: when/how do we switch to OS?

Y. Cheng GMU CS571 Spring 2020



Exceptions

19Y. Cheng GMU CS571 Spring 2020



Interrupt

20

Process

OS

Hardware

Y. Cheng GMU CS571 Spring 2020



Interrupt

21

Process

OS

Hardware
key

Y. Cheng GMU CS571 Spring 2020



Interrupt

22

Process

OS

Hardware
key

handler Hardware interrupt

Y. Cheng GMU CS571 Spring 2020



Interrupt

23

Process

OS

Hardware

Y. Cheng GMU CS571 Spring 2020



System Call

24

Process

OS

Hardware

Y. Cheng GMU CS571 Spring 2020



System Call

25

Process

OS

Hardware

open

Y. Cheng GMU CS571 Spring 2020



System Call

26

Process

OS

Hardware

open

handler System call “trap”

Y. Cheng GMU CS571 Spring 2020



System Call

27

Process

OS

Hardware

Y. Cheng GMU CS571 Spring 2020



Exception Handling

28Y. Cheng GMU CS571 Spring 2020



Exception Handling: Implementation

• Goal: Processes and hardware should be able to 
call functions in the OS

• Corresponding OS functions should be:
• At well-known locations
• Safe from processes

29Y. Cheng GMU CS571 Spring 2020



30

disk

network

timer
keyboard

system call

Trap table

Use array of function pointers to locate OS functions
(Hardware knows where this is) 

Y. Cheng GMU CS571 Spring 2020



31

disk

network

keyboard

system call

Trap table

Use array of function pointers to locate OS functions
(Hardware knows this through lidt instruction) 

tick
timer

Y. Cheng GMU CS571 Spring 2020



32

disk

network

timer
keyboard

system call

Trap table

How to handle variable number of system calls?
Y. Cheng GMU CS571 Spring 2020



33

disk

network

timer
keyboard

system call

Trap table

open
read
write

syscall table

Y. Cheng GMU CS571 Spring 2020



34

disk

network

timer
keyboard

system call

Trap table

open
read
write

syscall table

syscall

Y. Cheng GMU CS571 Spring 2020



35

disk

network

timer
keyboard

system call

Trap table

read
write

syscall table
open

syscall

Y. Cheng GMU CS571 Spring 2020



Safe Transfers

• Only certain kernel functions should be callable
• Privileges should escalate at the moment of the 

call
• Read/write disk
• Kill processes
• Access all memory
• … 

36Y. Cheng GMU CS571 Spring 2020



LDE: Remaining Challenges

1. What if process wants to do something 
privileged?

2. How can OS switch processes (or do 
anything) if it’s not running?

37Y. Cheng GMU CS571 Spring 2020



Sharing (virtualizing) the CPU

38Y. Cheng GMU CS571 Spring 2020



How does OS share… 

• CPU?

• Memory?

• Disk?

39Y. Cheng GMU CS571 Spring 2020



How does OS share… 

• CPU? (a: time sharing)

• Memory? (a: space sharing)

• Disk? (a: space sharing)

40Y. Cheng GMU CS571 Spring 2020



How does OS share… 

• CPU? (a: time sharing)

• Memory? (a: space sharing)

• Disk? (a: space sharing)

41

Today

Y. Cheng GMU CS571 Spring 2020



How does OS share… 

• CPU? (a: time sharing)

• Memory? (a: space sharing)

• Disk? (a: space sharing)

42

Today

Goal: processes should not know they are sharing (each 
process will get its own virtual CPU)

Y. Cheng GMU CS571 Spring 2020



What to do with processes that are 
not running?
• A: Store context in OS struct

43Y. Cheng GMU CS571 Spring 2020



What to do with processes that are 
not running?
• A: Store context in OS struct

• Context:
• CPU registers
• Open file descriptors
• State (sleeping, running, etc.)

44Y. Cheng GMU CS571 Spring 2020



What to do with processes that are 
not running?
• A: Store context in OS struct

• Context:
• CPU registers
• Open file descriptors
• State (sleeping, running, etc.)

