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Process Creation
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Process Creation

CPU
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Challenge: how to prevent
process from doing “OS
kernel stuff”?
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Limited Direct Execution (LDE)



Limited Direct Execution (LDE)

* Low-level mechanism that implements the user-
kKernel space separation -
/WM\

» Usually let processes run with no OS
Involvement

* Limit what processes can do_

« Offer privileged operations through well-defined
channels with help of OS



Limited Direct Execution (LDE)
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Limited Direct Execution (LDE)
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What to limit?

 General memory access
e Disk I/O

» Certain x86 instructions

~——
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How to limit?

* Need hardware support

 Add additional execution mode to CPU
\j\/\/"—’_’\-f\/\/-v—\ ——

» User mode; restricted, limited capabilities

» Kernel mode: privileged, not restricted
DAARMLSAS =

* Processes start in user mode
e OS starts in kernel mode
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LDE: Remaining Challenges

1. What it process wants to do something
privileged”?

2. How can OS switch processes (or do anything)
if it’s not running”?
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1. What if process wants to do something
privileged?

2. How can OS switch processes (or do anything)
if it’s not running”?



Taking Turns
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Taking Turns
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Taking Turns
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Taking Turns
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Taking Turns

Question: when/how do we switch to OS?

Process

OS Running

Hardware

T1 T2 T3 T4

Time:
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Exceptions



Interrupt
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Interrupt
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Interrupt
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Interrupt
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System Call
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System Call
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System Call
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Exception Handling



Exception Handling: Implementation

 Goal: Processes and hardware should be able to
call functions in the OS

» Corresponding OS functions should be:
« At well-known locations
« Safe from processes



~Jrap table

— disk

— network

|

— timer
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Use array of function pointers to locate OS functions

(Hardware knows where this is)
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Trap table

— disk
— —  network
tick .
timer
keyboard
system call

Use array of function pointers to locate OS functions
(Hardware knows this through 1idt instruction)
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Trap table

— disk

— network

|

— timer
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How to handle variable number of system calls?
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Trap table
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Trap table
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Safe Transfers

« Only certain kernel functions should be callable
* Privileges should escalate at the moment of the

call e
« Read/write disk
* Kill processes
* Access all memory



LDE: Remaining Challenges

2. How can OS switch processes (or do
anything) if it's not running?



Sharing (virtualizing) the CPU

\L\)(-; \,Q_‘F;"‘ 5&/
wlrigertly
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How does OS share...
e CPU?
* Memory?

* Disk?



How does OS share...

« CPU? (a: time sharing)

« Memory? (a: space sharing)
\N\ANNANAC—

 Disk”? (a: space sharing)
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How does OS share...

« CPU? (a: time sharing)
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How does OS share...

« CPU? (a: time sharing) Today

Goal: processes should not know they are sharing (each
process will get its own virtual CPU)
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What to do with processes that are
not running?

* A: Store context in OS struct



What to do with processes that are
not running?

* A: Store context in OS struct

« Context:
« CPU registers
» Open file descriptor

« State (sleeping, running, etc.)
N—————



What to do with processes that are
not running?

* A: Store context in OS struct

« Context:
« CPU registers
* Open file descriptors
» State (sleeping, running, etc.)



Process State Transitions

Q_cheduleé
Reschedulad

Q
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Event occurs Event wait
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Process State Transitions

Scheduled
Ready < >
Descheduled

1/0: don(\ ﬁo: initiate

Blocked
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Process State Transitions

Scheduled
Ready < >
Descheduled

1/0: don(\ ﬁo: initiate

Blocked

View process state with “ps xa”

[ eSS .
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How to transition? (mechanism)
When to transition? (policy)

Scheduled
Ready < >
Descheduled
1/0: don(\ /I/O: initiate
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Context Switch

* Problem: When to switch process contexts”?

 Direct execution => OS can’t run while process
runs

» Can OS do anything while it’s not running?




Context Switch

* Problem: When to switch process contexts”?

 Direct execution => OS can’t run while process
runs

« Can OS do anything while it’s not running”?
* A: it can't



Context Switch

* Problem: When to switch process contexts”?

 Direct execution => OS can’t run while process
runs

« Can OS do anything while it’s not running”?
* A: it can’t

 Solution: Switch on interrupts
« But what interrupt?



