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Process Creation
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Process Creation
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PC

Challenge: how to prevent 
process from doing “OS 
kernel stuff”?
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Limited Direct Execution (LDE)
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Limited Direct Execution (LDE)

• Low-level mechanism that implements the user-
kernel space separation

• Usually let processes run with no OS 
involvement
• Limit what processes can do
• Offer privileged operations through well-defined 

channels with help of OS
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Limited Direct Execution (LDE)
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Limited Direct Execution (LDE)
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What to limit?

• General memory access
• Disk I/O
• Certain x86 instructions
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How to limit?

• Need hardware support
• Add additional execution mode to CPU

• User mode: restricted, limited capabilities
• Kernel mode: privileged, not restricted

• Processes start in user mode
• OS starts in kernel mode
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LDE: Remaining Challenges

1. What if process wants to do something 
privileged?

2. How can OS switch processes (or do anything) 
if it’s not running?
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Taking Turns
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Taking Turns
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Question: when/how do we switch to OS?
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Exceptions
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Interrupt
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Interrupt
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Interrupt
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System Call
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System Call
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System Call
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System Call
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Exception Handling
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Exception Handling: Implementation

• Goal: Processes and hardware should be able to 
call functions in the OS

• Corresponding OS functions should be:
• At well-known locations
• Safe from processes
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disk

network

timer
keyboard

system call

Trap table

Use array of function pointers to locate OS functions
(Hardware knows where this is) 
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Safe Transfers

• Only certain kernel functions should be callable
• Privileges should escalate at the moment of the 

call
• Read/write disk
• Kill processes
• Access all memory
• … 
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LDE: Remaining Challenges

1. What if process wants to do something 
privileged?

2. How can OS switch processes (or do 
anything) if it’s not running?
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Sharing (virtualizing) the CPU
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How does OS share… 

• CPU?

• Memory?

• Disk?
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How does OS share… 

• CPU? (a: time sharing)

• Memory? (a: space sharing)

• Disk? (a: space sharing)
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How does OS share… 

• CPU? (a: time sharing)

• Memory? (a: space sharing)

• Disk? (a: space sharing)
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Today

Goal: processes should not know they are sharing (each 
process will get its own virtual CPU)
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What to do with processes that are 
not running?
• A: Store context in OS struct
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What to do with processes that are 
not running?
• A: Store context in OS struct

• Context:
• CPU registers
• Open file descriptors
• State (sleeping, running, etc.)
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Process State Transitions
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Process State Transitions
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Process State Transitions
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Blocked

I/O: initiateI/O: done
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View process state with “ps xa”

Scheduled

Descheduled

Y. Cheng GMU CS571 Spring 2020



How to transition? (mechanism)
When to transition? (policy)
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Running

Blocked

I/O: initiateI/O: done

Ready
Scheduled
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Context Switch

• Problem: When to switch process contexts?
• Direct execution => OS can’t run while process 

runs

• Can OS do anything while it’s not running?
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Context Switch

• Problem: When to switch process contexts?
• Direct execution => OS can’t run while process 

runs

• Can OS do anything while it’s not running?
• A: it can’t

• Solution: Switch on interrupts
• But what interrupt?
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Cooperative Approach

• Switch contexts for syscall interrupt
• Special yield() system call
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Cooperative Approach

• Switch contexts for syscall interrupt
• Special yield() system call
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Cooperative Approach

• Switch contexts for syscall interrupt
• Special yield() system call
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Cooperative Approach
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Cooperative Approach

• Switch contexts for syscall interrupt
• Special yield() system call
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Cooperative Approach

• Switch contexts for syscall interrupt
• Special yield() system call
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Cooperative Approach
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Cooperative Approach
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• Special yield() system call
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Cooperative Approach
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Cooperative Approach

• Switch contexts for syscall interrupt
• Special yield() system call
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Cooperative Approach

• Switch contexts for syscall interrupt
• Special yield() system call

• Cooperative approach is a passive approach
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P1

Critiques?
What if P1 never calls yield()?
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Non-Cooperative Approach

