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Concurrency
* Process vs. thread
* Race conditions
* Locks

» Concurrency in Go
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What is a process?



What is a process?

* Programs are code (static entity)
* Processes are running programs

« Java analogy
* class -> “program”
* object -> “process”
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What is in a process?

Process

What things change as a program runs?
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What is in a process?

Process

memory

Code
Heap

Stack

What things change as a program runs?
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What is in a process?

Process

registers memory

EAX Code
PC Heap
SP
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What things change as a program runs?

Y. Cheng GMU CS475 Fall 2021



What is in a process?

Process

registers memory

EAX Code
PC Heap
SP

BP Stack

/0
FDs

What things change as a program runs?
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Peeking inside

* Processes share code, but each has its own
“‘context”

- CPU

* |Instruction pointer (Program Counter)
» Stack pointer

* Memory
« Set of memory addresses (“address space”)
e cat /proc/<PID>/maps
* Disk
 Set of file descriptors
* cat /proc/<PID>/fdinfo/*



Threads



Why thread abstraction?



Process abstraction: Challenge 1

* Inter-process communication (IPC)



Inter-process communication

* Mechanism for processes to communicate and
to synchronize their actions

* Two models
« Communication through a shared memory region
« Communication through message passing



Communication models

process A M process A
shared
process B M process B

Lt

kernel M kernel

() (b)

Message Passing Shared Memory
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Communication through message passing

* Message system — processes communicate with
each other without resorting to shared variables

* A message-passing facility must provide at least two
operations:
* send(message, recipient)
* recelve(message, recipient)

 With indirect communication, the messages are sent
to and received from mailboxes (or, ports)

* send(A, message) /* A is a mailbox */
* receive (A, message)
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Communication through message passing

» Message passing can be either blocking
(synchronous) or non-blocking (asynchronous)

 Blocking Send: The sending process is blocked until the
message Is received by the receiving process or by the
Mmaillbox

« Non-blocking Send: The sending process resumes the
operation as soon as the message Is received by the
kernel

 Blocking Receive: The receiver blocks until the message
IS available

« Non-blocking Receive: “Receive” operation does not
block; it either returns a valid message or a default value
(null) to indicate a non-existing message



Communication through shared memory

* The memory region to be shared must be explicitly
defined

« System calls (Linux):
 shmget creates a shared memory block

* shmat maps/attaches an existing shared memory
block into a process’s address space

» shmdt removes (“unmaps”) a shared memory block
from the process’s address space

* shmctl IS a general-purpose function allowing various
Beratlons on the shared block (receive information
out the block, set the permissions, lock in memory,

)

* Problems with simultaneous access to the shared
variables

O
d



Process abstraction: Challenge 1

* Inter-process communication (IPC)
« Cumbersome programming!
« Copying overheads (inefficient communication)
* Expensive context switching (why expensive?)
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Process Abstraction: Challenge 2

* Inter-process communication (IPC)

* CPU utilization
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Disk:

(a) Not interleaved
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(a) Not interleaved
Disk:
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Disk:

(a) Not interleaved

>
................................... What if there is On|y one prgcess?
(b) Interleaved
Disk:
>
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Moore’s law: # transistors doubles every ~2 years
Moore’s Law — The number of transistors on integrated circuit chips (1971-2016) SUseUE

| ; Rk . . g 4 sy : inData
Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.
This advancement is important as other aspects of technological progress — such as processing speed or the price of electronic products — are
strongly linked to Moore's law.
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CPU trends - What Moore’s Law implies...

* The future
« Same CPU speed
* More cores (to scale-up or scale-out)

 Faster programs => concurrent execution

» Goal: Write applications that fully utilize many
CPU cores...



Goal

» Write applications that fully utilize many CPUs...



Strategy 1

 Build applications from many communication
Processes

 Like Chrome (process per tab)
« Communicate via pipe () or similar

* Pros/cons”?