Cooperative Approach

» Switch contexts for syscall interrupt

» Special yield () system call
e—



Cooperative Approach

» Switch contexts for syscall interrupt
» Special yield () system call
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Cooperative Approach

» Switch contexts for syscall interrupt
» Special yield () system call

vield() call
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Cooperative Approach

» Switch contexts for syscall interrupt
» Special yield () system call

lyield() call

Y. Cheng GMU CS571 Spring 2020

56



Cooperative Approach

» Switch contexts for syscall interrupt
» Special yield () system call
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Cooperative Approach

» Switch contexts for syscall interrupt
» Special yield () system call

vield() return
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Cooperative Approach

» Switch contexts for syscall interrupt
» Special yield () system call

Tyield() return
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Cooperative Approach

» Switch contexts for syscall interrupt
» Special yield () system call
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Cooperative Approach

» Switch contexts for syscall interrupt
» Special yield () system call

vield() call
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Cooperative Approach

» Switch contexts for syscall interrupt
» Special yield () system call

lyield() call
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Cooperative Approach

» Switch contexts for syscall interrupt
» Special yield () system call
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Cooperative Approach

» Switch contexts for syscall interrupt
» Special yield () system call

vield() return
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Cooperative Approach

» Switch contexts for syscall interrupt
» Special yield () system call

Tyield() return
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Cooperative Approach

» Switch contexts for syscall interrupt
» Special yield () system call
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Cooperative Approach

» Switch contexts for syscall interrupt
» Special yield () system call

Critiques?
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Cooperative Approach

» Switch contexts for syscall interrupt
» Special yield () system call

» Cooperative approach is a passive approach

Critiques?
What if P1 never calls yield()?

Y. Cheng GMU CS571 Spring 2020
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Non-Cooperative Approach

« Switch contexts on timer (hardware) interrupt

« Set up before running any processes

* Hardware does not let processes prevent this
« Hardware/OS enforces process preemption

s 22
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Non-Cooperative Approach

OS @ run Hardware
(kernel mode)

Program

_(usermode)
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Non-Cooperative Approach

OS @ run Hardware Program

(kernel mode) (user mode)
Process A
— N—

timer interrupt /

save regs(A) to_k-stack(A)
move to ker ode
jump to trap handler

—
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Non-Cooperative Approach

OS @ run Hardware Program
(kernel mode) (user mode)
Process A

timer interrupt
save regs(A) to k-stack(A)
move to kernel mode
jump to trap handler
Handle the trap Q//
Call switch () routine
save regs(A) to proc-struct(A)
restore regs(B) from proc-struct(B)
switch to k-stack(B)
return-from-trap (into B)
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Non-Cooperative Approach

OS @ run Hardware Program
(kernel mode) (user mode)
Process A
timer interrupt
save regs(A) to k-stack(A)
move to kernel mode
jump to trap handler
Handle the trap
Call switch () routine
save regs(A) to proc-struct(A)
restore regs(B) from proc-struct(B)
switch to k-stack(B)
return-from-trap (into B)
restore regs(B) from k-stack(B)
move to user mode
jump to B’s PC
e S
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Non-Cooperative Approach

OS @ run Hardware Program
(kernel mode) (user mode)
Process A
timer interrupt
save regs(A) to k-stack(A)
move to kernel mode
jump to trap handler
Handle the trap
Call switch () routine
save regs(A) to proc-struct(A)
restore regs(B) from proc-struct(B)
switch to k-stack(B)
return-from-trap (into B)
restore regs(B) from k-stack(B)
move to user mode
jump to B’s PC
Process B

Y. Cheng
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Preemptive Approach

Y. Cheng GMU CS571 Spring 2020

75



Preemptive Approach
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Preemptive Approach
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Preemptive Approach
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Preemptive Approach
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Preemptive Approach
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Preemptive Approach
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Preemptive Approach
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Preemptive Approach
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Preemptive Approach
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Preemptive Approach
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Preemptive Approach
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Preemptive Approach
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LDE Summary

« SMooth context switching makes each process
think it has its own CPU (virtualization!)

» Limited direct execution makes processes fast

» Hardware provides a lot of OS support
* Limited direct execution
* Timer interrupt
» Automatic register saving

Y. Cheng GMU CS571 Spring 2020
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Threads



Why Thread Abstraction?



