Time & Clocks

CS 475: Concurrent & Distributed Systems (Fall 2021)
Lecture ©

Yue Cheng

Some material taken/derived from:

* Princeton COS-418 materials created by Michael Freedman and Wyatt Lloyd.

* MIT 6.824 by Robert Morris, Frans Kaashoek, and Nickolai Zeldovich.

Licensed for use under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Today’s outline

* The need for time synchronization
» “Wall clock time” synchronization
 Logical Time: Lamport Clocks

» \Vector clocks

A distributed edit-compile workflow

Computer on 2144 2145 2146 2147 <4— Time according
which compiler ¢\ | | | to local clock
runs output.o created

Computer on 2142 2143 2144 2145 <«— Time according
which editor | ® | | to local clock
runs

output.c created Physical time >

Y. Cheng GMU CS§475 Fall 2021 3

A distributed edit-compile workflow

Computer on 2144 2145 2146 2147 <4— Time according
which compiler ¢\ | | | to local clock
runs output.o created

Computer on 2142 2143 2144 2145 <«— Time according
which editor | ® | | to local clock
runs

output.c created Physical time >

e 2143 < 2144 = make doesn’t call compiler

Y. Cheng GMU CS§475 Fall 2021 4

A distributed edit-compile workflow

Computer on 2144 2145 2146 2147 <4— Time according
which compiler ¢\ | | % to local clock
runs output.o created

Computer on 2142 2143 2144 2145 <«— Time according
which editor | ® | | to local clock
runs

output.c created Physical time >

e 2143 < 2144 = make doesn’t call compiler

Y. Cheng GMU CS§475 Fall 2021 5

What makes time synchronization hard?

1. Quartz oscillator sensitive to temperature, age,
vibration, radiation

* Accuracy ~one part per million
* (one second of clock drift over 12 days)

2. Theinternet is:
« Asynchronous: arbitrary message delays
 Best-effort: messages don’t always arrive

Today’s outline

 “Wall clock time” synchronization
» Cristian’s algorithm

 Logical Time: Lamport Clocks

» \Vector clocks

Just use Coordinated Universal Time?

« UTC is broadcast from radio stations on land
and satellite (e.g., the Global Positioning System)

« Computers with receivers can synchronize their
clocks with these timing signals

* Signals from land-based stations are accurate to
about 0.1-10 milliseconds

« Signals from GPS are accurate to about one
microseconad

» Why can’t we put GPS receivers on all our
computers?

Synchronization to a time server

* SUPPOSe a server with an accurate clock (e.g.,
GPS-receiver)

» Could simply issue an RPC to obtain the time:

Client ﬁ o Server
o . (L) T
1 7”"90fday?
2:50 PM

e

Time |

Synchronization to a time server

* SUPPOSe a server with an accurate clock (e.g.,
GPS-receiver)

» Could simply issue an RPC to obtain the time:

Client ﬁ o Server
o . (L) T
1 7”"90fday?
2:50 PM

e

Time |

» But this doesn’t account for network latency
* Message delays will have outdated server’s answer

Cristian’s algorithm: Outline

. Client Server
1. Client sends a request packet,

timestamped with its local clock T, i

Time |

Y. Cheng GMU CS§475 Fall 2021 I

Cristian’s algorithm: Outline

Client Server

.
2. Server timestamps its receipt of 11 [F—oest @
the request T, with its local clock \

Time |

Cristian’s algorithm: Outline

Client Server

X I

T, rGQUest.. @
3. Server sends a response packet

with its local clock T; and T, K

Time |

Y. Cheng GMU CS§475 Fall 2021

Cristian’s algorithm: Outline

Client

Ts

T4e:;;;;;iiiii’
4, Client locally timestamps its
receipt of the server’s response T,

Time |

Cristian’s algorithm: Outline

Client Server

- I

T, rGQUest.. @

4, Client locally timestamps its
receipt of the server’s response T,

| How can the client use these timestamps to synchronize
| | Its local clock to the server’s local clock?