Strategy 1

 Build applications from many communication
Processes
 Like Chrome (process per tab)
« Communicate via pipe () or similar

e Pros/cons”? — That we’ve talked about in previous slides
* Pros:
* Don’t need new abstractions!
 Better (fault) isolation?
« Cons:
« Cumbersome programming using IPC
« Copying overheads
* EXxpensive context switching

Y. Cheng GMU CS§475 Fall 2021
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Strategy 2

 New abstraction: the thread

Y. Cheng GMU CS§475 Fall 2021
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Introducing thread abstraction

 New abstraction: the thread

* Threads are just like processes, but threads
share the address space

Y. Cheng GMU CS§475 Fall 2021
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Thread

» A process, as defined so far, has only one thread
of execution

* |dea: Allow multiple threads of concurrently
running execution within the same process
environment, to a large degree independent of
each other

« Each thread may be executing different code at the
same time
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Process vs. Thread

* Multiple threads within a process will share
* The address space
* Open files (file descriptors)
» Other resources

* Thread

» Efficient and fast resource sharing

o Efficient utilization of many CPU cores with only one
process

* | ess context switching overheads



CPU 1

Running
thread 1

CPU 2

Running
thread 2
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CPU 1

Running
thread 1

CPU 2

Running
thread 2

Y. Cheng

GMU CS475 Fall 2021

33



CPU 1 CPU 2
Running Running
thread 1 thread 2
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CPU 1 CPU 2
Running Running
thread 1 thread 2

Each thread may be executing
different code at the same time
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Virtual mem
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CPU 1 CPU 2
Running Running
thread 1 thread 2
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Virtual mem
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CPU 1

Running
thread 1

CPU 2

Running
thread 2
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CPU 1

Running
thread 1

CPU 2

Running
thread 2

STACK 1 - STACK 2
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Virtual mem
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Thread executing different functions need different stacks

CPU 1

Running
thread 1

CPU 2

Running
thread 2

STACK 1 - STACK 2

Y. Cheng

Virtual mem
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data

User Address Space

Stack Pointer
Prgm. Counter
Registers

routinel wvarl()
var2 ()

main()
routinel ()
routine2 ()

Process ID
Group ID
User ID

Linux process

*. https://computing.linl.gov/tutorials/pthreads/

User Address Space

Thread 2 routine2() wvarl Stack Pointer
stack var2 Prgrm. Counter
var3 Registers

Thread 1 | routinel() wvarl Stack Pointer
var2 Prgrm. Counter

stack 2
Registers
main ()
text routinel ()
routine2()
Process ID
User ID
Group ID
data
heap

Threads within a Linux process
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Single- vs. Multi-threaded Process

Y. Cheng

code

data

files

registers

stack

thread —» %

code data files
registers ||| registers ||| registers
stack stack stack

single-threaded process

;

:

34_

— thread

multithreaded process
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Concurrency
e Process vs. thread
* Race conditions
* Locks

» Concurrency in Go

Y. Cheng
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Example: Bank account

Bob Bank Account Alice

100




Example: Bank account

Bob Bank Account
100
Read b =100
b=b+10
Write b = 110

Y. Cheng
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Example: Bank account

Bob Bank Account
100
Read b =100
b=b+10
Write b = 110 110
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Example: Bank account

Bob Bank Account Alice
100
Read b =100
b=b+10
Write b = 110 110
Read b =110
b=b+10
Write b =120
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Example: Bank account

Bob Bank Account Alice
100
Read b =100
b=b+10
Write b = 110 110
Read b =110
b=b+10
120 F Write b = 120
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Example: Bank account

Bob Bank Account Alice

100




Example: Bank account

Bob Bank Account Alice

100
Read b =100
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Example: Bank account

Bob Bank Account
100
Read b =100
b=b+10
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Example: Bank account

Bob Bank Account
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Read b =100
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Example: Bank account

Bob Bank Account
100
Read b =100
b=b+10
Write b = 110

Y. Cheng
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Example: Bank account

Bob Bank Account
100
Read b =100
b=b+10
Write b = 110 110
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Example: Bank account

Bob Bank Account Alice
100
Read b =100
b=b+ 10 Read b =100
Write b = 110 110
b=b+10
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Example: Bank account