Process Abstraction: Challenge 1

* Inter-process communication (IPC



Inter-Process Communication

* Mechanism for processes to communicate and
to synchronize their actions.

* Two models
« Communication through a shared memory region
« Communication through message passing



Communication Models

process A M process A —
/\ | 1 Uv\\oc&‘_( \
( shared) _d —
2
process B M process B -

kernel

Shared Memory\

eviously, in a distributed system, message-passing was the
only possible communication model. However, remote direct '
memory access (RDMA) technique bridges this gap by
providing remote memory access through network.




Communication through
Message Passing

* Message system — processes communicate with
each other without resorting to shared variables

* A message-passing facility must provide at least two
operations:

* send(message, recipient)

* recelve(message, recipient)

 With indirect communication, the messages are sent
to and received from mailboxes (or, ports)

* send message) /* A is a mailbox */
* receive (A, message)
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Communication through
Message Passing

» Message passing can be either blocking
(synchronous) or non-blocking (asynchronous)

 Blocking Send: The sending process is blocked until the
message Is received by the receiving process or by the
Mmaillbox

« Non-blocking Send: The sending process resumes the
operation as soon as the message Is received by the
kernel

» Blocking Receive: The receiver blocks until the message
IS available

« Non-blocking Receive: “Receive” operation does not
block; it either returns a valid message or a default value
(null) to indicate a non-existing message




Communication through
Shared Memory

* The memory region to be shared must be explicitly
defined

« System calls (Linux):
 shmget creates a shared memory block

- Shmat maps/attaches an existing shared memory block into
a process’s address space

. Tﬁhm.dx_remgves ("“unmaps”) a shared memory block from
e process’s address space

. %M IS a g%eneral—purpose function allowing various
perations on the shared block (receive information about
the block, set the permissions, lock in memory, ...)

* Problems with simultaneous access to the shared
variables

» Compilers for concurrent programming languages can
provide direct support when declaring variables (e.g.,
‘'shared int buffer”)

Y. Cheng GMU CS571 Spring 2020 97



Process Abstraction: Challenge 1

* Inter-process communication (IPC)
» Cumbersome programming!
« Copying overheads (inefficient communication)
* Expensive context switching (why expensive?)

S~ N ~——e.
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98



Process Abstraction: Challenge 2

* Inter-process communication (IPC)

* CPU utilization

Y. Cheng GMU CS571 Spring 2020
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(a) Not interleaved
e e e e o .
(b) Interleaved
Disk:
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-1 [

(a) Not interleaved

>
(b) Interleaved
Disk:
>

What if there is only one process?
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Moore’s law: # transistors doubles every ~2 years
Moore’s Law — The number of transistors on integrated circuit chips (1971-2016) §&

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.
This advancement is important as other aspects of technological progress — such as processing speed or the price of electronic products — are
strongly linked to Moore's law.

20,000,000,
10,000,000,000
5,000,000,000
B-core Xecn
Dl cu:': r.aofr:
1,000,000,000 g oo
500,000,000 ke
» ' Ranium 2 Madison M@y :
Pentium D Srenhdeld Nl
Ranum 3 McKinkeygy *s:dl
Pardum 4 Presoom-2! \Pﬁl 2 I:E‘:l:'lukl:t
103.000. AND "‘5’ Pertium 4 Pfosc:':l ;
Partum 4 M:wl!‘mmxb
= 50,000, M"m“:l“m'. %lmrr b g
— | Pamium B Mobde Dixon, ) " Qi A9
a AMD KT ‘ ?Pn’ﬁuﬂl il Copparmins v
('.-J AMD KB-|
o 10,000, AMD KB Fontym I Katmai
2 5.ooo.$? uantig. SRS
g vauﬂ‘b AMD K5
’: SA110
1,000,000 e R
suo'w TlI‘F-pknr s 32 bd. w,‘m
Inted B0 QAR 3
Mosoroia (-!CE':I;M. Ng%‘ o
100, kit - - ki an
50, ° @imel BO106 ;%T“
intel BOBEQP €9 ntol BOBS :HWM 2 X/ 6
10,00q Mg g L o e Lot \"
RCA 3802
5,000 ., 2008 - "'° o —
m My ’.)‘Ln :;;Du':m hogy
I-tel I&H 5 )
1,000

\-39)6 \/

SEFTFLLESEL LSS ES S0

PP
Year of introduction
Data source: Wikipedia (Mips./fen wikipedia.ong/wiki Transistor_count)
The data visualization is available at OurWorldinData.org. There you find more visualizations and research on this topic Licensed under CC-BY-5A by the author Max Roser.



