0S/161: Threads,
synchronization



Tips and Tricks

. (k3et familiar with code, specifically the following directories in
ern

thread, userprog, main, — You might end up modifying files in these
Inside /mips: spl.c, syscall.c, trap.c, exception.s, threadstart.s

« Get familiar with the following commands in zeus:

Screen —creates new windows (Will be helpful in debugging)
Find (search for files): find . —name ‘file_name’
Grep is your friend (grep —rw ‘path’ —e ‘pattern’ search for pattern)

If you are using two separate sessions for debugging use the same
node in both sessions (zeus runs on two nodes use
zeus1.vse.gmu.edu instead of just zeus.vse.gmu.edu while logging
in)

Familiarize with some gdb commands: where, frame, info
https://ccrma.stanford.edu/~jos/stkintro/Useful _commands_gdb.html

https://sourceware.org/gdb/onlinedocs/qgdb/Reqisters.html



https://ccrma.stanford.edu/~jos/stkintro/Useful_commands_gdb.html
https://sourceware.org/gdb/onlinedocs/gdb/Registers.html

Implementing Threads

A thread library is responsible for implementing
threads

The thread library stores threads’ contexts (or

pointers to the threads’ contexts) when they are
not running

The data structure used by the thread library to
store the misc. hardware-specific thread context is
called a thread control block (in 0s161 t_pcb)

In the OS/161 kernel’s thread implementation,
thread contexts are stored in thread structures



}z

The OS/161 Thread Structure

struct pcb {

u int32 t pcb switchstack;
u_int32 t pcb kstack:
u int32 t pcb ininterrupt;

// stack saved during context switch
// stack to load on entry to kernel
// are we in an interrupt handler?

pcb faultfunc pcb badfaultfunc; // recovery for fatal kernel traps

jmp buf pcb copyjmp;

struct thread

/* Private thread members -

struct pcb t_pcb; / *
char xt name; / *
const void *t sleepaddr; /=*

char xt_stack; / *

/* Public thread members -

struct addrspace *t_vmspace;

struct vnode xt_ cwd;

Yz

// Jump area used by copyin/out etc.

internal to the thread system =x/

misc. hardware-specific stuff =x/
thread name =x/
used for synchronization =x/

pointer to the thread’s stack =x/

can be used by other code */

/* address space structure =/

/* current working directory =/



How Does it Start?

» thread bootstrap(): this is where it starts,
the first thread is created here and this is
made as the current thread (Where is this
function called?)

 curthread points to the thread that is
currently running (look for curthread.h)

* Thread specific information is stored In
struct thread



Context switching on the MIPS

/* see kern/arch/mips/mips/switch.S «/
mips switch:
/* a0/al points to old/new thread’s control block x/

/* Allocate stack space for saving 11 registers. 11x4 = 44 x/
addi sp, sp, -44

/ % Save the registers x/
sSw ra, (
SW gp,
Sw S8,
sw 87,
SwW 86,
sw sb,
sSw s4,
Sw 83,
Sw 82,
sw sl,
sw s0,

p)
)
)
)
)
)
)
)

00]

ol
-t tlos i o Bl o il o 80 llio il o ik o i ©)

WO b 0

@]

/* Store the old stack pointer in the old control block =x/
sw sp, 0(a0)



Context switching on the MIPS
(cont.)

/* Get the new stack pointer from the new control block x/
lw sp, 0(al)
nop /* delay slot for load =/

/* Now, restore the registers */
lw s0, 0 (sp)

lw s1, 4 (sp)

lw s2, 8(sp)

lw s3, 12(sp)

lw =4, 16 (sp)

lw s5, 20(
lw s6, 24
lw s7, 28(sp)
lw s8, 32(sp)
lw gp, 36/
lw ra, 40/
nop /* delay slot for load =*/

j ra /+* and return. x/
addi sp, sp, 44 /* in delay slot */
.end mips switch



The OS/161 Thread Interface
(incomplete)