Bob Bank Account
100
Read b =100
b=b+10
Write b = 110 110
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Example: Bank account

Bob Bank Account
100
Read b =100
b=b+10
Write b = 110 110
110
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Example: Bank account

Bob Bank Account
100
Read b =100
b=b+10
Write b = 110 110
110
X

Y. Cheng
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What went wrong?

« Changes to balance are not atomic



Root cause: Let’s look at a C example...



kDm\JO\U'I-bWNl—“

#include <stdio.h>
#include "common.h"

static volatile int counter = 0; Th readed cou nting example

//
// mythread()
//
// Simply adds 1 to counter repeatedly, in a loop
// No, this is not how you would add 10,000,000 to
// a counter, but it shows the problem nicely.
//
void xmythread(void *arg)
{

printf("“%s: begin\n", (char %) arg);

iinhe ald

for (i = 0; i < 1e7; i++) {

counter = counter + 1;

;rintf("%s: done\n", (charx) arg);

return NULL; $ git clone https://github.com/tddg/demo-ostep-code
} $ cd demo-ostep-code/threads-intro
// $ make
;jmanﬂ) $ ./tl <loop count>

// Just launches two threads (pthread_create) .
// and then waits for them (pthread_join) Try |t yOU rself
//
int main(int argc, char xargv[])
{
pthread_t pl, p2;
printf("main: begin (counter = %d)\n", counter);
Pthread_create(&pl, NULL, mythread, "A");
Pthread_create(&p2, NULL, mythread, "B");

// join waits for the threads to finish

Pthread_join(pl, NULL);

Pthread_join(p2, NULL);

printf("main: done with both (counter = %d)\n", counter);

return 0; 60


https://github.com/tddg/demo-ostep-code

Back-to-back runs

Run1...

main: begin (counter = 0)

A: begin

B: begin

A: done

B: done |

main: done with both (counter = 10706438)

Run?2...

main: begin (counter = 0)

A: begin

B: begin

A: done

B: done |

main: done with both (counter = 11852529)



What exactly happened??



What exactly happened??

% otool -t -v thread rc
% objdump -d thread rc

0000000
0000000
0000000

00000d52
00000d58

00000d5b  movl %eax, 0x2f8e

movl 0x2f8e %eax
addl $0x1, %eax

Y. Cheng

counter

= counter + 1;
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Concurrent access to the same memory address

OS Thread 1 Thread 2 Value
|
|
\ 4
Enter into critical section
movl 0x2f8e, %eax 50
addl  SOx1, %eax 51

Time




Concurrent access to the same memory address

OS Thread 1 Thread 2 Value
|
|
\ 4
Enter into critical section
movl 0x2f8e, %eax 50
addl  SOx1, %eax 51

Interrupt
Time | Save T1's state
Restore T2’s state

dq———=—=—=—= == ==

movl 0x2f8e, %eax
addl  SOx1, %eax
movl %eax, 0x2f8e




Concurrent access to the same memory address

OS Thread 1 Thread 2 Value

I
\/

Enter into critical section

|
I
|
I
movl 0x2f8e, %eax : 50
addl  SOx1, %eax I 51
Interrupt :
Time | Save T1's state |
Restore T2’s state ;
movl 0x2f8e, %eax 50
addl  SOx1, %eax 51
movl %eax, Ox2f8e 51




Concurrent access to the same memory address

OS Thread 1 Thread 2 Value
| |
| I
\ 4 |
Enter into critical section I
movl 0x2f8e, %eax : 50
addl  SOx1, %eax I 51
Interrupt :
Time | Save T1's state |
Restore T2’s state {
movl 0x2f8e, %eax 50
addl  SOx1, %eax 51
movl %eax, Ox2f8e 51

