
Introduction
CS 571: Operating Systems (Spring 2020)

Lecture 1

Yue Cheng

Some material taken/derived from:
• Wisconsin CS-537 materials created by Remzi Arpaci-Dusseau.
Licensed for use under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Introduction

• Instructor
• Dr. Yue Cheng (web: cs.gmu.edu/~yuecheng)
• Email: yuecheng@gmu.edu
• Office: 5324 Engineering
• Office hours: M 1:30pm-2:30pm
• Research interests: Distributed and storage systems,

serverless and cloud computing, operating systems

2Y. Cheng GMU CS571 Spring 2020

http://cs.gmu.edu/~yuecheng
mailto:yuecheng@gmu.edu

Introduction
• Instructor

• Dr. Yue Cheng (web: cs.gmu.edu/~yuecheng)
• Email: yuecheng@gmu.edu
• Office: 5324 Engineering
• Office hours: M 1:30pm-2:30pm
• Research interests: Distributed and storage systems,

serverless and cloud computing, operating systems

• Teaching assistant
• Abhishek Roy
• Email: aroy6@masonlive.gmu.edu
• Office hours:

• TBD

3Y. Cheng GMU CS571 Spring 2020

http://cs.gmu.edu/~yuecheng
mailto:yuecheng@gmu.edu
mailto:aroy6@masonlive.gmu.edu

Administrivia

4

• Required textbook
• Operating Systems: Three Easy Pieces,
By Remzi H. Arpaci-Dusseau, Andrea C. Arpaci-Dusseau

• Recommended textbook
• Operating Systems Principles & Practices
By T. Anderson and M. Dahlin

• Prerequisites are enforced!!
• CS 310 Data Structures
• CS 367 Computer Systems & Programming
• CS 465 Computer Systems Architecture
• Be comfortable with C programming language

• Class web page
• https://tddg.github.io/cs571-spring20/
• Class materials will all be available on the class web page

Y. Cheng GMU CS571 Spring 2020

https://tddg.github.io/cs571-spring20/

Administrivia (cont.)

• Syllabus
• https://cs.gmu.edu/media/syllabi/Spring2020/CS_571ChengY.html

• Grading
• 50% projects
• 10% homework
• 20% midterm exam
• 20% final exam

• Reminders
• Honor code
• Late policy: 15% deducted each day. No credit after 3

days

5Y. Cheng GMU CS571 Spring 2020

https://cs.gmu.edu/media/syllabi/Spring2020/CS_571ChengY.html

Course schedule

• Materials, assignments, due dates

Y. Cheng GMU CS571 Spring 2020 6

Course format

• (Review) + lecture + (worksheets and/or demos)
• A short overview of the previous lecture to make sure

the old content is not completely forgotten
• Worksheet practices to make sure the lecture is well

understood
• Demos to help you gain a deeper understanding of

the materials taught
• OSTEP simulators, measurements

7Y. Cheng GMU CS571 Spring 2020

Course projects

• Goal:
1. To gain hands-on systems programming

experience
2. To gain experience hacking a moderately sized

system codebase (OS/161)

Y. Cheng GMU CS571 Spring 2020 8

Course projects
• Goal:

1. To gain hands-on systems programming experience
2. To gain experience hacking a moderately sized system

codebase (OS/161)

• Four coding projects
• Project 0a (Warm-up): Linux utilities
• Project 0b: Intro to OS/161
• Project 1a: Implement a Linux shell
• Project 1b: OS/161 synchronization
• Project 2a: OS/161 system calls
• Project 2b: OS/161 CPU scheduling
• Project 3: Implement a MapReduce app w/ C

Y. Cheng GMU CS571 Spring 2020 9

Course projects
• Goal:

1. To gain hands-on systems programming experience
2. To gain experience hacking a moderately sized system

codebase (OS/161)

• Four coding projects (50%)
• Project 0a (Warm-up): Linux utilities – 5%
• Project 0b: Intro to OS/161 – 5%
• Project 1a: Implement a Linux shell – 7%
• Project 1b: OS/161 synchronization – 8%
• Project 2a: OS/161 system calls – 10%
• Project 2b: OS/161 CPU scheduling – 5%
• Project 3: Implement a MapReduce app w/ C – 10%

Y. Cheng GMU CS571 Spring 2020 10

Homework assignments

• Two written homework assignments
• One before the midterm
• One after the midterm

11Y. Cheng GMU CS571 Spring 2020

Getting help

• Office hours
• Monday 1:30 pm – 2:30 pm, Engineering 5324

• Piazza
• Good place to ask and answer questions

• About project
• About material from lecture

• No anonymous posts or questions

Y. Cheng GMU CS675 Spring 2020 12

What is an OS?