Cristian’s algorithm: Offset sample
calculation
Client Server

* Client samples round trp time § =

5req + 5resp (T4) (TS o T2)

Cristian’s algorithm: Offset sample
calculation

Client Server

* Client samples round trp time § =

5req + 5resp (T4) (TS o T2)

Cristian’s algorithm: Offset sample
calculation

__ Client Server

' Goal: Client sets clock < T3 + Sresp =

* Client samples rounol trp time § =

5req + 5resp (T4) (TS o T2)

» But client knows &, Not &eqp

Y. Cheng GMU CS§475 Fall 2021 18

Cristian’s algorithm: Offset sample
calculation

__ Client Server

' Goal: Client sets clock < T3 + Gresp 20

Client samples round trp time § =

5req + 5resp (T4) (TS o T2)

But client knows 4, Not 0,4,

Cristian’s algorithm: Offset sample

calculation

! Goal: Client sets clock < T3 + §esp

* Client samples round trp time § =

5req + 5resp (T4) (TS o T2)

o But client knows &, NOt g,

| Client sets clock € T+ 125 |

Client Server

Clock synchronization: Takeaway points

 Clocks on different systems will always behave
differently

« Disagreement between machines can result in undesirable
behavior

Clock synchronization: Takeaway points

 Clocks on different systems will always behave
differently

« Disagreement between machines can result in undesirable
behavior

 Clock synchronization algorithms
» Rely on timestamps to estimate network delays
 100s us—ms accuracy
» Clocks never exactly synchronized

Clock synchronization: Takeaway points

 Clocks on different systems will always behave
differently

« Disagreement between machines can result in undesirable
behavior

 Clock synchronization algorithms
» Rely on timestamps to estimate network delays
 100s us—ms accuracy
» Clocks never exactly synchronized

« Often inadequate for distributed systems
« Often need to reason about the order of events
« Might need precision on the order of ns

Today’s outline

* Logical Time: Lamport Clocks

» \Vector clocks

Motivation: Multi-site database
replication

* A New York-based bank wants to make its transaction
ledger database resilient to whole-site failures

Y. Cheng GMU CS§475 Fall 2021

25

Motivation: Multi-site database
replication

* A New York-based bank wants to make its transaction
ledger database resilient to whole-site failures

* Replicate the database, keep one copy in SF, one in
N\;()) o Py

Y. Cheng GMU CS§475 Fall 2021 26

The consequences of concurrent updates

o IF\%he(|cc>§icate the database, keep one copy in SF, one in

» Client sends reads to the nearest copy
« Client sends update to both copies

—————ﬁ—.— ——————————————————————————————————————

o=t Inconsistent replicas! i
i Updates should have been performed |

1000

51,00 IN the same order at each copy 5010
L — o e |

$1,100 $1.110

“Pay 1%
interest”

|dea: Logical clocks

« Landmark 1978 paper by Leslie Lamport

Y. Cheng GMU CS475 Fall 2021 28

|dea: Logical clocks

o Landmark 1978 paper by Leslie Lamport

* Insights: only the events themselves matter

Idea: Disregard the precise clock time

Instead, capture just a “happens before” relationship E
between a pair of events |

Y. Cheng GMU CS§475 Fall 2021 29

Defining “happens-before” (=)

« Consider three processes: P1, P2, and P3

» Notation: Event a happens before event b (a 2 b)

P1 P2

P3

Physical time |

Y. Cheng GMU CS§475 Fall 2021 30

Defining “happens-before” (=)

« Can observe event order at a single process

P1 P2

P3

Physical time |

Y. Cheng GMU CS§475 Fall 2021 31

Defining “happens-before” (=)

1.

