Two-Phase Commit,
Safety, Liveness

CS 475: Concurrent & Distributed Systems (Fall 2021)
Lecture 7

Yue Cheng

Some material taken/derived from:

* Princeton COS-418 materials created by Michael Freedman and Wyatt Lloyd.

* MIT 6.824 by Robert Morris, Frans Kaashoek, and Nickolai Zeldovich.

* UW CSE 452 by Tom Anderson

Licensed for use under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Today’s outline

 Fault tolerance in a nutshell
« Safety and liveness
e Two-phase commit

* Two-phase commit: Failure scenarios

Fault tolerance in a nutshell

What is fault tolerance?

« Building reliable systems from unreliable
components

* Three basic steps

. discovering the presence of an
error in a data value or control signal

. limiting how far errors propagate

. designing mechanisms to ensure a
system operates correctly despite error (and
possibly correct error)

Why is fault tolerance hard?

Failures

propagate Say one bit in a DRAM fails...

Iit flips a bit in a memory address the
kernel is writing to...

* ...Causes big memory error elsewhere,
or a kernel panic...

e ...program is running one of many
distributed file system storage
servers...

e ...aclient can’t read from FS, so it
hangs

y |
, I-----------
y 4
\\
M

/
<
N\

Y. Cheng GMU CS§475 Fall 2021 5

So, what to do?

. silently return the failure

. detect the failure and report at
interface
» Ethernet station jams medium on detecting collision

. transform incorrect behavior or
values Into acceptable ones

* Failed traffic light controller switches to blinking-red

. operate despite failure

* Retry op for transient errors, use error-correcting
code for bit flips, replicate data in multiple places

Masking failures

* WWe mask failures on via
« Atomic operations
* Logging and recovery

* In a distributed system with , We
might replicate some or all servers

 But if you give a mouse some replicated servers

« She’s going to want a way to keep them all
consistent in a fault tolerant way

Today’s outline

« Safety and liveness

* Two-phase commit

* Two-phase commit: Failure scenarios

Reasoning about fault tolerance

 This is hard!
« How do we design fault-tolerant systems”?
« How do we know if we're successful?

« Often use “properties” that hold true for every
possible execution

* \We focus on and properties

Safety

 “Bad things” don’t happen
* No stopped or deadlocked states
* No error states

* Examples

* Mutual exclusion: two processes can’t be in a critical
section at the same time

* Bounded overtaking: if process 1 wants to enter a
critical section, process 2 can enter at most once
before process 1

Liveness

 “Good things” happen

 ...eventually

* Examples

 Starvation freedom: process 1 can eventually enter a
critical section as long as process 2 terminates

« Eventual consistency: if a value in an application
doesn’t change, two servers will eventually agree on
its value

Often a tradeoff

» “Good” and “bad” are application-specific

« Safety is very important in banking transactions
* May take some time to confirm a transaction

* Liveness is very important in social networking
sites
e See updates right away

Today’s outline

 Two-phase commit

* Two-phase commit: Failure scenarios

Motivation: Sending money

send money (A, B, amount) {
Begin Transaction();

1f (A.balance - amount >= 0) {
A.balance = A.balance - amount;
B.balance = B.balance + amount;
Commit Transaction();

} else {

Abort Transaction();

Single-server: ACID

. all parts of the transaction execute or
none (A's balance decreases and B’s increases)

: the transaction only commits if it
preserves invariants (A’'s balance never goes
below 0)

: the transaction executes as if it
executed by itself (even if C is accessing A’s
account, that will not interfere with this
transaction)

. the transaction’s effects are not lost
after it executes (updates to balances will remain
forever)

Distributed transactions?

 Partition databases across multiple machines for
scalability (A and B might not share a server)

A transaction might touch more than one
partition

* How do we guarantee that all of the partitions
commit the transactions or none commit the

transactions”?

