
Implementing Replicated Logs
with Paxos

John Ousterhout and Diego Ongaro
Stanford University

Note: this material borrows heavily from slides by Lorenzo Alvisi, Ali Ghodsi, and David Mazières

● Replicated log => replicated state machine
§ All servers execute same commands in same order

● Consensus module ensures proper log replication

● System makes progress as long as any majority of servers are up

● Failure model: fail-stop (not Byzantine), delayed/lost messages
March 1, 2013 Implementing Replicated Logs with Paxos Slide 2

Goal: Replicated Log

add jmp mov
Log

Consensus
Module

State
Machine

add jmp mov
Log

Consensus
Module

State
Machine

add jmp mov
Log

Consensus
Module

State
Machine

Servers

Clients

● Replicated log => replicated state machine
§ All servers execute same commands in same order

● Consensus module ensures proper log replication

● System makes progress as long as any majority of servers are up

● Failure model: fail-stop (not Byzantine), delayed/lost messages
March 1, 2013 Implementing Replicated Logs with Paxos Slide 3

Goal: Replicated Log

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

Servers

Clients

shl

Decompose the problem:
● Basic Paxos (“single decree”):

§ One or more servers propose values
§ System must agree on a single value as chosen
§ Only one value is ever chosen

● Multi-Paxos:
§ Combine several instances of Basic Paxos to agree on a series

of values forming the log

March 1, 2013 Implementing Replicated Logs with Paxos Slide 4

The Paxos Approach

● Safety:
§ Only a single value may be chosen
§ A server never learns that a value has been chosen unless it

really has been

● Liveness (as long as majority of servers up and
communicating with reasonable timeliness):
§ Some proposed value is eventually chosen
§ If a value is chosen, servers eventually learn about it

The term “consensus problem” typically refers to this
single-value formulation

March 1, 2013 Implementing Replicated Logs with Paxos Slide 5

Requirements for Basic Paxos

● Proposers:
§ Active: put forth particular values to be chosen
§ Handle client requests

● Acceptors:
§ Passive: respond to messages from proposers
§ Responses represent votes that form consensus
§ Store chosen value, state of the decision process
§ Want to know which value was chosen

For this presentation:
§ Each Paxos server contains both components

March 1, 2013 Implementing Replicated Logs with Paxos Slide 6

Paxos Components

● Simple (incorrect) approach:
a single acceptor chooses
value

● What if acceptor crashes
after choosing?

● Solution: quorum
§ Multiple acceptors (3, 5, ...)
§ Value v is chosen if accepted by

majority of acceptors
§ If one acceptor crashes, chosen

value still available

March 1, 2013 Implementing Replicated Logs with Paxos Slide 7

Strawman: Single Acceptor

Proposers

Acceptor

add jmp shl sub

jmp

● Acceptor accepts only first value it receives?
● If simultaneous proposals, no value might be chosen

Acceptors must sometimes accept multiple (different)
values

March 1, 2013 Implementing Replicated Logs with Paxos Slide 8

Problem: Split Votes

time

s1
s2
s3
s4
s5

accept?(red)

accept?(blue)

accept?(green)

accepted(red)

accepted(blue)

accepted(green)

accepted(red)

accepted(blue)

● Acceptor accepts every value it receives?
● Could choose multiple values

Once a value has been chosen, future proposals must
propose/choose that same value (2-phase protocol)
March 1, 2013 Implementing Replicated Logs with Paxos Slide 9

Problem: Conflicting Choices

time

s1
s2
s3
s4
s5

accept?(red)

accept?(blue)

accepted(red)

accepted(red)

accepted(blue)

accepted(red)

accepted(blue)

accepted(blue)

● s5 needn’t propose red (it hasn’t been chosen yet)
● s1’s proposal must be aborted (s3 must reject it)

Must order proposals, reject old ones
March 1, 2013 Implementing Replicated Logs with Paxos Slide 10

Conflicting Choices, cont’d

time

s1
s2
s3
s4
s5

accept?(red)

prop(blue)

accepted(red)

accepted(red)

accepted(blue)

accepted(red)

accepted(blue)

accepted(blue)

