
MapReduce
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Question: How to program these many computers?



Review: Shared memory
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• Shared memory: multiple 
processes to share data via 
memory

• Applications must locate and 
and map shared memory 
regions to exchange data
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Review: 
Shared memory vs. Message passing
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• Message passing: exchange 
data explicitly via IPC

• Application developers define 
protocol and exchanging 
format, number of participants, 
and each exchange  
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Review: 
Shared memory vs. Message passing
• Easy to program; just 

like a single multi-
threaded machines

• Hard to write high 
perf. apps:
• Cannot control which 

data is local or remote 
(remote mem. access 
much slower)

• Hard to mask failures
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• Message passing: can 
write very high perf. 
apps

• Hard to write apps:
• Need to manually 

decompose the app, 
and move data

• Need to manually 
handle failures



Shared memory: Pthread

• A POSIX standard (IEEE 1003.1c) API for thread 
creation and synchronization

• API specifies behavior of the thread library, 
implementation is up to development of the 
library

• Common in UNIX (e.g., Linux) OSes
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Shared memory: Pthread
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void *myThreadFun(void *vargp) {
sleep(1);
printf(“Hello world\n”);
return NULL;

}

int main() {
pthread_t thread_id_1, thread_id_2;
pthread_create(&thread_id_1, NULL, myThreadFun, NULL);
pthread_create(&thread_id_2, NULL, myThreadFun, NULL);
pthread_join(thread_id_1, NULL);
pthread_join(thread_id_2, NULL);
exit(0);

}



Message passing: MPI

• MPI – Message Passing Interface
• Library standard defined by a committee of vendors, 

implementers, and parallel programmers 
• Used to create parallel programs based on message 

passing

• Portable: one standard, many implementations
• Available on almost all parallel machines in C and 

Fortran
• De facto standard platform for the HPC community
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Message passing: MPI
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int main(int argc, char **argv) {
MPI_Init(NULL, NULL);

// Get the number of processes
int world_size;
MPI_Comm_size(MPI_COMM_WORLD, &world_size);

// Get the rank of the process
int world_rank;
MPI_Comm_rank(MPI_COMM_WORLD, *world_rank);

// Print off a hello world message
printf(“Hello world from rank %d out of %d processors\n”,

world_rank, workld_size);

// Finalize the MPI environment
MPI_Finalize();

}



Message passing: MPI
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int main(int argc, char **argv) {
MPI_Init(NULL, NULL);

// Get the number of processes
int world_size;
MPI_Comm_size(MPI_COMM_WORLD, &world_size);

// Get the rank of the process
int world_rank;
MPI_Comm_rank(MPI_COMM_WORLD, *world_rank);

// Print off a hello world message
printf(“Hello world from rank %d out of %d processors\n”,

world_rank, workld_size);

// Finalize the MPI environment
MPI_Finalize();

}

mpirun –n 4 –f host_file ./mpi_hello_world



MapReduce
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The big picture (motivation)
• Datasets are too big to process using a single 

computer
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The big picture (motivation)
• Datasets are too big to process using a single 

computer

• Good parallel processing engines are rare (back 
then in the late 90s)

Y. Cheng GMU CS475 Fall 2021 15



The big picture (motivation)
• Datasets are too big to process using a single 

computer

• Good parallel processing engines are rare (back 
then in the late 90s)

• Want a parallel processing framework that:
• is general (works for many problems)
• is easy to use (no locks, no need to explicitly handle 

communication, no race conditions)
• can automatically parallelize tasks
• can automatically handle machine failures
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Context (Google circa 2000)

• Starting to deal with massive datasets
• But also addicted to cheap, unreliable hardware
• Young company, expensive hardware not practical

• Only a few expert programmers can write 
distributed programs to process them
• Scale so large jobs can complete before failures
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Context (Google circa 2000)
• Starting to deal with massive datasets
• But also addicted to cheap, unreliable hardware

• Young company, expensive hardware not practical
• Only a few expert programmers can write distributed 

programs to process them
• Scale so large jobs can complete before failures

• Key question: how can every Google engineer be 
imbued with the ability to write parallel, scalable, 
distributed, fault-tolerant code?
• Solution: abstract out the redundant parts
• Restriction: relies on job semantics, so restricts 

which problems it works for
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Application: Word Count
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cat data.txt
| tr –s ‘[[:punct:][:space:]]’ ‘\n’
| sort | uniq -c

SELECT count(word), word FROM data
GROUP BY word



Deal with multiple files?

1. Compute word counts from individual files
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Deal with multiple files?

1. Compute word counts from individual files

2. Then merge intermediate output
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Deal with multiple files?

1. Compute word counts from individual files

2. Then merge intermediate output

3. Compute word count on merged outputs
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What if the data is too big to fit in one 
computer?
1. In parallel, send to worker:
• Compute word counts from individual files
• Collect results, wait until all finished
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What if the data is too big to fit in one 
computer?
1. In parallel, send to worker:
• Compute word counts from individual files
• Collect results, wait until all finished

2. Then merge intermediate output

3. Compute word count on merged intermediates
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MapReduce: Programming interface

• map(k1, v1) à list(k2, v2)
• Apply function to (k1, v1) pair and produce set of 

intermediate pairs (k2, v2)

• reduce(k2, list(v2)) à list(k3, v3)
• Apply aggregation (reduce) function to values
• Output results
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MapReduce: Word Count
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map(key, value):
for each word w in value:

EmitIntermediate(w, “1”);

reduce(key, values):
int result = 0;
for each v in values:

results += ParseInt(v);
Emit(AsString(result));



Word Count execution
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Word Count execution
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Word Count execution
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MapReduce data flows
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MapReduce processes
• Map workers write intermediate output 

to local disk, separated by partitioning. 
Once completed, tell master node

• Reduce worker told of location of map 
task outputs, pulls their partition’s data 
from each mapper, execute function 
across data

• Note: 
• “All-to-all” shuffle b/w mappers and 

reducers
• Written to disk (“materialized”) b/w each 

state
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Apache Hadoop 

• An open-source implementation of Google’s 
MapReduce framework
• Hadoop MapReduce atop Hadoop Distributed File 

System (HDFS)
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