13Y. Cheng GMU CS571 Spring 2020

What is an OS?

• OS manages resources
• Memory, CPU, storage, network
• Data (file systems, I/O)

• Provides low-level abstractions to applications
• Files
• Processes, threads
• Virtual machines (VMs), containers
• …

14Y. Cheng GMU CS571 Spring 2020

OS abstracts away low-level details

15Y. Cheng GMU CS571 Spring 2020

OS abstracts away low-level details

• Under the surface
• Complex and dirty

implementations of
abstractions and a lot
more…

16

Sched

I/O
File system

Virtual mem

Dev drivers
Dev drivers

Dev drivers

Y. Cheng GMU CS571 Spring 2020

OS abstracts away low-level details

• Under the surface
• Complex and dirty

implementations of
abstractions and a lot
more…

17

Sched

I/O
File system

Virtual mem

Dev drivers
Dev drivers

Dev drivers

Y. Cheng GMU CS571 Spring 2020

• User’s perspective
• User interface:

• Terminal, GUI

• Application interface:
• System calls

Syscall Interface

Users
Applications

The goals of an OS
• OS manages resources

• Memory, CPU, storage, network
• Data (file systems, I/O)

• Provides low-level abstractions to applications
• Files
• Processes, threads
• Virtual machines (VMs), containers
• …

• Goals
• Resource efficiency (resource virtualization)
• Ease-of-use (interfaces)
• Reliability (user-kernel space separation)

18Y. Cheng GMU CS571 Spring 2020

System Calls
• System calls provide the interface between a running

program and the operating system
• Generally available in routines written in C and C++
• Certain low-level tasks may have to be written using assembly

language

• Typically, application programmers design programs
using an application programming interface (API)

• The runtime support system (runtime libraries) provides
a system-call interface, that intercepts function calls in
the API and invokes the necessary system call within
the operating system

• Major differences in how they are implemented (e.g.,
Windows vs. Unix)

19Y. Cheng GMU CS571 Spring 2020

Example System Call Processing

20Y. Cheng GMU CS571 Spring 2020

Major System Calls in Linux:
File Management
• fd = open(file, how, …)

• Open a file for reading, writing, or both
• s = close(file)

• Close an open file
• n = read(fd, buf, nbytes)

• Read data from a file into a buffer
• n = write(fd, buf, nbytes)

• Write data from a buffer into a file
• pos = lseek(fd, offset, whence)

• Move the file pointer
• s = stat(name, &buf)

• Get a file’s status info

21Y. Cheng GMU CS571 Spring 2020

3 Major Topics

22

CPU Memory

Storage

Y. Cheng GMU CS571 Spring 2020

OS Provides Virtualization on Hardware

23

CPU Memory

Storage

Y. Cheng GMU CS571 Spring 2020

Topic 1: Concurrency, Synchronization, and
CPU Scheduling

24

CPU Memory

Storage

• Process/thread abstraction
• Synchronization
• CPU scheduling

Y. Cheng GMU CS571 Spring 2020

Process Abstraction

25

• A process is a program in execution
• It is a unit of work within the system. A program is a passive entity, a process is an

active entity.