● Each proposal has a unique number
§ Higher numbers take priority over lower numbers
§ It must be possible for a proposer to choose a new proposal

number higher than anything it has seen/used before

● One simple approach:

§ Each server stores maxRound: the largest Round Number it has
seen so far

§ To generate a new proposal number:
● Increment maxRound
● Concatenate with Server Id

§ Proposers must persist maxRound on disk: must not reuse
proposal numbers after crash/restart

March 1, 2013 Implementing Replicated Logs with Paxos Slide 11

Proposal Numbers

Server IdRound Number

Proposal Number

Two-phase approach:
● Phase 1: broadcast Prepare RPCs

§ Find out about any chosen values
§ Block older proposals that have not yet completed

● Phase 2: broadcast Accept RPCs
§ Ask acceptors to accept a specific value

March 1, 2013 Implementing Replicated Logs with Paxos Slide 12

Basic Paxos

Basic Paxos
Acceptors

3) Respond to Prepare(n):
§ If n > minProposal then minProposal = n
§ Return(acceptedProposal, acceptedValue)

6) Respond to Accept(n, value):
§ If n ≥ minProposal then

acceptedProposal = minProposal = n
acceptedValue = value

§ Return(minProposal)

March 1, 2013 Implementing Replicated Logs with Paxos Slide 13
Acceptors must record minProposal, acceptedProposal,
and acceptedValue on stable storage (disk)

Proposers
1) Choose new proposal number n

2) Broadcast Prepare(n) to all
servers

4) When responses received from
majority:

§ If any acceptedValues returned, replace
value with acceptedValue
for highest acceptedProposal

5) Broadcast Accept(n, value) to all
servers

6) When responses received from
majority:

§ Any rejections (result > n)? goto (1)
§ Otherwise, value is chosen

Three possibilities when later proposal prepares:
1. Previous value already chosen:

§ New proposer will find it and use it

March 1, 2013 Implementing Replicated Logs with Paxos Slide 14

Basic Paxos Examples

time

s1
s2
s3
s4
s5

P 4.5

A 3.1 XP 3.1

P 3.1

P 3.1

A 3.1 X

A 3.1 X

P 4.5

P 4.5

A 4.5 X

A 4.5 X

A 4.5 X

“Prepare proposal 3.1 (from s1)”

“Accept proposal 4.5
with value X (from s5)”

X

Y

values

Three possibilities when later proposal prepares:
2. Previous value not chosen, but new proposer sees it:

§ New proposer will use existing value
§ Both proposers can succeed

March 1, 2013 Implementing Replicated Logs with Paxos Slide 15

Basic Paxos Examples, cont’d

time

s1
s2
s3
s4
s5

P 4.5

A 3.1 XP 3.1

P 3.1

P 3.1

A 3.1 X

A 3.1 X

P 4.5

P 4.5

A 4.5 X

A 4.5 X

A 4.5 X

X

Y

values

Three possibilities when later proposal prepares:
3. Previous value not chosen, new proposer doesn’t

see it:
§ New proposer chooses its own value
§ Older proposal blocked

March 1, 2013 Implementing Replicated Logs with Paxos Slide 16

Basic Paxos Examples, cont’d

time

s1
s2
s3
s4
s5

P 4.5

A 3.1 XP 3.1

P 3.1

P 3.1

A 3.1 X

A 3.1 X

P 4.5

P 4.5

A 4.5 Y

A 4.5 Y

A 4.5 Y

X

Y

values

● Competing proposers can livelock:

● One solution: randomized delay before restarting
§ Give other proposers a chance to finish choosing

● Multi-Paxos will use leader election instead
March 1, 2013 Implementing Replicated Logs with Paxos Slide 17