/* see kern/include/thread.h «/

/* create a new thread x/

int thread fork (const char sname,
void xdatal, unsigned long data2z,
void (xfunc) (void %, unsigned long),

struct thread x=xret) ;

/* destroy the calling thread =/
void thread exit (void);

/* let another thread run «/
void thread yield(void) ;

/* block the calling thread =/

void thread sleep(const void xaddr) ;

/* unblock blocked threads «/

void thread wakeup (const void xaddr);



Creating a New Thread

fork(): What does fork() do?

thread_fork() is like fork, but they are not
quite the same

It creates a new thread, allocates its stack
space and inherits the directory from current
thread. The new thread starts in the provided
function pointer, and takes two arguments

How is it different from fork()??

What if you want to pass more than 2
arguments”?



Creating Threads using
thread_fork()

/* from catmouse() in kern/asstl/catmouse.c %/
/* start NumMice mouse simulation () threads «/
for (index = 0; index < NumMice; index++) {

error = thread fork("mouse simulation thread",6NULL, index,

mouse simulation, NULL) ;

if (error)
panic ("mouse simulation: thread fork failed: %s\n",

strerror (error)) ;

/* wait for all of the cats and mice to finish before
terminating x/
for(i=0; i <« (NumCats+NumMice); i++) {

P (CatMouseWait) ;



Scheduling

scheduling means deciding which thread should run next
scheduling is implemented by a scheduler, which is part of the thread library
simple FIFO scheduling:

— scheduler maintains a queue of threads, often called the ready queue
— the first thread in the ready queue is the running thread

— on a context switch the running thread is moved to the end of the ready
queue, and new first thread is allowed to run

— newly created threads are placed at the end of the ready queue

more on scheduling later . . .



Enforcing Mutual Exclusion

e mutual exclusion algorithms ensure that only one thread at a time executes the
code in a critical section
e several techniques for enforcing mutual exclusion

— exploit special hardware-specific machine instructions, e.g., test-and-set or
compare-and-swap, that are intended for this purpose

— use mutual exclusion algorithms, e.g., Peterson’s algorithm, that rely only
on atomic loads and stores

— control interrupts to ensure that threads are not preempted while they are
executing a critical section



Disabling Interrupts

¢ On a uniprocessor, only one thread at a time is actually running.

e If the running thread is executing a critical section, mutual exclusion may be
violated if

1. the running thread is preempted (or voluntarily yields) while it is in the
critical section, and

2. the scheduler chooses a different thread to run, and this new thread enters
the same critical section that the preempted thread was in

e Since preemption is caused by timer interrupts, mutual exclusion can be
enforced by disabling timer interrupts before a thread enters the critical
section, and re-enabling them when the thread leaves the critical section.

This is the way that the OS/161 Kkernel enforces mu-
tual exclusion. There is a simple interface (splhigh(),
spl0 (), splx()) for disabling and enabling interrupts. See
kern/arch/mips/include/spl.h.




Pros and Cons of Disabling Interrupts

e advantages:
— does not require any hardware-specific synchronization instructions

— works for any number of concurrent threads

e disadvantages:

— indiscriminate: prevents all preemption, not just preemption that would
threaten the critical section

— ignoring timer interrupts has side effects, e.g., kernel unaware of passage
of time. (Worse, OS/161’s splhigh () disables a/l interrupts, not just
timer interrupts.) Keep critical sections short to minimize these problems.

— will not enforce mutual exclusion on multiprocessors (why??)



Semaphores

¢ A semaphore is a synchronization primitive that can be used to enforce mutual
exclusion requirements. It can also be used to solve other kinds of
synchronization problems.

¢ A semaphore is an object that has an integer value, and that supports two
operations:

P: if the semaphore value is greater than 0, decrement the value. Otherwise,
wait until the value is greater than 0 and then decrement it.