• Process needs resources to accomplish its task
• CPU, memory, I/O, files
• Initialization data

• Process termination requires reclaim of any reusable resources

• Single-threaded process has one program counter specifying location
of next instruction to execute
• Process executes instructions sequentially, one at a time, until completion

• Multi-threaded process has one program counter per thread

• A software system may have many processes, some user, some
operating system running concurrently on one or more CPUs
• Concurrency by multiplexing the CPUs among the processes / threads

Y. Cheng GMU CS571 Spring 2020

Loading from Program to Process

26Y. Cheng GMU CS571 Spring 2020

Topic 2: Memory Management and
Virtual Memory

27

CPU Memory

Storage

• Memory management
• Virtual memory

• Process/thread abstraction
• Synchronization
• CPU scheduling

Y. Cheng GMU CS571 Spring 2020

Memory Management
• All data in memory before and after processing
• All instructions in memory in order to execute
• Memory management determines what is in

memory when
• Optimizing CPU utilization and computer response to

users
• Memory management activities

• Keeping track of which parts of memory are currently
being used and by whom

• Deciding which processes (or parts thereof) and data to
move into and out of memory

• Allocating and deallocating memory space as needed
• Virtual memory management is an essential part

of most operating systems

28Y. Cheng GMU CS571 Spring 2020

Topic 3: Storage, I/O, and
Filesystems

29

CPU Memory

Storage

• Hard disk drives
• RAID
• Flash SSDs
• File and I/O systems

• Memory management
• Virtual memory

• Process/thread abstraction
• Synchronization
• CPU scheduling

Y. Cheng GMU CS571 Spring 2020

Storage Management
• OS provides a uniform, logical view of information

storage
• Abstracts physical properties to logical storage unit - file
• Each medium is controlled by device type (i.e., disk drive,

tape drive)
• Varying properties include access speed, capacity, data-

transfer rate, access method (sequential or random)
• Filesystem management

• Files usually organized into directories
• Access control on most systems to determine who can

access what
• OS activities include

• Creating and deleting files and directories
• Primitives to manipulate files and dirs
• Mapping files onto secondary storage
• Backup files onto stable (non-volatile) storage media

30Y. Cheng GMU CS571 Spring 2020

Storage hierarchy

Y. Cheng GMU CS571 Spring 2020 31

Storage Structure
• Main memory – relatively large storage media that the

CPU can access directly
• Small CPU cache memories are used to speed up average

access time to the main memory at run-time
• Volatile (data loss at power-off)
• Byte-addressable

• Secondary storage – extension of main memory that
provides large nonvolatile storage capacity.
• Magnetic disks
• Electronic disks -- Solid state disks (SSDs)
• Non-volatile (i.e., persistent)
• Non byte-addressable

32Y. Cheng GMU CS571 Spring 2020

Storage Systems Tradeoffs

• Storage systems organized in hierarchy
• Speed
• Cost
• Volatility
• Density

• Faster access time, greater cost per bit

• Greater capacity (density), lower cost per bit

• Greater capacity (density), slower access
speed

33Y. Cheng GMU CS571 Spring 2020

Increased complexity – Memory

Y. Cheng GMU CS571 Spring 2020 34

L1/L2 cache

L3 cache

Main memory

NAND SSD

Fast HDD

~1 ns

~10 ns

~100 ns / ~80 GB/s / ~100GB

~100 usec / ~10 GB/s / ~1 TB

~10 msec / ~100 MB/s / ~10 TB

2015

Increased complexity – Memory

Y. Cheng GMU CS571 Spring 2020 35

L1/L2 cache

L3 cache

Main memory

NAND SSD

Fast HDD

~1 ns

~10 ns

~100 ns / ~80 GB/s / ~100GB

~100 usec / ~10 GB/s / ~1 TB

~10 msec / ~100 MB/s / ~10 TB

2015

~10 msec / ~100 MB/s / ~100 TB

L1/L2 cache

L3 cache

Main memory

NAND SSD

Fast HDD

~1 ns

~10 ns

~100 ns / ~80 GB/s / ~100GB

~100 usec / ~10 GB/s / ~10 TB

HBM ~10 ns / ~1TB/s / ~10GB

NVM (Intel
Optane DC)

~1 usec / ~10GB/s / ~1TB

2020

The CPU-Memory Gap
The gap widens between memory, disk, and CPU speeds.

