

Midterm Review

CS 475: Concurrent & Distributed Systems (Fall 2021)

Yue Cheng

Midterm

- Thursday, Oct 7th, 9:00 10:15am
 - 75 minutes
 - Open-book, open-notes (you may use class notes, papers, and lab materials; you may read them on your laptop, but you are not allowed to use any network)
- Covering topics from lec-1 to lec-9-2
 - Go-specific questions
 - High-level design questions

Concurrency in Go

ch:= make (ch(int))

- Labs that were completed
 - Possible race condition bugs in Go
 - Go channels
 - Go mutex locks

in buffered ch

Y. Cheng GMU CS475 Fall 2021 3

MapReduce + GFS

- Why MapReduce
 - Google workload characteristics
- How MapReduce works
 - Paper
- How data flows within a MapReduce job
 - Use of local file system and use of GFS (Fig. 3 sort app)
- Fault tolerance in MapReduce
 - Backup tasks; task idempotence

Time & Clocks

• Cristian's algorithm

ogical Clock algorithm

- Guarantees if a \rightarrow b, then C(a) < C(b)
- How to guarantee a total order of events

Vector Clock algorithm

- If V(a) < V(b), then a \rightarrow b
- Can be used to infer when an event b was aware of / influenced by a

Raft

- Raft material: Slides #1-24; paper: Section 1-5
- Safety and liveness requirements
 - Election
 - Normal operations
- Leader changes
- Rules of selecting the best leader

Log consistency

H+1= 7.