Interrupt
Save T2’s state
Restore T1's state




Time

Concurrent access to the same memory address

OS

Interrupt
Save T1’s state
Restore T2's state

Interrupt
Save T2’s state
Restore T1's state

Thread 1

I
\/

Enter into critical section

movl 0x2f8e, %eax
addl  SOx1, %eax

v

movl %eax, 0x2f8e

Thread 2

I

I

I

I

I

I

I

I

I

I

I

v
movl 0x2f8e, %eax
addl  SOx1, %eax
movl %eax, 0x2f8e

Value

50
51

50

51
51



Time

Concurrent access to the same memory address

OS

Interrupt
Save T1’s state
Restore T2's state

Interrupt
Save T2’s state
Restore T1's state

Thread 1

I
\/

Enter into critical section

movl 0x2f8e, %eax
addl  SOx1, %eax

v

movl %eax, 0x2f8e

Thread 2

I

I

I

I

I

I

I

I

I

I

I

v
movl 0x2f8e, %eax
addl  SOx1, %eax
movl %eax, 0x2f8e

Value

50
51

50

51
51

51



Time

Concurrent access to the same memory address

OS

Interrupt
Save T1’s state
Restore T2's state

Interrupt
Save T2’s state
Restore T1's state

Thread 1

I
\/

Enter into critical section

movl 0x2f8e, %eax
addl  SOx1, %eax

v

movl %eax, 0x2f8e

Thread 2

I

I

I

I

I

I

I

I

I

I

I

v
movl 0x2f8e, %eax
addl  SOx1, %eax
movl %eax, 0x2f8e

Value

50
51

50

51
51

51



Race conditions

* Observe: In a time-shared system, the exact
iInstruction execution order cannot be predicted

* Deterministic vs. Non-deterministic

* Any possible orders can happen, which result in
different output across runs

Y. Cheng GMU CS§475 Fall 2021
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Race conditions

« Situations like this, where multiple threads are
writing or reading some shared data and the final
result depends on who runs precisely when, are
called race conditions

* A serious problem for any concurrent system using
shared variables

* Programmers must make sure that some high-
level code sections are executed atomically

« Atomic operation: It completes in its entirety without
worrying about interruption by any other potentially
conflict-causing thread
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The critical-section problem

* N threads all competing to access the shared data

« Each process/thread has a code segment, called
critical section (critical region), in which the shared
data Is accessed

* Problem — ensure that when one thread is executing
IN 1ts critical section, no other thread is allowed to
execute In that critical section

e The execution of the critical sections by the threads
must be mutually exclusive In time



Mutual exclusion

Process A

Process B

Y. Cheng

/

A enters critical region

/

A leaves critical region

B attempts to B enters

I

|

” I - :
enter critical | critical region

B leaves
critical region

/

Vi,

------------------------------------
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Solving critical-section problem

Any solution to the problem must satisfy four conditions!

Mutual Exclusion:
No two threads may be simultaneously inside the same critical
section

Bounded Waiting:
No thread should have to wait forever to enter a critical section

Progress:

No thread executing a code segment unrelated to a given critical
section can block another thread trying to enter the same critical
section

Arbitrary Speed:

No assumption can be made about the relative speed of different
threads (though all threads have a non-zero speed)
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Locks

* A lock is a variable

e TWO states
e Avallable or free
* |L_ocked or held

* lock(): tries to acquire the lock

* unlock(): releases the lock that has been
acquired by caller

Y. Cheng GMU CS§475 Fall 2021
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Using Lock to protect shared data

« Changes to balance are not atomic
Thread A: Thread B:

balance = balance + amount balance = balance + amount

func Deposit(amount) {
balanceLock.lock()
read balance
balance = balance + amount
write balance
balanceLock.unlock()



Using Lock to protect shared data

« Changes to balance are not atomic
Thread A: Thread B:

balance = balance + amount balance = balance + amount

func Deposit(amount) {
balanceLock.lock()
read balance

Critical
balance = balance + amount ]
write balance section

balanceLock.unlock()
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Concurrency

* Process vs. thread
 Race conditions
e | ocks

» Concurrency in Go

* Two synchronization mechanisms
* Locks
» Channels

Y. Cheng GMU CS§475 Fall 2021
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Two synchronization mechanisms in Go

e Locks: limit access to a critical section

« Access to a critical section (e.g., shared variables)
must be mutually exclusive

» Channels: pass information across threads using
a queue



Mutex locks in Go

account

{

balance
lock sync.