45Y. Cheng GMU CS571 Spring 2020



Process State Transitions

46

Running

Blocked

Scheduled

Descheduled

Event waitEvent occurs

Ready

Y. Cheng GMU CS571 Spring 2020



Process State Transitions

47

Running

Blocked

I/O: initiateI/O: done

Ready
Scheduled

Descheduled

Y. Cheng GMU CS571 Spring 2020



Process State Transitions

48

Running

Blocked

I/O: initiateI/O: done

Ready

View process state with “ps xa”

Scheduled

Descheduled

Y. Cheng GMU CS571 Spring 2020



How to transition? (mechanism)
When to transition? (policy)

49

Running

Blocked

I/O: initiateI/O: done

Ready
Scheduled

Descheduled

Y. Cheng GMU CS571 Spring 2020



Context Switch

• Problem: When to switch process contexts?
• Direct execution => OS can’t run while process 

runs

• Can OS do anything while it’s not running?

50Y. Cheng GMU CS571 Spring 2020



Context Switch

• Problem: When to switch process contexts?
• Direct execution => OS can’t run while process 

runs

• Can OS do anything while it’s not running?
• A: it can’t

51Y. Cheng GMU CS571 Spring 2020



Context Switch

• Problem: When to switch process contexts?
• Direct execution => OS can’t run while process 

runs

• Can OS do anything while it’s not running?
• A: it can’t

• Solution: Switch on interrupts
• But what interrupt?

52Y. Cheng GMU CS571 Spring 2020



Cooperative Approach

• Switch contexts for syscall interrupt
• Special yield() system call

53Y. Cheng GMU CS571 Spring 2020



Cooperative Approach

• Switch contexts for syscall interrupt
• Special yield() system call

54

P1

Y. Cheng GMU CS571 Spring 2020



Cooperative Approach

• Switch contexts for syscall interrupt
• Special yield() system call

55

P1
yield() call

Y. Cheng GMU CS571 Spring 2020



Cooperative Approach

• Switch contexts for syscall interrupt
• Special yield() system call

56

yield() call

OS

Y. Cheng GMU CS571 Spring 2020



Cooperative Approach

• Switch contexts for syscall interrupt
• Special yield() system call

57

OS

Y. Cheng GMU CS571 Spring 2020



Cooperative Approach

• Switch contexts for syscall interrupt
• Special yield() system call

58

yield() return

OS

Y. Cheng GMU CS571 Spring 2020



Cooperative Approach

• Switch contexts for syscall interrupt
• Special yield() system call

59

yield() return

P2

Y. Cheng GMU CS571 Spring 2020



Cooperative Approach

• Switch contexts for syscall interrupt
• Special yield() system call

60

P2

Y. Cheng GMU CS571 Spring 2020



Cooperative Approach

• Switch contexts for syscall interrupt
• Special yield() system call

61

yield() call

P2

Y. Cheng GMU CS571 Spring 2020



Cooperative Approach

• Switch contexts for syscall interrupt
• Special yield() system call

62

yield() call

OS

Y. Cheng GMU CS571 Spring 2020



Cooperative Approach

• Switch contexts for syscall interrupt
• Special yield() system call

63

OS

Y. Cheng GMU CS571 Spring 2020



Cooperative Approach

• Switch contexts for syscall interrupt
• Special yield() system call

64

yield() return

OS

Y. Cheng GMU CS571 Spring 2020



Cooperative Approach

• Switch contexts for syscall interrupt
• Special yield() system call

65

yield() return

P1

Y. Cheng GMU CS571 Spring 2020



Cooperative Approach

• Switch contexts for syscall interrupt
• Special yield() system call

66

P1

Y. Cheng GMU CS571 Spring 2020



Cooperative Approach

• Switch contexts for syscall interrupt
• Special yield() system call

67

P1

Critiques?

Y. Cheng GMU CS571 Spring 2020



Cooperative Approach

• Switch contexts for syscall interrupt
• Special yield() system call

• Cooperative approach is a passive approach

68

P1

Critiques?
What if P1 never calls yield()?