Liveness

time

s1
s2
s3
s4
s5

A 3.1 XP 3.1

P 3.5

A 3.5 Y

P 3.1

P 3.1

P 3.5

P 3.5

A 3.1 X

A 3.1 X

P 4.1

P 4.1

P 4.1

A 3.5 Y

A 3.5 Y

P 5.5

P 5.5

P 5.5 A 4.1 X

A 4.1 X

A 4.1 X

● Only proposer knows which value has been chosen
● If other servers want to know, must execute Paxos

with their own proposal

March 1, 2013 Implementing Replicated Logs with Paxos Slide 18

Other Notes

● Separate instance of Basic Paxos for each entry in
the log:
§ Add index argument to Prepare and Accept (selects entry in log)

March 1, 2013 Implementing Replicated Logs with Paxos Slide 19

Multi-Paxos

add jmp mov shl
Log

Consensus
Module

State
Machine Server

Client

shl

Other
Servers

1. Client sends command
to server

2. Server uses Paxos to
choose command as
value for a log entry

3. Server waits for previous
log entries to be applied,
then applies new command
to state machine

4. Server returns result
from state machine to
client

● Which log entry to use for a given client request?
● Performance optimizations:

§ Use leader to reduce proposer conflicts
§ Eliminate most Prepare requests

● Ensuring full replication
● Client protocol
● Configuration changes

Note: Multi-Paxos not specified precisely in literature

March 1, 2013 Implementing Replicated Logs with Paxos Slide 20

Multi-Paxos Issues

cmp

● When request arrives from client:
§ Find first log entry not known to be chosen
§ Run Basic Paxos to propose client’s command for this index
§ Prepare returns acceptedValue?

● Yes: finish choosing acceptedValue, start again
● No: choose client’s command

March 1, 2013 Implementing Replicated Logs with Paxos Slide 21

Selecting Log Entries

mov add

cmp

ret

1 2 3 4 5 6 7

s1

submov add rets2

cmpmov add rets3

cmpmov add

shl

ret

1 2 3 4 5 6 7

s1

submov add rets2

cmpmov add rets3

cmp

sub jmp

jmp

jmp Known Chosen

Logs Before Logs After

● Servers can handle multiple client requests
concurrently:
§ Select different log entries for each

● Must apply commands to state machine in log order

March 1, 2013 Implementing Replicated Logs with Paxos Slide 22

Selecting Log Entries, cont’d

● Using Basic Paxos is inefficient:
§ With multiple concurrent proposers, conflicts and restarts are

likely (higher load → more conflicts)
§ 2 rounds of RPCs for each value chosen (Prepare, Accept)

Solution:
1. Pick a leader

§ At any given time, only one server acts as Proposer

2. Eliminate most Prepare RPCs
§ Prepare once for the entire log (not once per entry)
§ Most log entries can be chosen in a single round of RPCs

March 1, 2013 Implementing Replicated Logs with Paxos Slide 23

Improving Efficiency

One simple approach from Lamport:
● Let the server with highest ID act as leader
● Each server sends a heartbeat message to every

other server every T ms
● If a server hasn’t received heartbeat from server with

higher ID in last 2T ms, it acts as leader:
§ Accepts requests from clients
§ Acts as proposer and acceptor

● If server not leader:
§ Rejects client requests (redirect to leader)
§ Acts only as acceptor

March 1, 2013 Implementing Replicated Logs with Paxos Slide 24

Leader Election

● Why is Prepare needed?
§ Block old proposals

● Make proposal numbers refer to the entire log, not just one entry
§ Find out about (possibly) chosen values

● Return highest proposal accepted for current entry
● Also return noMoreAccepted: no proposals accepted for any log

entry beyond current one

● If acceptor responds to Prepare with
noMoreAccepted, skip future Prepares with that
acceptor (until Accept rejected)

● Once leader receives noMoreAccepted from majority
of acceptors, no need for Prepare RPCs
§ Only 1 round of RPCs needed per log entry (Accepts)

March 1, 2013 Implementing Replicated Logs with Paxos Slide 25

Eliminating Prepares

● So far, information flow is incomplete:
§ Log entries not fully replicated (majority only)

Goal: full replication
§ Only proposer knows when entry is chosen

Goal: all servers know about chosen entries

● Solution part 1/4: keep retrying Accept RPCs until all
acceptors respond (in background)
§ Fully replicates most entries