Y. Cheng

If same process and a occurs before b, thena 2> b

P1

P2

P3

GMU CS§475 Fall 2021

Physical time |

32

Defining “happens-before” (=)

2. (Can observe ordering when processes communicate

Y. Cheng

P1

P2

P3

GMU CS§475 Fall 2021

Physical time |

33

Defining “happens-before” (=)

2.

Y. Cheng

If ¢ is a message receipt of b, thenb = ¢

P1

P2

P3

GMU CS§475 Fall 2021

Physical time |

34

Defining “happens-before” (=)

3. Can observe ordering transitively

Y. Cheng

P1

P2

P3

GMU CS§475 Fall 2021

Physical time |

35

Defining “happens-before” (=)

3.

Y. Cheng

fa=>bandb=>c¢,thena=>c

P1

P2

P3

GMU CS§475 Fall 2021

Physical time |

36

Defining “happens-before” (=)

1.

Y. Cheng

Not all events are related by =

P1

P2

P3

GMU CS§475 Fall 2021

Physical time |

37

Defining “happens-before” (=)

1. Not all events are related by =

2. a, dnot related by = so concurrent, written as a || d

Y. Cheng

P1

P2

P3

GMU CS§475 Fall 2021

Physical time |

38

Lamport clocks: Objective

* We seek a clock time C(a) for every event a

Plan: Tag events with clock times; use clock
times to make distributed system correct

» Clock condition: If a = b, then C(a) < C(b)

The Lamport Clock algorithm

» Each process P; maintains a local clock C;

1. Before executing an event, C, &« C, + 1:

P1 P2
C;=0 C,=0 P3

d

b
Physical time |

Y. Cheng GMU CS§475 Fall 2021 40

The Lamport Clock algorithm

1. Before executinganeventa, C;, < C; + 1:

« Set event time C(a) € C,

Pl P2
C,=1 C,=0 P3
C;=0

Physical time |

Y. Cheng GMU CS§475 Fall 2021 41

The Lamport Clock algorithm

1. Before executinganeventb, C, < C, + 1:

« Set event time C(b) € C,

P1 P2
=2 (|- C,=0 P3
C(a) =1 C,=0

Physical time |

Y. Cheng GMU CS§475 Fall 2021 42

The Lamport Clock algorithm

1.

2. Send the local clock in the message m

Y. Cheng

Before executing an event b, C; € C; + 1

P1

P2

C2=O

C1=2

P3

GMU CS§475 Fall 2021

Physical time |

43

The Lamport Clock algorithm

3. On process P, receiving a message m:

 Set C; and receive event time C(c) <1 + max{ C;, C(m) }

Y. Cheng

P1

C1=2

P2

C2=3

P3

C3=O

GMU CS§475 Fall 2021

Physical time |

44

Lamport Timestamps: Ordering all events

* Break ties by appending the process number to
each event:

1. Process P; timestamps event e with Cye).

2. C(a).i < C(b)j when:
* C(a) < C(b), or C(a)=C(b)and i <

* Now, for any two events a and b, C(a) < C(b) or
C(b) < C(a)

* This is called a total ordering of events

Order all these events

P1

C1 =O

a O

b O

Y. Cheng

P2 P3
C=0 Cs=0
d
O f
@
O €
g¢C

GMU CS§475 Fall 2021

P4

C4=0

Physical time |

46

Totally-Ordered Multicast

 Client sends update to one replica site j
* Replica assigns it Lamport timestamp G; .

Totally-Ordered Multicast

 Client sends update to one replica site j
* Replica assigns it Lamport timestamp G; .

» Key idea: Place events into a sorted local queue
« Sorted by increasing Lamport timestamps

Example: P1’s AR A < Timestamps
local queue: E S

Totally-Ordered Multicast (A!most correc)

1. On receiving an update from client, broadcast to
others (including yourself)

2. On receiving an update from replica:
a) Add it to your local queue

b) Broadcast an acknowledgement message to every
replica (including yourself?