Two-phase commit (2PC)

» Goal: General purpose, distributed agreement
on some action, with failures

* Different entities play different roles in the action

* Running example: Transfer money from A to B
* Debit at A, credit at B, tell the client “okay”
* Require banks to do it, or
» Require that one bank never act alone

* This is an all-or-nothing atomic commit protocol

Straw-man protocol

Client C

go! ‘

Transaction
Coordinator
TC —

Bank A

Y. Cheng

.7 —

1. C > TC: “go!”

GMU CS§475 Fall 2021

Straw-man protocol

1. C > TC: “go!”
Client C ﬁ

¢

go! ” 2. TC > A: “debit $20/”
Transaction TC 9 B: “Credit $20’”

_(I?Coordinator UJJJJJJ m TC 9 C: “O ka yn
debit $20! credit $20!

A, B perform actions on receipt
IDin i of messages

Bank A B

Reasoning about the straw-man protocol

What could possibly go wrong?

1.

o &~ 0w

Not enough money in A's bank account?
B’s bank account no longer exists”

A or B crashes before receiving message”
The best-effort network to B fails?

TC crashes after it sends debit to A but before
sending credit to B?

Safety vs. liveness

* Note that TC, A, and B each have a notion of
committing

* \We want two properties:

1. Safety
 |f one commits, N0 one aborts
e |f one aborts, no one commits

2. Liveness
e |f no failures and A and B can commit, action commits
e |f failures, reach a conclusion ASAP

Y. Cheng GMU CS§475 Fall 2021 21

A correct atomic commit protocol

Client C

go!

Transaction
Coordinator i i
TC ——

Y. Cheng

1. C 9 TC “gO!H

GMU CS§475 Fall 2021

22

A correct atomic commit protocol

1. C > TC: “go!”
Client C
2. TC 2 A, B: “prepare!”

Transactlon

Bank A B

A correct atomic commit protocol

1. C > TC: “go!”
Client C E

2. TC - A, B: “prepare!”

Transaction

-

Goordinator i i 3. A,B - TC: Yes”or ‘no”

TC e

yes! \yes!

A correct atomic commit protocol

1. C > TC: “go!”
Client C
2. TC = A, B: “prepare!”

Transaction

Coordlnator[mﬂmm\ 3. A B->TC: 3/68 or ‘I
commit!

commit!

4. TC - A, B: “‘commit!” or “abort!”
T T « TC sends commitif both say

Bank A B yes
« TC sends abortif either say no

A correct atomic commit protocol

Client C

Transaction
Coordinator i i
TC ——

Bank A B

1. C > TC: “go!”
2. TC = A, B: “prepare!”
3. A,B->TC: ‘yes’or ‘no”

4. TC = A, B: “commit!” or “abort!”

« TC sends commitif both say yes
« TC sends abortif either say no

5. TC - C: ‘okay” or ‘failed”

« A, B commit on receipt of commit
message

Reasoning about atomic commit

* \Why is this correct?
* Neither can commit unless both agreed to commit

 \What about performance?

1. Timeout: I'm up, but didn’t receive a message |
expected
Maybe other node crashed, maybe network broken

2. Reboot: Node crashed, is rebooting, must clean up

Timeouts in atomic commit

Where do hosts wait for messages”?

1. TC waits for “yes” or “no” from A and B

« TC hasn’t yet sent any commit messages, so can
safely abort after a timeout

« But this is conservative: might be network problem
« We've preserved correctness, sactrificed performance

2. A and B wait for “commit” or “abort” from TG
* If it sent a no, it can safely abort (why?)
e |f it sent a yes, can it unilaterally abort?
« Can it unilaterally commit?
« A, B could walit forever, but there is an alternative...

Server termination protocol

« Consider Server B (Server A case is symmetric) waiting
for commit or abort from TC
« Assume B voted yes (else, unilateral abort possible)

« B 2 A: “status?” A then replies back to B. Four cases:
1. (No reply from A): no decision, B waits for TC

2. Server A received commit or abort from TC: Agree with the
TC’s decision

3. Server A hasn’t voted yet or voted no: both abort
« TC can’t have decided to commit

4. Server A voted yes: both must wait for the TC

» TC decided to commit if both replies received
» TC decided to abort if it timed out

Reasoning about the server
termination protocol

 \What are the liveness and safety properties?

. If servers don’t crash, all processes will reach
the same decision

. If faillures are eventually repaired, then every
participant will eventually reach a decision

e Can resolve some timeout situations with
guaranteed correctness

 Sometimes, however, A and B must block
e Due to failure of the TC or network to the TC

« But what will happen if TC, A, or B crash and
reboot?