}



Mutex locks in Go

account
{
balance
lock sync.
NewAccount(init )

{balance: init}



Mutex locks in Go

account (a * ) CheckBalance()
a.lock.Lock()
a.lock.Unlock()
a.balance
{ }
balance
lock sync.
NewAccount(init )

{balance: init}



Mutex locks in Go

account (a * ) CheckBalance()
a.lock.Lock()
a.lock.Unlock()
a.balance
{ }
balance
lock sync.
} (a * ) Withdraw(v ) {
a.lock.Lock()
a.lock.Unlock()
NewAccount(init int) a.balance -= v
{balance: init} }
}
(a * ) Deposit(v ) {
a.lock.Lock()
a.lock.Unlock()

a.balance += v



Read write locks in Go

a.lock.RLock()
a.lock.RUnlock()

lock sync.RW



Two solutions to the same problem

e L ocks:  Channels:
* Multiple threads can e Data item initially
reference same stored in channel

memory location
* Threads must request

» Use lock to ensure item from channel,
only one thread is make updates, and
updating it at any time return item to channel

LT‘zl =] @ &

L 4
0x1000: 100

C




Go channels

// Launch workers

i :=0; 1 < numWorkers; i++ {
() {
// ... do some work

30O

Y. Cheng
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* In Go, channels and
goroutines are more
idiomatic than locks
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Go channels

result := ( , humWorkers)
// Launch workers
i := 0; 1 < numWorkers; i++ {
() {
// ... do some work

result <- 1

30O

Y. Cheng GMU CS§475 Fall 2021

* In Go, channels and
goroutines are more
idiomatic than locks



Go channels

result := ( , numiorkers) * In Go, channels and
// Launch workers goroutines are more
ii=051 <(r;u”{'W°P'<e'“S: 1+ o idiomatic than locks

// ... do some work

result <- 1

30O

// Wait until all worker threads have finished
i := 0; 1 < numWorkers; i++ {
handleResult(<-result)

}
fmt.Println( )

Y. Cheng GMU CS§475 Fall 2021
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Bank account code (using channels)

account (a *Account) CheckBalance(
// What goes Here?
Account { }
// Fill in Here
(a *Account) Withdraw(v
/] ???
NewAccount(init ) Account { }
// Fill in Here
(a *Account) Deposit(v
/] ???

Y. Cheng GMU CS§475 Fall 2021
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Bank account code (using channels)

account (a * ) CheckBalance()
bal := <-a.balance
{ a.balance <- bal
balance bal
}
NewAccount(init ) { (a * ) Withdraw(v
a := make ( , 1)} bal := <-a.balance
a.balance <- init a.balance <- (bal - v)
a }
(a * ) Deposit(v )

bal := <-a.balance
a.balance <- (bal + v)

) 1

{

{



select statementin Go

* select allows a goroutine to wait on multiple
channels at once

{

money := <-dad:
buySnacks (money)

money := <-mom:
buySnacks (money)

starve()
time.Sleep(5 * time.Second)



Handle timeouts using select

result := make(chan int)

// Asynchronously request an
// answer from server, timing
// out after X seconds
askServer(result, timeout)

// Wait on both channels
select {
case res := <-result:
handleResult(res)

Y. Cheng

func askServer(
result chan int,
timeout chan bool) {

// Ask server
go func() {

10O
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response := // ...
result <- response

send RPC
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Handle timeouts using select

result := make(chan int)
timeout := make(chan bool)

// Asynchronously request an
// answer from server, timing
// out after X seconds
askServer(result, timeout)

// Wait on both channels
select {
case res := <-result:
handleResult(res)
case <-timeout:
fmt.Println("Timeout!")

Y. Cheng

func askServer(
result chan int,
timeout chan bool) {

// Start timer

go func() {
time.Sleep(5 * time.Second)

timeout <- true

10O

// Ask server

go func() {
response := // ...

result <- response

send RPC

10O
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