0.0

0.1

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1,000,000.0

10,000,000.0

100,000,000.0

1980 1985 1990 1995 2000 2003 2005 2010

ns

Disk seek time

Flash SSD access time

DRAM access time

SRAM access time

CPU cycle time

Effective CPU cycle time

Disk

DRAM

CPU

SSD

SRAM

36

Data decades ago, but trends are the same
Y. Cheng GMU CS571 Spring 2020

Caching
• Skew rule: 80% requests hit on 20% hottest data

• Important principle, performed at many levels in a
computer (in hardware, operating system, software)
• Information in use copied from slower to faster

storage temporarily
• Faster storage (cache) checked first to determine if

information is there
• If it is, information used directly from the cache (fast)
• If not, data copied to cache and used there

• Cache smaller than storage being cached
• Cache management important design problem
• Cache size and replacement policy

37Y. Cheng GMU CS571 Spring 2020

Intel Core i7 Cache Hierarchy

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core 0

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core 3

…

L3 unified cache
(shared by all cores)

Main memory

L1 i-cache and d-cache:

32 KB, 8-way,

Access: 4 cycles

L2 unified cache:

256 KB, 8-way,

Access: 11 cycles

L3 unified cache:

8 MB, 16-way,

Access: 30-40 cycles

Block size: 64 bytes

38Y. Cheng GMU CS571 Spring 2020

Migration of Integer A from Disk to
Register
• Multitasking environments must be careful to use

most recent value, no matter where it is stored in the
storage hierarchy

• Multiprocessor environment must provide cache
coherency in hardware such that all CPUs have the
most recent value in their cache
• Distributed environment situation even more

complex
• Several copies of a piece of data can exist

39Y. Cheng GMU CS571 Spring 2020

Why do you take this course?

40Y. Cheng GMU CS571 Spring 2020

General Learning Goals

41

1. Grasp basic knowledge about Operating
Systems and Computer Systems software

2. Learn important systems concepts in general
• Multi-processing/threading, synchronization
• Scheduling
• Caching, memory, storage
• And more…

3. Gain hands-on experience in
writing/hacking/designing moderately large
systems software

Y. Cheng GMU CS571 Spring 2020

Why do you take this course?

• The OS concepts are everywhere
• Fundamental OS techniques broadly generalize to

widely-used systems technique
• Scheduling
• Concurrency
• Memory management
• Caching
• …

42Y. Cheng GMU CS571 Spring 2020

One example: Memcached

43

On-disk data

Scheduler

Worker
thread pool

In-memory data

Ring-buffer

Thread
Scheduling

Producer-
consumer sync

Race condition,
RW locks

Virtual memory
& caching

• Memcached is a
distributed in-memory
object cache system
• Written in C

• In-memory hash table

• Multi-threading

Memcached can be treated as a
user-space mini-OSY. Cheng GMU CS571 Spring 2020

Y. Cheng GMU CS571 Spring 2020 44

What is a Process?

45Y. Cheng GMU CS571 Spring 2020

What is a Process?

• Programs are code (static entity)

• Processes are running programs

• Java analogy
• class -> “program”

• object -> “process”

46Y. Cheng GMU CS571 Spring 2020

What is in a Process?

47

Process

What things change as a program runs?

Y. Cheng GMU CS571 Spring 2020

What is in a Process?

48

Process

What things change as a program runs?

Code
Heap
…

Stack

memory

Y. Cheng GMU CS571 Spring 2020

What is in a Process?

49

Process

What things change as a program runs?

Code
Heap
…

Stack

memory
EAX
PC
SP
BP

registers

Y. Cheng GMU CS571 Spring 2020

What is in a Process?

50

Process

What things change as a program runs?

Code
Heap
…

Stack

memory
EAX
PC
SP
BP

registers

FDs
I/O

Y. Cheng GMU CS571 Spring 2020

Peeking Inside

• Processes share code, but each has its own
“context”

• CPU
• Instruction pointer (Program Counter)

• Stack pointer

• Memory
• Set of memory addresses (“address space”)
• cat /proc/<PID>/maps

• Disk
• Set of file descriptors
• cat /proc/<PID>/fdinfo/*

51Y. Cheng GMU CS571 Spring 2020

Process Creation
• Principle events that cause process creation
• System initialization

• Execution of a process creation system call by a
running process

• User request to create a process

52Y. Cheng GMU CS571 Spring 2020

Process Creation

53Y. Cheng GMU CS571 Spring 2020

Process Creation

54Y. Cheng GMU CS571 Spring 2020

Process Creation

55

PC

Y. Cheng GMU CS571 Spring 2020

Process Creation (cont.)

