0S161 Project 2

System Calls and Process Scheduling

Deliverables

= Answers to the code walk-through questions

= Design Document

" Implementations

* System calls
* getpid
* fork
* execv
* waitpid
* exit

* Multi-level queue scheduler

Deliverables (contd.)

"Desigh document

* A high level description of how you are approaching the problem

A detailed description of the implementation (e.g., new
structures, why they were created, what they are encapsulating,
what problems they solve)

» A discussion of the pros and cons of your approach

 Alternatives you considered and why you discarded them

Configure and Build Kernel

= Repeat the steps you used for the last project
* Just use ASST2 instead of ASST1

Where to put your system call implementation?

=" This time no skeleton code is given

= Create under kern/userprog
e fork.c
¢* execv.c
* waitpid.c
 getpid.c
* exit.c

= Name your system calls sys_{getpid|fork]|execv|waitpid|exit}

= Add the new files to kern/conf/conf.kern
* e.g., file userprog/getpid.c
* The same way you have done hello.c in ASSTO.

®|nclude your system call function declaration in
kern/include/syscall.h

User-Level Interface

" 0s161-1.11/include/unistd.h contains the user-level system
call interfaces.

* int execv(const char *prog, char *const *args);

e pid_t fork(void);

* int waitpid(pid_t pid, int *returncode, int flags);

* int open(const char *filename, int flags, ...);

* int read(int filehandle, void *buf, size_t size);

* int write(int filehandle, const void *buf, size_t size);
* int close(int filehandle);

* int reboot(int code);

* int sync(void);

How is it linked?

Kern/arch/mips/mips/

exception.S

mips_trap()
trap.c

mips_syscall()
syscall.c

Your system call
implementation
kern/userprog/...

For each system call

* mips_syscall(struct trapframe *tf) gets called
= The system call number is in tf->tf_vO
= The arguments are in tf->tf_ao0, ..., tf->tf_a3

= Case-switch statement calls the correct system call based on call
number, and passes the arguments extracted from the trapframe

v’ Increment user-program counter before returning from system call
Otherwise, it will restart the same system call
tf->tf _epc+=4

v If error

Store the error code in tf->tf_vO
Set tf->tf a3to 1

v If no error
Store the return value in tf->tf_vO
Set tf->tf a3to 0

Process structure

"A common hack.
* Add the necessary fields to the thread structure and
treat it as a process.
* Pid
* Exit status

* Parent process
* Etc.

* A process table

* A new pid needs to be generated for a new process
* Need to reuse pid of processes that already exited

Sys_getpid

= Simplest one.
= Just return the pid of the executing process.
= getpid does not fail.

Sys_fork

= Duplicate the current process.
= Child process will have unique process id.

= pid_t sys_fork(struct trapframe*tf, pid_t*retval)

 Child process returns O.
* Parent process return the pid of the child process.

" |n case of an error
* do not create a new child process but return -1.

= Most of the work is already done in thread.c (thread_fork).
Add the followings:

= Create a pid when creating a new process. Add it to your
process table.

= Copy the trapframe.
= Copy the address space.
= Call thread_fork()

Sys_fork

" Implement md_forkentry

* Parent’s trapframe and address space are passed as
arguments

* Create new child trapframe by copying parent’s

» Get the assigned child pid from parent’s trapframe tf_vO and
assign it to the pid of the current process (since we are
executing md_forkentry, this is child)

 Set the trapframe’s tf vO to O.
* Increment tf_epc by 4.

* Copy the passed address space to the current process address
space and activate it.

* Give the control back to the usermode.
 Call mips_usermode() and pass the new trapframe.

Sys_fork errors

EAGAIN Too many processes already exist.

Sufficient virtual memory for the new

ENOMEM :
process was not available.

Sys _execv

= Replace the currently executing program image with a new
process image.
= Process id is unchanged.
"int sys_execv(char *program, char **args)
® program: path name of the program to run.
e Args: tf->tf a0 and tf->tf_al
= Most of the implementation is already in the runprogram.c

* Only a few more things.
* Check the last argument in **args is NULL.
* Make sure it is less than MAX_ARGS_NUM
* copyin the arguments from user space to kernel space.
* Create a new address space.
* as_create()
* Allocate a stack onit.
* as_define stack()
* Copyout the arguments back onto the new stack

Sys_execv errors

ENODEV
ENOTDIR
ENOENT
EISDIR
ENOEXEC

ENOMEM
E2BIG

EIO
EFAULT

The device prefix of program did not exist.

A non-final component of program was
not a directory.

program did not exist.
program is a directory.

program is not in a recognizable
executable file format, was for the wrong
platform, or contained invalid fields.

Insufficient virtual memory is available.

The total size of the argument strings is
too large.

A hard |/O error occurred.
One of the args is an invalid pointer.

Sys_waitpid

= Wait for the process with pid to exit.
= Return its exit code via the integer pointer status.
" pid_t sys_waitpid(pid_t pid, int *status, int options)

" You need a mechanism for processes to show interest into each
other.
*You can add restrictions on which processes can show interest.

*Make sure to prevent deadlocks by either setting restrictions
to prevent it or to implement a mechanism to detect it.

= Return the pid with status assigned to exit status on success.
" If error, return -1 and set the ret pointer to the error code.

Sys_waitpid errors

EINVAL The options argument requested
invalid or unsupported options.

EEAULT Thg status argument was an invalid
pointer.

Sys_exit

= Causes the current process to terminate.

" The process id of the exiting process cannot be reused if
there are other processes interested in it.

* Do not put the exited pid back to available pid pool blindly.
= void sys__exit(int code)

* Code is the exitcode that will be given to other processes who
are interested in it

Scheduler

» Currently 0s161 has single queue round-robin scheduler.

= You can modify hardclock.c to have another counter that
counts in HZ/2.

= Mostly scheduler.c will be edited.

* Add a new queue.

» Add each process a priority and modify make _runnable to
match the thread and queue level according to its priority.

* Modify the scheduler function such that the chances of
picking higher level queue will increase.

Testing

" 0s161/man/testbin has the details about given tests

* Contains html files

e Read them carefully and understand what needs to be
implemented to pass the tests

* Be careful: some of them requires VM management to work
= Forktest is very useful
= Also test bin/cp example in the assighnment description

= Shell implementation is given but not necessary
* You can call the tests by p /testbin/forktest

= A basic sys_write is also provided. It will be necessary for
printf statements from inside a user-program

Testing

= Build you own tests

= Repeat some of the tests with your new scheduler enabled
*Report the response times with different quantum sizes

= Make sure to include all the test outputs in your
submission

Thank you

