
Concurrency 
Overview

CS 475: Concurrent & Distributed Systems (Fall 2021)
Lecture 2

Yue Cheng

Some material taken/derived from: 
• Wisconsin CS-537 materials created by Remzi Arpaci-Dusseau.
Licensed for use under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.



Concurrency

• Process vs. thread

• Race conditions

• Locks

• Concurrency in Go

2Y. Cheng GMU CS475 Fall 2021



What is a process?

3Y. Cheng GMU CS475 Fall 2021



What is a process?

• Programs are code (static entity)
• Processes are running programs

• Java analogy
• class -> “program”
• object -> “process”

4Y. Cheng GMU CS475 Fall 2021



What is in a process?

5

Process

What things change as a program runs?

Y. Cheng GMU CS475 Fall 2021



What is in a process?

6

Process

What things change as a program runs?

Code
Heap

…
Stack

memory

Y. Cheng GMU CS475 Fall 2021



What is in a process?

7

Process

What things change as a program runs?

Code
Heap

…
Stack

memory
EAX
PC
SP
BP

registers

Y. Cheng GMU CS475 Fall 2021



What is in a process?

8

Process

What things change as a program runs?

Code
Heap

…
Stack

memory
EAX
PC
SP
BP

registers

FDs
I/O

Y. Cheng GMU CS475 Fall 2021



Peeking inside

• Processes share code, but each has its own 
“context”

• CPU
• Instruction pointer (Program Counter)
• Stack pointer

• Memory
• Set of memory addresses (“address space”)
• cat /proc/<PID>/maps

• Disk
• Set of file descriptors
• cat /proc/<PID>/fdinfo/*

9Y. Cheng GMU CS475 Fall 2021



Threads

10Y. Cheng GMU CS475 Fall 2021



Why thread abstraction?

11Y. Cheng GMU CS475 Fall 2021



Process abstraction: Challenge 1

• Inter-process communication (IPC)

12Y. Cheng GMU CS475 Fall 2021



Inter-process communication

• Mechanism for processes to communicate and 
to synchronize their actions

• Two models
• Communication through a shared memory region
• Communication through message passing

13Y. Cheng GMU CS475 Fall 2021



Communication models

Y. Cheng GMU CS475 Fall 2021 14

Message Passing Shared Memory



15

• Message system – processes communicate with 
each other without resorting to shared variables

• A message-passing facility must provide at least two 
operations:
• send(message, recipient) 
• receive(message, sender)

• With indirect communication, the messages are sent 
to and received from mailboxes (or, ports)
• send(A, message) /* A is a mailbox */
• receive(A, message)

Communication through message passing

Y. Cheng GMU CS475 Fall 2021



Communication through message passing

16

• Message passing can be either blocking
(synchronous) or non-blocking (asynchronous)
• Blocking Send: The sending process is blocked until the 

message is received by the receiving process or by the 
mailbox
• Non-blocking Send: The sending process resumes the 

operation as soon as the message is received by the 
kernel
• Blocking Receive: The receiver blocks until the message 

is available
• Non-blocking Receive: “Receive” operation does not 

block; it either returns a valid message or a default value 
(null) to indicate a non-existing message

Y. Cheng GMU CS475 Fall 2021



17

• The memory region to be shared must be explicitly 
defined

• System calls (Linux): 
• shmget creates a shared memory block 
• shmat maps/attaches an existing shared memory 

block into a process’s address space
• shmdt removes (“unmaps”) a shared memory block 

from the process’s address space
• shmctl is a general-purpose function allowing various 

operations on the shared block (receive information 
about the block, set the permissions, lock in memory, 
…)

• Problems with simultaneous access to the shared 
variables

Communication through shared memory

Y. Cheng GMU CS475 Fall 2021



Process abstraction: Challenge 1

• Inter-process communication (IPC)
• Cumbersome programming!
• Copying overheads (inefficient communication)
• Expensive context switching (why expensive?)

18Y. Cheng GMU CS475 Fall 2021



Process Abstraction: Challenge 2

• Inter-process communication (IPC)
• Cumbersome programming!
• Copying overheads (inefficient communication)
• Expensive context switching (why expensive?)

• CPU utilization

19Y. Cheng GMU CS475 Fall 2021



20

ACPU:

Disk:

A

A

A

A

B
(a) Not interleaved

Y. Cheng GMU CS475 Fall 2021



21

ACPU:

Disk:

A

A

A

A

B
(a) Not interleaved

ACPU:

Disk:

A

A

A

A

B
(b) Interleaved

BB

Y. Cheng GMU CS475 Fall 2021



22

ACPU:

Disk:

A

A

A

A

B
(a) Not interleaved

ACPU:

Disk:

A

A

A

A

B
(b) Interleaved

B B

What if there is only one process?

Y. Cheng GMU CS475 Fall 2021



23Y. Cheng GMU CS475 Fall 2021

Moore’s law is ending!