V: increment the value of the semaphore

¢ Two kinds of semaphores:
counting semaphores: can take on any non-negative value

binary semaphores: take on only the values 0 and 1. (V on a binary
semaphore with value 1 has no effect.)

By definition, the P and V operations of a semaphore are atomic.

Using SpinLocks or disabling

interrupts to do this inside the
kernel




Why are We Looking at This?

* For Project 1b you are going to complete the
code for the synchronization primitive locks

» Although they are different from semaphores,
looking at semaphores implementation can
give some insight one how to design the

locks

» Specifically you will get to know what
precautions to take in making sure your locks
meet the required conditions for
synchronization primitives



0S/161 Semaphores

struct semaphore {
char *name;

volatile int count;

Ju

struct semaphore xsem.create (const char sname,
int initial_count) ;

void P(struct semaphore =) ;

void V(struct semaphore «*);

void semdestroy (struct semaphore x) ;

see
¢ kern/include/synch.h

e kern/thread/synch.c




0S/161 Locks

e OS5/161 also uses a synchronization primitive called a Jock. Locks are
intended to be used to enforce mutual exclusion.

struct lock *mylock = lock_create ("LockName") ;

lock_aquire (mylock) ;
critical section /x e.g., call to list_remove_front =«

lock_release (mylock) ;

e A lock is similar to a binary semaphore with an initial value of 1. However,
locks also enforce an additional constraint: the thread that releases a lock
must be the same thread that most recently acquired it.

¢ The system enforces this additional constraint to help ensure that locks are
used as intended.

Not fully implemented. This is what you need to code.




Mutual Exclusion Using a Semaphore

What functions
from locks can
be used

instead of P
and V here?

struct semaphore *s;

s = gsem.create ("MySeml", 1); /% initial wvalue is 1 =x/
P(s); /* do this before entering critical section »*/
critical section /+* e.g., call to list_remove_front =/

V(s); /% do this after leaving critical section x*/



0S/161 Semaphores: P()

void

P(struct semaphore xsem)
int spl;
assert (sem != NULL) ;

/ *
* May not block in an interrupt handler.
* For robustness, always check, even if we can actually
* complete the P without blocking.
*/
assert (in_interrupt==0) ; .
What is the purpose

spl = splhigh() ; of including the code

while (sem->count==0) { between splhigh()
thread_sleep (sem) ; and splx(spl)

¥

assert (sem->count>0) ;
sem=scount.-=-;
splx (spl) ;




Thread Blocking in 0S/161

e O5/161 thread library functions:

— void thread_sleep(const void xaddr)

x blocks the calling thread on address addr

— void thread_wakeup (const void wxaddr)

* unblock threads that are sleeping on address addr

e thread_sleep () is much like thread_yield (). The calling thread
voluntarily gives up the CPU, the scheduler chooses a new thread to run, and
dispatches the new thread. However

— after a thread_yield (), the calling thread is ready to run again as
soon as it is chosen by the scheduler

— after a thread_sleep (), the calling thread is blocked, and should not
be scheduled to run again until after it has been explicitly unblocked by a
call to thread_wakeup ().



Thread States

e a very simple thread state transition diagram

quantum expires
or thread_yield()

dispatch

gOt resource or event need resource or event

(thread_wakeup()) (thread_sleep()
blocked

e the states:
running: currently executing
ready: ready to execute

blocked: waiting for something, so not ready to execute.



0S/161 Semaphores:

voilid

V(struct semaphore xsem)

{

int spl;

assert (sem != NULL) ;
spl = splhigh() ;
sem->count++;

assert (sem->count>0) ;
thread_wakeup (sem) ;

splx(spl) ;

V() kern/thread/synch.c

Pay attention to
the instructions

between splhigh()
and splx(spl)




Testing your work

Use the existing tests in 0s161 to test your
work

?t — will list the available tests in 0s161

Once you are done with your locks, use
sy2 to test them. You will get to know if
your locks are working or not

Don’t start with synchronization problem
before your locks are working correctly