Y. Cheng GMU CS571 Spring 2020



Non-Cooperative Approach

• Switch contexts on timer (hardware) interrupt

• Set up before running any processes

• Hardware does not let processes prevent this
• Hardware/OS enforces process preemption

69Y. Cheng GMU CS571 Spring 2020



70

Non-Cooperative Approach

Y. Cheng GMU CS571 Spring 2020



71

Non-Cooperative Approach

Y. Cheng GMU CS571 Spring 2020



72

Non-Cooperative Approach

Y. Cheng GMU CS571 Spring 2020



73

Non-Cooperative Approach

Y. Cheng GMU CS571 Spring 2020



74

Non-Cooperative Approach

Y. Cheng GMU CS571 Spring 2020



Preemptive Approach

75

P1

Y. Cheng GMU CS571 Spring 2020



Preemptive Approach

76

P1

tick

Y. Cheng GMU CS571 Spring 2020



Preemptive Approach

77

tickOS

Y. Cheng GMU CS571 Spring 2020



Preemptive Approach

78

OS

Y. Cheng GMU CS571 Spring 2020



Preemptive Approach

79

OS

Y. Cheng GMU CS571 Spring 2020



Preemptive Approach

80

P2

Y. Cheng GMU CS571 Spring 2020



Preemptive Approach

81

P2

Y. Cheng GMU CS571 Spring 2020



Preemptive Approach

82

P2

tick

Y. Cheng GMU CS571 Spring 2020



Preemptive Approach

83

tickOS

Y. Cheng GMU CS571 Spring 2020



Preemptive Approach

84

OS

Y. Cheng GMU CS571 Spring 2020



Preemptive Approach

85

OS

Y. Cheng GMU CS571 Spring 2020



Preemptive Approach

86

P1

Y. Cheng GMU CS571 Spring 2020



Preemptive Approach

87

P1

Y. Cheng GMU CS571 Spring 2020



LDE Summary

• Smooth context switching makes each process 
think it has its own CPU (virtualization!)
• Limited direct execution makes processes fast
• Hardware provides a lot of OS support
• Limited direct execution
• Timer interrupt
• Automatic register saving

88Y. Cheng GMU CS571 Spring 2020



Y. Cheng GMU CS571 Spring 2020 89



Threads

90Y. Cheng GMU CS571 Spring 2020



Why Thread Abstraction?

91Y. Cheng GMU CS571 Spring 2020



Process Abstraction: Challenge 1

• Inter-process communication (IPC)

92Y. Cheng GMU CS571 Spring 2020



Inter-Process Communication

• Mechanism for processes to communicate and 
to synchronize their actions.

• Two models
• Communication through a shared memory region

• Communication through message passing

93Y. Cheng GMU CS571 Spring 2020



Communication Models

Message Passing Shared Memory
Previously, in a distributed system, message-passing was the 
only possible communication model. However, remote direct 
memory access (RDMA) technique bridges this gap by 
providing remote memory access through network. 



95

• Message system – processes communicate with 
each other without resorting to shared variables

• A message-passing facility must provide at least two 
operations:
• send(message, recipient) 
• receive(message, recipient)

• With indirect communication, the messages are sent 
to and received from mailboxes (or, ports)
• send(A, message) /* A is a mailbox */
• receive(A, message)

Communication through 
Message Passing

Y. Cheng GMU CS571 Spring 2020



Communication through 
Message Passing

96

• Message passing can be either blocking
(synchronous) or non-blocking (asynchronous)
• Blocking Send: The sending process is blocked until the 

message is received by the receiving process or by the 
mailbox

• Non-blocking Send: The sending process resumes the 
operation as soon as the message is received by the 
kernel

• Blocking Receive: The receiver blocks until the message 
is available

• Non-blocking Receive: “Receive” operation does not 
block; it either returns a valid message or a default value 
(null) to indicate a non-existing message

Y. Cheng GMU CS571 Spring 2020



97

• The memory region to be shared must be explicitly 
defined
• System calls (Linux): 

• shmget creates a shared memory block 
• shmat maps/attaches an existing shared memory block into 

a process’s address space
• shmdt removes (“unmaps”) a shared memory block from 

the process’s address space
• shmctl is a general-purpose function allowing various 

operations on the shared block (receive information about 
the block, set the permissions, lock in memory, …)

• Problems with simultaneous access to the shared 
variables
• Compilers for concurrent programming languages can 

provide direct support when declaring variables (e.g., 
“shared int buffer”)

Communication through 
Shared Memory

Y. Cheng GMU CS571 Spring 2020



Process Abstraction: Challenge 1

• Inter-process communication (IPC)
• Cumbersome programming!

• Copying overheads (inefficient communication)

• Expensive context switching (why expensive?)

98Y. Cheng GMU CS571 Spring 2020



Process Abstraction: Challenge 2

• Inter-process communication (IPC)
• Cumbersome programming!

• Copying overheads (inefficient communication)

• Expensive context switching (why expensive?)