How to handle crash and reboot?

« Can’t back out of commit if already decided
« TC crashes just after sending “commit!”
« A or B crash just after sending “yes”

e If all nodes knew their state before crash, we
could use the termination protocoal...

« Use to record “commit!” and "yes” to
disk

Recovery protocol with non-volatile state

* |f everyone rebooted and is reachable, TC can
just check for commit record on disk and resend

action

» TC: If no commit record on disk, abort
* You didn’t send any “commit!” messages

* A, B: If no yes record on disk, abort
* You didn’t vote “yes” so TC couldn’t have committed

« A, B: If yes record on disk, execute termination
protocol
 This might block

Recap: Two-phase commit

* This recovery protocol with non-volatile logging
is called Two-Phase Commit (2PC)

« Safety: All hosts that decide reach the same
decision
 No commit unless everyone says “yes”

* Liveness: If no failures and all say “yes” then
commit
 But if failures then 2PC might block
» TC must be up to decide

» Doesn’t tolerate faults well: must wait for repair

Y. Cheng GMU CS§475 Fall 2021

Why blocking matters?

* Not surprising: failure of any process that hosts a
oartition of state results in blocking

* In the “prepare” phase participants must commit
resources needed to execute the commit

 For bank transfer, A must lock account to ensure that
balance doesn’t change after promising to debit

e |rritation: If participant B fails, A cannot allow
new operations on the account, so blocking
affects future operations on non-failed
participants...

Old example: Sending money

send money (A, B, amount) {
Begin Transaction();
if (A.balance - amount >= 0) {

A.balance = A.balance - amount;
B.balance = B.balance + amount;
Commit Transaction();

} else {

Abort_Iransaction();

Today’s outline

 Two-phase commit: Failure scenarios

Failures

* In the absence of failures, 2PC is pretty simple!

* \WWhen can interesting failures happen?
 Participant failures?
 Transaction coordinator (TC) failures”?
* Message drops”?

2PC without failures

Prepare phase Commit phase
TC
i Yos
prepare yes commit committed
P1
M
commit
P2 yes committed
— commit >
Y. Cheng

GMU CS§475 Fall 2021

38

2PC without failures

Prepare phase Abort phase
TC
i "o
prepare yes abort aborted
P1
i
abort
P2 no aborted
(T (T ot >
Y. Cheng

GMU CS§475 Fall 2021

39

What if participant fails before
sending response?

timeout

oy o / L

Y. Cheng GMU CS§475 Fall 2021 40

What if participant fails after sending
vote?

TC

T

-
committed
prepare commit
P1 \ / \\ / /commtted
[
-
commit
P2
I Q O

WAL

Y. Cheng GMU CS§475 Fall 2021 41

What if participant lost a vote?

timeout

D

abort
Decision?
yes

Y. Cheng GMU CS§475 Fall 2021

WAL

42

What if TC fails before sending prepare?

TC

T i 0 U Yes

. >
ommit
yes committed
P1 prepare
commit >
P2 \ //es committed

commit

ﬁ

Y. Cheng

GMU CS§475 Fall 2021

43

What if TC fails after sending prepare?

>
ommit
committed
prepare prepare
commit >
\ / committed
T
commi >

Y. Cheng GMU CS§475 Fall 2021 44

What if TC fails after receiving votes?

TC
ommit
yes yes committed
P1 prepare prepare
[T
commit >
yes yes
P2 committed
I
commit

Y. Cheng GMU CS§475 Fall 2021 45

What if TC fails after sending decision?

TC

Yes

WAL
>
P1 prepare\ / com\ \
I
>
commlt
DeC|S|on’?
P2 \ /
(Il
>

tlmeout

=

ﬁ

Y. Cheng GMU CS§475 Fall 2021 46

Do we need TC?

TC
o\ Yes
(L WAL
yes
P1 prepare commit
I

© O

:

Y. Cheng

Decsor/ Ynmt

timeout

GMU CS§475 Fall 2021

47

How does 2PC handle fail-stop?

TC Crash: fail-stop
yes
P1 prepare commit
[T

:

2777 |
yes
P2 Crash: fail-stop

Is this message sent & received at all?

Y. Cheng

GMU CS§475 Fall 2021

48