● Solution part 2/4: track chosen entries
§ Mark entries that are known to be chosen:

acceptedProposal[i] = ∞
§ Each server maintains firstUnchosenIndex: index of earliest log

entry not marked as chosen
March 1, 2013 Implementing Replicated Logs with Paxos Slide 26

Full Disclosure

● Solution part 3/4: proposer tells acceptors about
chosen entries
§ Proposer includes its firstUnchosenIndex in Accept RPCs.
§ Acceptor marks all entries i chosen if:

● i < request.firstUnchosenIndex
● acceptedProposal[i] == request.proposal

§ Result: acceptors know about most chosen entries

Still don’t have complete information
March 1, 2013 Implementing Replicated Logs with Paxos Slide 27

Full Disclosure, cont’d

∞

1 2 3 4 5 6 7 8 9log index
2.5∞ ∞ ∞ 3.4acceptedProposal before Accept

... Accept(proposal = 3.4, index=8, value = v, firstUnchosenIndex = 7) ...

∞ 2.5∞ ∞ ∞ 3.4 after Accept∞

● Solution part 4/4: entries from old leaders
§ Acceptor returns its firstUnchosenIndex in Accept replies
§ If proposer’s firstUnchosenIndex > firstUnchosenIndex from

response, then proposer sends Success RPC (in background)

● Success(index, v): notifies acceptor of chosen entry:
§ acceptedValue[index] = v
§ acceptedProposal[index] = ∞
§ return firstUnchosenIndex
§ Proposer sends additional Success RPCs, if needed

March 1, 2013 Implementing Replicated Logs with Paxos Slide 28

Full Disclosure, cont’d

● Send commands to leader
§ If leader unknown, contact any server
§ If contacted server not leader, it will redirect to leader

● Leader does not respond until command has been
chosen for log entry and executed by leader’s state
machine

● If request times out (e.g., leader crash):
§ Client reissues command to some other server
§ Eventually redirected to new leader
§ Retry request with new leader

March 1, 2013 Implementing Replicated Logs with Paxos Slide 29

Client Protocol

● What if leader crashes after executing command but
before responding?
§ Must not execute command twice

● Solution: client embeds a unique id in each
command
§ Server includes id in log entry
§ State machine records most recent command executed for each

client
§ Before executing command, state machine checks to see if

command already executed, if so:
● Ignore new command
● Return response from old command

● Result: exactly-once semantics as long as client
doesn’t crash

March 1, 2013 Implementing Replicated Logs with Paxos Slide 30

Client Protocol, cont’d

● System configuration:
§ ID, address for each server
§ Determines what constitutes a majority

● Consensus mechanism must support changes in the
configuration:
§ Replace failed machine
§ Change degree of replication

March 1, 2013 Implementing Replicated Logs with Paxos Slide 31

Configuration Changes

● Safety requirement:
§ During configuration changes, it must not be possible for

different majorities to choose different values for the same log
entry:

March 1, 2013 Implementing Replicated Logs with Paxos Slide 32

Configuration Changes, cont’d

Old Configuration

New Configuration

Choose v2 using
new configuration

Choose v1 using
old configuration

● Paxos solution: use the log to manage configuration
changes:
§ Configuration is stored as a log entry
§ Replicated just like any other log entry
§ Configuration for choosing entry i determined by entry i-α.

Suppose α = 3:

● Notes:
§ α limits concurrency: can’t choose entry i+α until entry i chosen
§ Issue no-op commands if needed to complete change quickly

March 1, 2013 Implementing Replicated Logs with Paxos Slide 33

Configuration Changes, cont’d

C1 C2

Use C0 Use C1 Use C2

1 2 3 4 5 6 7 8 9 10

● Basic Paxos:
§ Prepare phase
§ Accept phase

● Multi-Paxos:
§ Choosing log entries
§ Leader election
§ Eliminating most Prepare requests
§ Full information propagation

● Client protocol
● Configuration changes

March 1, 2013 Implementing Replicated Logs with Paxos Slide 34

Paxos Summary