• Switch contexts on timer (hardware) interrupt

• Set up before running any processes

• Hardware does not let processes prevent this
• Hardware/OS enforces process preemption
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Preemptive Approach
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Preemptive Approach
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Preemptive Approach
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Preemptive Approach
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Preemptive Approach
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Preemptive Approach
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Preemptive Approach

81

P2

Y. Cheng GMU CS571 Spring 2020



Preemptive Approach
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Preemptive Approach
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Preemptive Approach
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Preemptive Approach
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Preemptive Approach
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Preemptive Approach
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LDE Summary

• Smooth context switching makes each process 
think it has its own CPU (virtualization!)
• Limited direct execution makes processes fast
• Hardware provides a lot of OS support
• Limited direct execution
• Timer interrupt
• Automatic register saving
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Threads
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Why Thread Abstraction?
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Process Abstraction: Challenge 1

• Inter-process communication (IPC)
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Inter-Process Communication

• Mechanism for processes to communicate and 
to synchronize their actions.

• Two models
• Communication through a shared memory region

• Communication through message passing
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Communication Models

Message Passing Shared Memory
Previously, in a distributed system, message-passing was the 
only possible communication model. However, remote direct 
memory access (RDMA) technique bridges this gap by 
providing remote memory access through network. 
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• Message system – processes communicate with 
each other without resorting to shared variables

• A message-passing facility must provide at least two 
operations:
• send(message, recipient) 
• receive(message, recipient)

• With indirect communication, the messages are sent 
to and received from mailboxes (or, ports)
• send(A, message) /* A is a mailbox */
• receive(A, message)

Communication through 
Message Passing
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Communication through 
Message Passing

96

• Message passing can be either blocking
(synchronous) or non-blocking (asynchronous)
• Blocking Send: The sending process is blocked until the 

message is received by the receiving process or by the 
mailbox

• Non-blocking Send: The sending process resumes the 
operation as soon as the message is received by the 
kernel

• Blocking Receive: The receiver blocks until the message 
is available

• Non-blocking Receive: “Receive” operation does not 
block; it either returns a valid message or a default value 
(null) to indicate a non-existing message
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• The memory region to be shared must be explicitly 
defined
• System calls (Linux): 

• shmget creates a shared memory block 
• shmat maps/attaches an existing shared memory block into 

a process’s address space
• shmdt removes (“unmaps”) a shared memory block from 

the process’s address space
• shmctl is a general-purpose function allowing various 

operations on the shared block (receive information about 
the block, set the permissions, lock in memory, …)

• Problems with simultaneous access to the shared 
variables
• Compilers for concurrent programming languages can 

provide direct support when declaring variables (e.g., 
“shared int buffer”)

Communication through 
Shared Memory
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Process Abstraction: Challenge 1

• Inter-process communication (IPC)
• Cumbersome programming!

• Copying overheads (inefficient communication)

• Expensive context switching (why expensive?)
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Process Abstraction: Challenge 2

• Inter-process communication (IPC)
• Cumbersome programming!

• Copying overheads (inefficient communication)

• Expensive context switching (why expensive?)

• CPU utilization
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What if there is only one process?
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Moore’s law: # transistors doubles every ~2 years
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Moore’s law is ending!

Moore’s law: # transistors doubles every ~2 years



CPU Trends – What Moore’s Law Implies…

• The future
• Same CPU speed

• More cores (to scale-up)

• Faster programs => concurrent execution

• Goal: Write applications that fully utilize many 
CPU cores… 
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Goal

• Write applications that fully utilize many CPUs…
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Strategy 1

• Build applications from many communication 
processes
• Like Chrome (process per tab)
• Communicate via pipe() or similar

• Pros/cons?
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Strategy 1

• Build applications from many communication 
processes
• Like Chrome (process per tab)
• Communicate via pipe() or similar

• Pros/cons? – That we’ve talked about in previous slides

• Pros: Don’t need new abstractions!
• Cons: 

• Cumbersome programming using IPC

• Copying overheads

• Expensive context switching
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Strategy 2

• New abstraction: the thread
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Introducing Thread Abstraction

• New abstraction: the thread

• Threads are just like processes, but threads 
share the address space
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Thread