• CPU utilization

99Y. Cheng GMU CS571 Spring 2020



100

ACPU:

Disk:

A

A

A

A

B
(a) Not interleaved

Y. Cheng GMU CS571 Spring 2020



101

ACPU:

Disk:

A

A

A

A

B
(a) Not interleaved

ACPU:

Disk:

A

A

A

A

B
(b) Interleaved

BB

Y. Cheng GMU CS571 Spring 2020



102

ACPU:

Disk:

A

A

A

A

B
(a) Not interleaved

ACPU:

Disk:

A

A

A

A

B
(b) Interleaved

B B

What if there is only one process?
Y. Cheng GMU CS571 Spring 2020



103

Moore’s law: # transistors doubles every ~2 years

Y. Cheng GMU CS571 Spring 2020



104Y. Cheng GMU CS571 Spring 2020

Moore’s law is ending!

Moore’s law: # transistors doubles every ~2 years



CPU Trends – What Moore’s Law Implies…

• The future
• Same CPU speed

• More cores (to scale-up)

• Faster programs => concurrent execution

• Goal: Write applications that fully utilize many 
CPU cores… 

105Y. Cheng GMU CS571 Spring 2020



Goal

• Write applications that fully utilize many CPUs…

106Y. Cheng GMU CS571 Spring 2020



Strategy 1

• Build applications from many communication 
processes
• Like Chrome (process per tab)
• Communicate via pipe() or similar

• Pros/cons?

107Y. Cheng GMU CS571 Spring 2020



Strategy 1

• Build applications from many communication 
processes
• Like Chrome (process per tab)
• Communicate via pipe() or similar

• Pros/cons? – That we’ve talked about in previous slides

• Pros: Don’t need new abstractions!
• Cons: 

• Cumbersome programming using IPC

• Copying overheads

• Expensive context switching

108Y. Cheng GMU CS571 Spring 2020



Strategy 2

• New abstraction: the thread

109Y. Cheng GMU CS571 Spring 2020



Introducing Thread Abstraction

• New abstraction: the thread

• Threads are just like processes, but threads 
share the address space

110Y. Cheng GMU CS571 Spring 2020



Thread

• A process, as defined so far, has only one thread 
of execution

• Idea: Allow multiple threads of concurrently 
running execution within the same process 
environment, to a large degree independent of 
each other
• Each thread may be executing different code at the 

same time

111Y. Cheng GMU CS571 Spring 2020



Process vs. Thread

• Multiple threads within a process will share
• The address space
• Open files (file descriptors)
• Other resources

• Thread
• Efficient and fast resource sharing
• Efficient utilization of many CPU cores with only one 

process
• Less context switching overheads

112Y. Cheng GMU CS571 Spring 2020



113

Running 
thread 1

CPU 1
Running 
thread 2

CPU 2

Y. Cheng GMU CS571 Spring 2020



114

Running 
thread 1

CPU 1
Running 
thread 2

CPU 2

PC PC

Y. Cheng GMU CS571 Spring 2020



115

Running 
thread 1

CPU 1
Running 
thread 2

CPU 2

PC PC

Virtual mem

CODE HEAP

Y. Cheng GMU CS571 Spring 2020



116

Running 
thread 1

CPU 1
Running 
thread 2

CPU 2

PC PC

CODE HEAP

Each thread may be executing 
different code at the same time

Virtual mem
Y. Cheng GMU CS571 Spring 2020



117

Running 
thread 1

CPU 1
Running 
thread 2

CPU 2

PC PC

CODE HEAP

Virtual mem
Y. Cheng GMU CS571 Spring 2020



118

Running 
thread 1

CPU 1
Running 
thread 2

CPU 2

PC PC

CODE HEAP

SP SP

Virtual mem
Y. Cheng GMU CS571 Spring 2020



119

Running 
thread 1

CPU 1
Running 
thread 2

CPU 2

PC PC

CODE HEAP

SP SP

STACK 1 STACK 2

Virtual mem
Y. Cheng GMU CS571 Spring 2020



120

Running 
thread 1

CPU 1
Running 
thread 2

CPU 2

PC PC

CODE HEAP

SP SP

STACK 1 STACK 2

Thread executing different functions need different stacks

Virtual mem
Y. Cheng GMU CS571 Spring 2020



121

Linux process Threads within a Linux process

*: https://computing.llnl.gov/tutorials/pthreads/
Y. Cheng GMU CS571 Spring 2020



Single- vs. Multi-threaded Process

Y. Cheng GMU CS571 Spring 2020 122



Using Threads

• Processes usually start with a single thread

• Usually, library procedures are invoked to manage 
threads
• thread_create: typically specifies the name of the 

procedure for the new thread to run

• thread_exit

• thread_join: blocks the calling thread until another 
(specific) thread has exited

