
MapReduce

Some material taken/derived from:
• Princeton COS-418 materials created by Michael Freedman and Wyatt Lloyd.
• MIT 6.824 by Robert Morris, Frans Kaashoek, and Nickolai Zeldovich.
Licensed for use under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

CS 475: Concurrent & Distributed Systems (Fall 2021)
Lecture 4

Yue Cheng

Y. Cheng GMU CS475 Fall 2021 3

Applications
Web
apps

Data
processing

Data
storage

Emerging
apps?

Resource management
Compute
resources

Memory
resources

Storage
resources

Network
resources

Datacenter infrastructure

Y. Cheng GMU CS475 Fall 2021 4

Applications
Web
apps

Data
processing

Data
storage

Emerging
apps?

Resource management
Compute
resources

Memory
resources

Storage
resources

Network
resources

Datacenter infrastructure

Question: How to program these many computers?

Review: Shared memory

Y. Cheng GMU CS475 Fall 2021 5

• Shared memory: multiple
processes to share data via
memory

• Applications must locate and
and map shared memory
regions to exchange data

Client

send(msg)

Client

recv(msg)

Shared
Memory

Review:
Shared memory vs. Message passing

Y. Cheng GMU CS475 Fall 2021 6

• Message passing: exchange
data explicitly via IPC

• Application developers define
protocol and exchanging
format, number of participants,
and each exchange

Client

send(msg)

MSG

Client

recv(msg)

MSG

MSG IPC

• Shared memory: multiple
processes to share data via
memory

• Applications must locate and
and map shared memory
regions to exchange data

Client

send(msg)

Client

recv(msg)

Shared
Memory

Review:
Shared memory vs. Message passing
• Easy to program; just

like a single multi-
threaded machines

• Hard to write high
perf. apps:
• Cannot control which

data is local or remote
(remote mem. access
much slower)

• Hard to mask failures

Y. Cheng GMU CS475 Fall 2021 7

• Message passing: can
write very high perf.
apps

• Hard to write apps:
• Need to manually

decompose the app,
and move data

• Need to manually
handle failures

Shared memory: Pthread

• A POSIX standard (IEEE 1003.1c) API for thread
creation and synchronization

• API specifies behavior of the thread library,
implementation is up to development of the
library

• Common in UNIX (e.g., Linux) OSes

Y. Cheng GMU CS475 Fall 2021 8

Shared memory: Pthread

Y. Cheng GMU CS475 Fall 2021 9

void *myThreadFun(void *vargp) {
sleep(1);
printf(“Hello world\n”);
return NULL;

}

int main() {
pthread_t thread_id_1, thread_id_2;
pthread_create(&thread_id_1, NULL, myThreadFun, NULL);
pthread_create(&thread_id_2, NULL, myThreadFun, NULL);
pthread_join(thread_id_1, NULL);
pthread_join(thread_id_2, NULL);
exit(0);

}

Message passing: MPI

• MPI – Message Passing Interface
• Library standard defined by a committee of vendors,

implementers, and parallel programmers
• Used to create parallel programs based on message

passing

• Portable: one standard, many implementations
• Available on almost all parallel machines in C and

Fortran
• De facto standard platform for the HPC community

Y. Cheng GMU CS475 Fall 2021 10

Message passing: MPI

Y. Cheng GMU CS475 Fall 2021 11

int main(int argc, char **argv) {
MPI_Init(NULL, NULL);

// Get the number of processes
int world_size;
MPI_Comm_size(MPI_COMM_WORLD, &world_size);

// Get the rank of the process
int world_rank;
MPI_Comm_rank(MPI_COMM_WORLD, *world_rank);

// Print off a hello world message
printf(“Hello world from rank %d out of %d processors\n”,

world_rank, workld_size);

// Finalize the MPI environment
MPI_Finalize();

}

Message passing: MPI

Y. Cheng GMU CS475 Fall 2021 12

int main(int argc, char **argv) {
MPI_Init(NULL, NULL);

// Get the number of processes
int world_size;
MPI_Comm_size(MPI_COMM_WORLD, &world_size);

// Get the rank of the process
int world_rank;
MPI_Comm_rank(MPI_COMM_WORLD, *world_rank);

// Print off a hello world message
printf(“Hello world from rank %d out of %d processors\n”,

world_rank, workld_size);

// Finalize the MPI environment
MPI_Finalize();

}

mpirun –n 4 –f host_file ./mpi_hello_world

MapReduce

13Y. Cheng GMU CS475 Fall 2021

The big picture (motivation)
• Datasets are too big to process using a single

computer

Y. Cheng GMU CS475 Fall 2021 14

The big picture (motivation)
• Datasets are too big to process using a single

computer

• Good parallel processing engines are rare (back
then in the late 90s)

Y. Cheng GMU CS475 Fall 2021 15

The big picture (motivation)
• Datasets are too big to process using a single

computer

• Good parallel processing engines are rare (back
then in the late 90s)

• Want a parallel processing framework that:
• is general (works for many problems)
• is easy to use (no locks, no need to explicitly handle

communication, no race conditions)
• can automatically parallelize tasks
• can automatically handle machine failures