Moore’s law: # transistors doubles every ~2 years

Moore’s Law — The number of transistors on integrated circuit chips (1971-2016)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.

QurWorld

This advancement is important as other aspects of technological progress — such as processing speed or the price of electronic products — are

strongly linked to Moore's law.
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CPU Trends - What Moore’s Law Implies...

* The future ﬁwﬁ
« Same CPU speed -

* More cores (to scale-up)

>
CRY ﬁve‘\,.
 Faster programs => concurrent execution

Write applications that fully utilize many
PU cores...

Y. Cheng GMU CS571 Spring 2020 105



Goal

» Write applications that fully utilize many CPUs...



Strategy 1

 Build applications from many communication
PrOCESSES
 Like Chrome (process per tab)

« Communicate via pipe () or similar
Vann 4

* Pros/cons”?



Strategy 1

 Build applications from many communication
Processes
 Like Chrome (process per tab)
« Communicate via pipe () or similar

e Pros/cons”? — That we’ve talked about in previous slides

* Pros: Don’'t need new abstractions!
« Cons:

« Cumbersome programming using IPC
« Copying overheads
* EXxpensive context switching

Y. Cheng GMU CS571 Spring 2020
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Strategy 2

 New abstraction: the thread

Y. Cheng GMU CS571 Spring 2020 109



Introducing Thread Abstraction

 New abstraction: the thread

* Threads are just like processes, but threads
share the address space

Y. Cheng GMU CS571 Spring 2020 110



Thread

» A process, as defined so far, has only one thread
of execution

* |dea: Allow multiple threads of concurrently
running execution within the same process
environment, to a large degree independent of
each other

« Each thread may be executing different code at the
same time

Y. Cheng GMU CS571 Spring 2020 11



Process vs. Thread

* Multiple threads within a process will share
* The address space
* Open files (file descriptors)
» Other resources

* Thread

» Efficient and fast resource sharing

o Efficient utilization of many CPU cores with only one
process

* | ess context switching overheads



CPU 1

Running
thread 1

CPU 2

Running
thread 2
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CPU 1 CPU 2

Running Running
thread 1 thread 2
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CPU 1 CPU 2

Running Running
thread 1 thread 2

Virtual mem
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CPU 1 CPU 2

Running Running
thread 1 thread 2

Each thread may be executing
different code at the same time

Virtual mem
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CPU 1 CPU 2

Running Running
thread 1 thread 2

Virtual mem
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CPU 1 CPU 2

Running Running
thread 1 thread 2

Virtual mem
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CPU 1 CPU 2

Running Running
thread 1 thread 2

—

Virtual mem
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Thread executing different functions need different stacks

CPU 1 CPU 2
Running Running
thread 1 thread 2

STACK 1 - STACK 2 I

Virtual mem

Y. Cheng GMU CS57128pring 2020




data

main()
routinel ()
routine2 ()

Y. Ch G
*: https:?}]c%mputing.lInI.gov/tutorials/pthreads

User Address Space

routinel wvarl()
var2()

Stack Pointer
Prgm. Counter

Registers

Linux process
~N\

Process ID
Group ID
User ID

User Address Space

Thread 2 routine2() wvarl Stack Pointer
stack var2 Prgrm. Counter
var3 Registers

Thread 1 | routinel() varl Stack Pointer
var2 Prgrm. Counter

stack
Registers

text \

()‘ - Process ID

User ID
Group ID

data

heap

S

Threads within a Linux process
e —e—————e—

MU CS572$pring 2020




Single- vs. Multi-threaded Process

Y. Cheng

code

data

files

registers

stack

thread —» ;

code data files
registers ||| registers ||| registers
stack stack stack

single-threaded process

:

:

g._

— thread

multithreaded process

GMU CS571 Spring 2020
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Using Threads

» Processes usually start with a single thread

« Usually, library procedures are invoked to manage
threads

» thread_create: typically specifies the name of the
procedure for the new thread to run

e thread exit

* thread_join: blocks the calling thread until another
(specific) thread has exited