3. On receiving an acknowledgement:
« Mark corresponding update acknowledged in your queue

4, Remove and process updates everyone has
ack’ed from head of queue

Y. Cheng GMU CS§475 Fall 2021 49

Totally-Ordered Multicast (A!most correc)

« P1 queues $, P2 queues

* P1 queues and ack’s
* P1 marks % fully ack’ed

. P2 marks % fully ack’ed

(Ack’s to self not shown here)

Y. Cheng GMU CS§475 Fall 2021 50

Totally-Ordered Multicast (Comectversion)

1. On receiving an update from client, broadcast to
others (including yourself)

2. On receiving or processing an update:
a) Add it to your local queue

b) Broadcast an acknowledgement message to every
replica (including yourself) only from head of queué

. J

3. On receiving an acknowledgement:
« Mark corresponding update acknowledged in your queue

4. Remove and process updates everyone has
ack’ed from head of queue

Y. Cheng GMU CS§475 Fall 2021 51

Totally-Ordered Multicast (Comectversion)

(Ack’s to self not shown here)

Y. Cheng GMU CS§475 Fall 2021

52

So, are we done?

» Does totally-ordered multicast solve the problem
of multi-site replication in general?

So, are we done?

» Does totally-ordered multicast solve the problem
of multi-site replication in general?

* Not by a long shot!

1. Our protocol assumed:
* No node failures

* NO message loss

* NO message corruption

So, are we done?

» Does totally-ordered multicast solve the problem
of multi-site replication in general?

* Not by a long shot!

1. Our protocol assumed:
* No node failures

* NO message loss

* NO message corruption

2. All-to-all communication does not scale

So, are we done?

» Does totally-ordered multicast solve the problem
of multi-site replication in general?

* Not by a long shot!

1. Our protocol assumed:
* No node failures

* NO message loss

* NO message corruption

2. All-to-all communication does not scale

3. Walts forever for message delays
(performance?)

Lamport Clocks: Takeaway points

« Can totally-order events in a distributed system:
that’s useful!

* \We saw an application of Lamport clocks for totally-
ordered multicast

Lamport Clocks: Takeaway points

« Can totally-order events in a distributed system:
that’s useful!

* \We saw an application of Lamport clocks for totally-
ordered multicast

« But: while by construction,
a =2 b implies C(a) < C(b),

* The converse is not necessarily true:
« C(a) < C(b) does not imply a = b (possibly, a || b)

Lamport Clocks: Takeaway points

« Can totally-order events in a distributed system:
that’s useful!

* \We saw an application of Lamport clocks for totally-
ordered multicast

« But: while by construction,
a =2 b implies C(a) < C(b),

* The converse is not necessarily true:
« C(a) < C(b) does not imply a = b (possibly, a || b)

-Can t use Lamport timestamps to infer causal
-relatlonshlps between events

Today’s outline

* \VVector clocks

Lamport Clocks and causality

» Lamport clock timestamps do not capture
causality

» Given two timestamps C(a) and C(z), want to
know whether there’s a chain of events linking
them:

a22b=2>.2y>zZ

Vector clock: Introduction

* One integer can’t order events in more than one
process

* S0, a Vector Clock (VO) is a vector of integers,
one entry for each process in the entire
distributed system

 Label event e with VC(e) = [c4, Cs ..., C]

e Each entry ¢, is a count of events in process k that causally
precede e

Vector clock: Update rules
* |nitially, all vectors are [0, O, ..., O]

* Two update rules:

1. For each local event on process I, increment
local entry ¢,

Vector clock: Update rules

* |nitially, all vectors are [0, O, ..., O]
* Two update rules:

1. For each local event on process I, increment
local entry ¢,

2. If process j receives message with vector
d4, do, ..., d]:
« Set each local entry ¢, = max{c,, d.}
* Increment local entry ¢;