Y. Cheng GMU CS475 Fall 2021 16

Context (Google circa 2000)

• Starting to deal with massive datasets
• But also addicted to cheap, unreliable hardware
• Young company, expensive hardware not practical

• Only a few expert programmers can write
distributed programs to process them
• Scale so large jobs can complete before failures

Y. Cheng GMU CS475 Fall 2021 17

Context (Google circa 2000)
• Starting to deal with massive datasets
• But also addicted to cheap, unreliable hardware

• Young company, expensive hardware not practical
• Only a few expert programmers can write distributed

programs to process them
• Scale so large jobs can complete before failures

• Key question: how can every Google engineer be
imbued with the ability to write parallel, scalable,
distributed, fault-tolerant code?
• Solution: abstract out the redundant parts
• Restriction: relies on job semantics, so restricts

which problems it works for

Y. Cheng GMU CS475 Fall 2021 18

Application: Word Count

Y. Cheng GMU CS475 Fall 2021 19

cat data.txt
| tr –s ‘[[:punct:][:space:]]’ ‘\n’
| sort | uniq -c

SELECT count(word), word FROM data
GROUP BY word

Deal with multiple files?

1. Compute word counts from individual files

Y. Cheng GMU CS475 Fall 2021 20

Deal with multiple files?

1. Compute word counts from individual files

2. Then merge intermediate output

Y. Cheng GMU CS475 Fall 2021 21

Deal with multiple files?

1. Compute word counts from individual files

2. Then merge intermediate output

3. Compute word count on merged outputs

Y. Cheng GMU CS475 Fall 2021 22

What if the data is too big to fit in one
computer?
1. In parallel, send to worker:
• Compute word counts from individual files
• Collect results, wait until all finished

Y. Cheng GMU CS475 Fall 2021 23

What if the data is too big to fit in one
computer?
1. In parallel, send to worker:
• Compute word counts from individual files
• Collect results, wait until all finished

2. Then merge intermediate output

Y. Cheng GMU CS475 Fall 2021 24

What if the data is too big to fit in one
computer?
1. In parallel, send to worker:
• Compute word counts from individual files
• Collect results, wait until all finished

2. Then merge intermediate output

3. Compute word count on merged intermediates

Y. Cheng GMU CS475 Fall 2021 25

MapReduce: Programming interface

• map(k1, v1) à list(k2, v2)
• Apply function to (k1, v1) pair and produce set of

intermediate pairs (k2, v2)

• reduce(k2, list(v2)) à list(k3, v3)
• Apply aggregation (reduce) function to values
• Output results

Y. Cheng GMU CS475 Fall 2021 26

MapReduce: Word Count

Y. Cheng GMU CS475 Fall 2021 27

map(key, value):
for each word w in value:

EmitIntermediate(w, “1”);

reduce(key, values):
int result = 0;
for each v in values:

results += ParseInt(v);
Emit(AsString(result));

Word Count execution

Y. Cheng GMU CS475 Fall 2021 28

the quick
brown fox

the fox
ate the
mouse

how now
brown
cow

Input Map

Map

Map

Map

Reduce

Reduce

OutputReduce

Word Count execution

Y. Cheng GMU CS475 Fall 2021 29

the quick
brown fox

the fox
ate the
mouse

how now
brown
cow

Input Map

Map

Map

Map

Reduce

Reduce

OutputReduceShuffle
& Sort

quick, 1

ate, 1
mouse, 1

cow, 1

the, 1
brown, 1
fox, 1
how, 1
now, 1
brown, 1

fox, 1

the, 1

the, 1

Word Count execution

Y. Cheng GMU CS475 Fall 2021 30

the quick
brown fox

the fox
ate the
mouse

how now
brown
cow

Input Map

Map

Map

Map

Reduce

Reduce

OutputReduceShuffle
& Sort

the, 1
brown, 1
fox, 1
how, 1
now, 1
brown, 1
the, 1 fox, 1

the, 1

quick, 1

ate, 1
mouse, 1

cow, 1

brown, 2
fox, 2
how, 1
now, 1
the, 3

ate, 1
cow, 1
mouse, 1
quick, 1

MapReduce data flows

Y. Cheng GMU CS475 Fall 2021 31

MapReduce processes
• Map workers write intermediate output

to local disk, separated by partitioning.
Once completed, tell master node

• Reduce worker told of location of map
task outputs, pulls their partition’s data
from each mapper, execute function
across data

• Note:
• “All-to-all” shuffle b/w mappers and

reducers
• Written to disk (“materialized”) b/w each

state
Y. Cheng GMU CS475 Fall 2021 32

Map

Map

Map

Map

Reduce

Reduce

Reduce
Shuffle
& Sort

Apache Hadoop

• An open-source implementation of Google’s
MapReduce framework
• Hadoop MapReduce atop Hadoop Distributed File

System (HDFS)

Y. Cheng GMU CS475 Fall 2021 33

Y. Cheng GMU CS475 Fall 2021 34