56

• Parent process creates children processes,
which, in turn create other processes, forming a
tree (hierarchy) of processes

• Questions:
• Will the parent and child execute concurrently?
• How will the address space of the child be related to

that of the parent?
• Will the parent and child share some resources?

Y. Cheng GMU CS571 Spring 2020

An Example Process Tree

57Y. Cheng GMU CS571 Spring 2020

How to View Process Tree in Linux?

• % ps auxf
• ‘f’ is the option to show the process tree

• % pstree

58Y. Cheng GMU CS571 Spring 2020

Process Creation in Linux

59

• Each process has a process identifier (pid)

• The parent executes fork() system call to spawn
a child

• The child process has a separate copy of the
parent’s address space

oBoth the parent and the child continue execution at
the instruction following the fork() system call

oThe return value for the fork() system call is
o zero value for the new (child) process
o non-zero pid for the parent process

oTypically, a process can execute a system call like
execl() to load a binary file into memory

Y. Cheng GMU CS571 Spring 2020

Process Creation in Linux

60

• Each process has a process identifier (pid)

• The parent executes fork() system call to spawn
a child

• The child process has a separate copy of the
parent’s address space

oBoth the parent and the child continue execution at
the instruction following the fork() system call

oThe return value for the fork() system call is
o zero value for the new (child) process
o non-zero pid for the parent process

oTypically, a process can execute a system call like
execl() to load a binary file into memory

This is really the pid of the child process
Simply the return value of fork()
in the context of the new child
procY. Cheng GMU CS571 Spring 2020

The man page of fork()
http://man7.org/linux/man-pages/man2/fork.2.html

61Y. Cheng GMU CS571 Spring 2020

http://man7.org/linux/man-pages/man2/fork.2.html

void main () {
int pid;

pid = fork();
if (pid < 0) {/* error_msg */}
else if (pid == 0) { /* child process */

execl(“/bin/ls”, “ls”, NULL); /* execute ls */
} else { /* parent process */

/* parent will wait for the child to complete */
wait(NULL);
exit(0);

}
return;

}

62

Example Program with fork()

Y. Cheng GMU CS571 Spring 2020

while (1) {
type_prompt();

read_command(cmd);

pid = fork();
if (pid < 0) {/* error_msg */}

else if (pid == 0) { /* child process */
execute_command(cmd);

} else { /* parent process */

wait(NULL);
}

}

63

A Very Simple Shell using fork()

Y. Cheng GMU CS571 Spring 2020

64

What happens to the value of number?

More example: fork 1

Y. Cheng GMU CS571 Spring 2020

Results

./forkexample1

Running the fork example

The initial value of number is 7

PID is 2137

PID is 0

In the child, the number is 49 -- PID is 0

In the parent, the number is 7

65Y. Cheng GMU CS571 Spring 2020

66

Further more example: fork 2

What happens to the value of number?

Y. Cheng GMU CS571 Spring 2020

Results
./forkexample2

Running the fork example

The initial value of number is 7

PID is 2164

PID is 0

In the child, the number is 49 -- PID is 0

In the child, the number is 49 -- PID is 0

In the parent, the number is 7

67Y. Cheng GMU CS571 Spring 2020

68

execl (or execvp) vs. fork

Y. Cheng GMU CS571 Spring 2020

Results
./execlexample
Running the execl example
PID is 2179
PID is 0

In the execl child, PID is 0

Running the fork example
The initial value of number is 7
PID is 2180
PID is 0

In the child, the number is 49 -- PID is 0
In the child, the number is 49 -- PID is 0

In the parent, the number is 7
In the parent, done waiting

69

forkexample2

Y. Cheng GMU CS571 Spring 2020

Today’s demo code

• You can fork it here:
https://github.com/tddg/demo-ostep-code
• under cpu-api/

Y. Cheng GMU CS571 Spring 2020 70

https://github.com/tddg/demo-ostep-code

Process Creation

71

Before, PC points to
kernel code

PC

Y. Cheng GMU CS571 Spring 2020

Process Creation

72

PC

Now, after process
creation, CPU begins
directly executing
process code

Y. Cheng GMU CS571 Spring 2020

Process Creation

73

PC

Challenge: how to prevent
process from doing “OS
kernel stuff”?

Y. Cheng GMU CS571 Spring 2020