• A process, as defined so far, has only one thread 
of execution

• Idea: Allow multiple threads of concurrently 
running execution within the same process 
environment, to a large degree independent of 
each other
• Each thread may be executing different code at the 

same time
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Process vs. Thread

• Multiple threads within a process will share
• The address space
• Open files (file descriptors)
• Other resources

• Thread
• Efficient and fast resource sharing
• Efficient utilization of many CPU cores with only one 

process
• Less context switching overheads
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Running 
thread 1
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thread 2

CPU 2
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Each thread may be executing 
different code at the same time

Virtual mem
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Running 
thread 1

CPU 1
Running 
thread 2

CPU 2

PC PC

CODE HEAP

SP SP

STACK 1 STACK 2

Thread executing different functions need different stacks

Virtual mem
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Linux process Threads within a Linux process

*: https://computing.llnl.gov/tutorials/pthreads/
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Single- vs. Multi-threaded Process
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Using Threads

• Processes usually start with a single thread

• Usually, library procedures are invoked to manage 
threads
• thread_create: typically specifies the name of the 

procedure for the new thread to run

• thread_exit

• thread_join: blocks the calling thread until another 
(specific) thread has exited

• thread_yield: voluntarily gives up the CPU to let another 
thread run
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Pthread

• A POSIX standard (IEEE 1003.1c) API for thread 
creation and synchronization

• API specifies behavior of the thread library, 
implementation is up to development of the 
library

• Common in UNIX (e.g., Linux) OSes
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Pthread APIs
Thread Call Description
pthread_create Create a new thread in the 

caller’s address space
pthread_exit Terminate the calling thread

pthread_join Wait for a thread to terminate

pthread_mutex_init Create a new mutex

pthread_mutex_destroy Destroy a mutex

pthread_mutex_lock Lock a mutex

pthread_mutex_unlock Unlock a mutex

pthread_cond_init Create a condition variable

pthread_cond_destroy Destroy a condition variable

pthread_cond_wait Wait on a condition variable

pthread_cond_signal Release one thread waiting on a 
condition variable



Pthread APIs
Thread Call Description
pthread_create Create a new thread in the 

caller’s address space
pthread_exit Terminate the calling thread

pthread_join Wait for a thread to terminate

pthread_mutex_init Create a new mutex
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Example of Using Pthread
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Demo: Basic Threads

• Fork the demo code repo at: 
https://github.com/tddg/demo-ostep-code

• In today’s lecture, we showed the demo in dir: 
thread-api
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Example Multithreaded Applications
A multithreaded web server
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Example Multithreaded Applications

130Requests

Logic that
handles requests

A multithreaded web server
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Code Sketch

while (TRUE) {                   while (TRUE) {

get_next_request(&buf);          wait_for_work(&buf);
handoff_work(&buf);              check_cache(&buf; &page);

}                                   if (not_in_cache)
read_from_disk(&buf,  &page);

return_page(&page);
}

(a) Dispatcher thread                            (b) Worker thread 
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• Resource sharing
• Sharing the address space and other resources may 

result in high degree of cooperation

• Economy
• Creating/managing processes much more time 

consuming than managing threads: e.g., context switch

• Better utilization of multicore architectures
• Threads are doing job concurrently (in parallel)

• Multithreading an interactive application may allow a 
program to continue running even if part of it is blocked 
or performing a lengthy operation

Benefits of Multi-threading
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Real-world Example: Memcached

• Memcached—A high-performance memory-
based caching system
• 14k lines of C source code
• https://memcached.org/

• A typical multithreaded server implementation
• Pthread + libevent
• A dispatcher thread dispatches newly coming 

connections to the worker threads in a round-robin 
manner
• Event-driven: Each worker thread is responsible for 

serving requests from the established connections

133Y. Cheng GMU CS571 Spring 2020

https://memcached.org/


Multithreading vs. Multi-processes

• Real-world debate
• Multithreading vs. Multi-processes

• Memcached vs. Redis

• Redis—A single-threaded memory-based data 
store
• https://redis.io/
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Wish List for Redis…
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http://goo.gl/N9UTKD
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