Vector clock: Example

 All processes’ VCs start at [0, O, O] P P

P3

eo

Physical time |

Y. Cheng GMU CS§475 Fall 2021

65

Vector clock: Example

 All processes’ VCs start at [0, O, O] P P

* Applying local update rule b <\0
C

P3

eo

Physical time |

Y. Cheng GMU CS§475 Fall 2021

66

Vector clock: Example

 All processes’ VCs start at [0, O, O] P P
aJ)[L0,0]
* Applying local update rule b <\0
C

Y. Cheng GMU CS§475 Fall 2021

P3

eo

Physical time |

67

Vector clock: Example

* All processes’ VCs start at [0, 0, 0] [py po| [p3
aJ)[L0,0]
3 2,0,0] eo
* Applying local update rule O\(,
C
dc
>\f)0
v v v

Physical time |

Y. Cheng GMU CS§475 Fall 2021 68

Vector clock: Example

 All processes’ VCs start at [0, O, O] P P P3
aJ)[LO 0]
. 2,0,0] eo
* Applying local update rule 0\0
C
d¢
.)\o
* Applying message rule f
* Local vector clock piggybacks
on inter-process messages v v v

Physical time |

Y. Cheng GMU CS§475 Fall 2021 69

Vector clock: Example

 All processes’ VCs start at [0, O, O]

* Applying local update rule

* Applying message rule
* Local vector clock piggybacks
on inter-process messages

Y. Cheng GMU CS§475 Fall 2021

P1| |P2

o)
fe,on y[2,1,0]
C

\ 4 \ 4

P3

e

dc\
)

f

Physical time |

@)

v

70

Vector clock: Example

 All processes’ VCs start at [0, O, O] P P P3
aJ)[L0,0]
. 2,0,0] eo
* Applying local update rule O%O[z,m]
C
d [2,2,0]
(
|)\o
* Applying message rule f
* Local vector clock piggybacks
on inter-process messages v v v

Physical time |

Y. Cheng GMU CS§475 Fall 2021 71

Vector clock: Example

 All processes’ VCs start at [0, O, O] P

P2 P3
a A[1.0,0]
b J)[Z,O,O] e 0[0,0,1]
* Applying local update rule O%O[z,m]
C
d [2,2,0]
(
)%0[2,2,2]
* Applying message rule f
* Local vector clock piggybacks |
on inter-process messages v v

Physical time |

Y. Cheng GMU CS§475 Fall 2021 72

Comparing vector timestamps

* Rule for comparing vector timestamps:
* V(a) = V(b) when a, = b, for all k

* V(a) < V(b) when a, < b, for all k and V(a) = V(b)

« Concurrency:

* V(@) || V(b) if & < b;and a; > b, some |, |

Vector clocks capture causality

* V(w) < V(z) then there is a chain of events linked by
Happens-Before (=) between a and z

P1 P2 P3
[1,0,0] w
[2,0,0] X
2,1,0]
V!
z0[2,2,0]

Vector clocks capture causality

* V(w) < V(z) then there is a chain of events linked by
Happens-Before (=) between a and z

« V(2a) || V(w) then there is no such chain of events between
aand w

P1 P2 P3
[1,0,0] w
20,0 0 [0,0,1]
t A X
2,1,0]
VIt
Z0[2,2,0]

Comparing vector timestamps

* Rule for comparing vector timestamps:

* V(a) = V(b) when a, = b, for all k

* They are the same event

* V(@) < V(b) when a, < b, for all k and V(a) = V(b)
ca=2b

« Concurrency:

* V(@) || V(b) if & < b;and a; > b, some |, |
« allb

Two events a, z

Lamport clocks: C(a) < C(z)
Conclusion: z -/-> a, i.e., eithera 2> zora | z

Vector clocks: V(a) < V(2)
Conclusion: a =2 z

Two events a, z

Lamport clocks: C(a) < C(z)
Conclusion: z -/-> a, i.e., eithera 2> zora | z

Vector clocks: V(a) < V(2)
Conclusion: a =2 z

-Vector clock timestamps precisely capture
-happens -before relation (potential causality)