• thread_yield: voluntarily gives up the CPU to let another 
thread run

123Y. Cheng GMU CS571 Spring 2020



Pthread

• A POSIX standard (IEEE 1003.1c) API for thread 
creation and synchronization

• API specifies behavior of the thread library, 
implementation is up to development of the 
library

• Common in UNIX (e.g., Linux) OSes

124Y. Cheng GMU CS571 Spring 2020



Pthread APIs
Thread Call Description
pthread_create Create a new thread in the 

caller’s address space
pthread_exit Terminate the calling thread

pthread_join Wait for a thread to terminate

pthread_mutex_init Create a new mutex

pthread_mutex_destroy Destroy a mutex

pthread_mutex_lock Lock a mutex

pthread_mutex_unlock Unlock a mutex

pthread_cond_init Create a condition variable

pthread_cond_destroy Destroy a condition variable

pthread_cond_wait Wait on a condition variable

pthread_cond_signal Release one thread waiting on a 
condition variable



Pthread APIs
Thread Call Description
pthread_create Create a new thread in the 

caller’s address space
pthread_exit Terminate the calling thread

pthread_join Wait for a thread to terminate

pthread_mutex_init Create a new mutex

pthread_mutex_destroy Destroy a mutex

pthread_mutex_lock Lock a mutex

pthread_mutex_unlock Unlock a mutex

pthread_cond_init Create a condition variable

pthread_cond_destroy Destroy a condition variable

pthread_cond_wait Wait on a condition variable

pthread_cond_signal Release one thread waiting on a 
condition variable

Thread 
creation

Thread 
lock

Thread 
CV



Example of Using Pthread

127Y. Cheng GMU CS571 Spring 2020



Demo: Basic Threads

• Fork the demo code repo at: 
https://github.com/tddg/demo-ostep-code

• In today’s lecture, we showed the demo in dir: 
thread-api

Y. Cheng GMU CS571 Spring 2020 128

https://github.com/tddg/demo-ostep-code


Example Multithreaded Applications
A multithreaded web server

129Y. Cheng GMU CS571 Spring 2020



Example Multithreaded Applications

130Requests

Logic that
handles requests

A multithreaded web server

Y. Cheng GMU CS571 Spring 2020



Code Sketch

while (TRUE) {                   while (TRUE) {

get_next_request(&buf);          wait_for_work(&buf);
handoff_work(&buf);              check_cache(&buf; &page);

}                                   if (not_in_cache)
read_from_disk(&buf,  &page);

return_page(&page);
}

(a) Dispatcher thread                            (b) Worker thread 

131Y. Cheng GMU CS571 Spring 2020



132

• Resource sharing
• Sharing the address space and other resources may 

result in high degree of cooperation

• Economy
• Creating/managing processes much more time 

consuming than managing threads: e.g., context switch

• Better utilization of multicore architectures
• Threads are doing job concurrently (in parallel)

• Multithreading an interactive application may allow a 
program to continue running even if part of it is blocked 
or performing a lengthy operation

Benefits of Multi-threading

Y. Cheng GMU CS571 Spring 2020



Real-world Example: Memcached

• Memcached—A high-performance memory-
based caching system
• 14k lines of C source code
• https://memcached.org/

• A typical multithreaded server implementation
• Pthread + libevent
• A dispatcher thread dispatches newly coming 

connections to the worker threads in a round-robin 
manner
• Event-driven: Each worker thread is responsible for 

serving requests from the established connections

133Y. Cheng GMU CS571 Spring 2020

https://memcached.org/


Multithreading vs. Multi-processes

• Real-world debate
• Multithreading vs. Multi-processes

• Memcached vs. Redis

• Redis—A single-threaded memory-based data 
store
• https://redis.io/

134Y. Cheng GMU CS571 Spring 2020

https://redis.io/


Wish List for Redis…

135

http://goo.gl/N9UTKD

Y. Cheng GMU CS571 Spring 2020

http://goo.gl/N9UTKD