* thread_yield: voluntarily gives up the CPU to let another
thread run

Y. Cheng GMU CS571 Spring 2020 123



@thread

. \5080( standard (IEEE 1003.1¢) API for thread
creation and synchronization

» APl specifies behavior of the thread library,
Implementation is up to development of the
library

« Common in UNIX (e.g., Linux) OSes



Pthread APIs

pthread create Create a new thread in the
caller's address space

pthread exit Terminate the calling thread

pthread join Wait for a thread to terminate

pthread mutex init Create a new mutex

pthread mutex destroy Destroy a mutex

pthread mutex lock Lock a mutex

pthread mutex unlock Unlock a mutex

pthread cond_init Create a condition variable

pthread cond destroy Destroy a condition variable

pthread cond wait Wait on a condition variable

pthread cond signal Release one thread waiting on a

condition variable



Pthread APIs

pthread create

pthread exit

pthread join

pthread mutex init
pthread mutex destroy
pthread mutex lock
pthread mutex unlock
pthread cond init
pthread cond destroy
pthread cond wait

pthread cond signal

Create a new thread in the
caller's address space

Terminate the calling thread
Wait for a thread to terminate
Create a new mutex

Destroy a mutex

Lock a mutex

Unlock a mutex

Create a condition variable
Destroy a condition variable
Wait on a condition variable

Release one thread waiting on a
condition variable

Thread

creation
\-—'N
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Example of Using Pthread

#include <stdio.h>
#include <assert.h>
#include <pthread.h>

void xmythread(void =*xarg) {
printf {"¥s\n", {char %) axrg);
return NULL;

ShE

(int ardge,; €ehar *=argull) 4
pl, p2;
TI¥C. s
printf ("main: begin\n"
rc =|pthread_create @ NULL, @ assert

rc =|pthread_create|&p2, NULL, mythread ' ; assert
// join waits for the threads to finish
i o 3 =\£thread_john@i) NULL); assert(rc == 0);
@ = pthread jﬁn@ NULL); assert (rc == 0);
rintE("main: aend\n®);
return 0;
} N~ —

Y. Cheng GMU CS571 Spring 2020
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Demo: Basic Threads

 Fork the demo code repo at:
https://github.com/tddg/demo-ostep-code

* I[n today’s lecture, we showed the demo in dir:
thread-api
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A multithreaded web server
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Dispatcher thread
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Example Multithreaded Applications

A multithreaded web server

Web server process

|
:

Dispatcher thread

~ >2? ’ Worker thread LsEH

space
I_ei_zl Web page cache

Logic that
handles requests

Kernel
Kernel space
Network
connection
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Code Sketch

while (TRUE) {

get next request(&buf);
handoff work(&buf);

(a) Dispatcher thread

while (TRUE) {

wait_ for work(&buf);
check cache(&buf; &page);

if (not_in cache)

; read from disk(&buf, &page);

return page(&page);

(b) Worker thread



Benefits of Multi-threading

* Resource sharing
« Sharing the address space and other resources may
result in high degree of cooperation
* Economy
« Creating/managing processes much more time
consuming than managing threads: e.g., context switch
 Better utilization of multicore architectures
 Threads are doing job concurrently (in parallel)

* Multithreading an interactive application may allow a
program to continue running even if part of it is blocked
or performing a lengthy operation

Y. Cheng GMU CS571 Spring 2020 132



Real-world Example: Memcached

 Memcached—A high-performance memory-
based caching system
* 14k lines of C source code
 https://memcached.org/

| . Memcached
* A typical multithreaded server impierrieriauon

e Pthread + libevent

A dispatcher thread dispatches newly coming
connections to the worker threads in a round-robin
manner

» Event-driven: Each worker thread is responsible for
serving requests from the established connections
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Multithreading vs. Multi-processes

e Real-world debate
« Multithreading vs. Multi-processes
 Memcached vs. Redis

* Redis—A single-threaded memory-based data
store
 https://redis.io/

Memcached
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Wish List for Redis...

http://goo.gl/NOUTKD

Wish List For Redis

m Explicit memory management.
= Deployable (Lua) Scripts. Talked about near the start.

= Multi-threading. Would make cluster management easier. Twitter has a lot of “tall
boxes,” where a host has 100+ GB of memory and a lot of CPUs. To use the full
capabilities of a server a lot of Redis instances need to be started on a physical
machine. With multi-threading fewer instances would need to be started which is

much easier to manage.
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