Moore’s law: # transistors doubles every ~2 years



CPU trends – What Moore’s Law implies…

• The future
• Same CPU speed
• More cores (to scale-up or scale-out)

• Faster programs => concurrent execution

• Goal: Write applications that fully utilize many 
CPU cores… 

24Y. Cheng GMU CS475 Fall 2021



Goal

• Write applications that fully utilize many CPUs…

25Y. Cheng GMU CS475 Fall 2021



Strategy 1

• Build applications from many communication 
processes
• Like Chrome (process per tab)
• Communicate via pipe() or similar

• Pros/cons?

26Y. Cheng GMU CS475 Fall 2021



Strategy 1
• Build applications from many communication 

processes
• Like Chrome (process per tab)
• Communicate via pipe() or similar

• Pros/cons? – That we’ve talked about in previous slides
• Pros: 

• Don’t need new abstractions!
• Better (fault) isolation?

• Cons: 
• Cumbersome programming using IPC
• Copying overheads
• Expensive context switching

27Y. Cheng GMU CS475 Fall 2021



Strategy 2

• New abstraction: the thread

28Y. Cheng GMU CS475 Fall 2021



Introducing thread abstraction

• New abstraction: the thread

• Threads are just like processes, but threads 
share the address space

29Y. Cheng GMU CS475 Fall 2021



Thread

• A process, as defined so far, has only one thread 
of execution

• Idea: Allow multiple threads of concurrently 
running execution within the same process 
environment, to a large degree independent of 
each other
• Each thread may be executing different code at the 

same time

30Y. Cheng GMU CS475 Fall 2021



Process vs. Thread

• Multiple threads within a process will share
• The address space
• Open files (file descriptors)
• Other resources

• Thread
• Efficient and fast resource sharing
• Efficient utilization of many CPU cores with only one 

process
• Less context switching overheads

31Y. Cheng GMU CS475 Fall 2021



Y. Cheng GMU CS475 Fall 2021 32

Running 
thread 1

CPU 1
Running 
thread 2

CPU 2



Y. Cheng GMU CS475 Fall 2021 33

Running 
thread 1

CPU 1
Running 
thread 2

CPU 2

PC PC



Y. Cheng GMU CS475 Fall 2021 34

Running 
thread 1

CPU 1
Running 
thread 2

CPU 2

PC PC

Virtual mem

CODE HEAP



Y. Cheng GMU CS475 Fall 2021 35

Running 
thread 1

CPU 1
Running 
thread 2

CPU 2

PC PC

CODE HEAP

Each thread may be executing 
different code at the same time

Virtual mem



Y. Cheng GMU CS475 Fall 2021 36

Running 
thread 1

CPU 1
Running 
thread 2

CPU 2

PC PC

CODE HEAP

Virtual mem



Y. Cheng GMU CS475 Fall 2021 37

Running 
thread 1

CPU 1
Running 
thread 2

CPU 2

PC PC

CODE HEAP

SP SP

Virtual mem



Y. Cheng GMU CS475 Fall 2021 38

Running 
thread 1

CPU 1
Running 
thread 2

CPU 2

PC PC

CODE HEAP

SP SP

STACK 1 STACK 2

Virtual mem



Y. Cheng GMU CS475 Fall 2021 39

Running 
thread 1

CPU 1
Running 
thread 2

CPU 2

PC PC

CODE HEAP

SP SP

STACK 1 STACK 2

Thread executing different functions need different stacks

Virtual mem



Y. Cheng GMU CS475 Fall 2021 40

Linux process Threads within a Linux process

*: https://computing.llnl.gov/tutorials/pthreads/



Single- vs. Multi-threaded Process

Y. Cheng GMU CS475 Fall 2021 41



Concurrency

• Process vs. thread

• Race conditions

• Locks

• Concurrency in Go

42Y. Cheng GMU CS475 Fall 2021



Example: Bank account

Y. Cheng GMU CS475 Fall 2021 43

Bob Alice

100

Bank Account



Example: Bank account

Y. Cheng GMU CS475 Fall 2021 44

Bob Alice

100
Read b = 100

Bank Account

b = b + 10

Write b = 110



Example: Bank account

Y. Cheng GMU CS475 Fall 2021 45

Bob Alice

100
Read b = 100

Bank Account

b = b + 10

Write b = 110 110



Example: Bank account

Y. Cheng GMU CS475 Fall 2021 46

Bob Alice

100
Read b = 100

Bank Account

b = b + 10

Write b = 110 110

Read b = 110

b = b + 10

Write b = 120



Example: Bank account

Y. Cheng GMU CS475 Fall 2021 47

Bob Alice

100
Read b = 100

Bank Account

b = b + 10

Write b = 110 110

Read b = 110

b = b + 10

Write b = 120120



Example: Bank account

Y. Cheng GMU CS475 Fall 2021 48

Bob Alice

100

Bank Account



Example: Bank account

Y. Cheng GMU CS475 Fall 2021 49

Bob Alice

100

Bank Account

Read b = 100



Example: Bank account

Y. Cheng GMU CS475 Fall 2021 50

Bob Alice

100

Bank Account

Read b = 100

b = b + 10



Example: Bank account

Y. Cheng GMU CS475 Fall 2021 51

Bob Alice

100

Bank Account

Read b = 100

b = b + 10 Read b = 100



Example: Bank account

Y. Cheng GMU CS475 Fall 2021 52

Bob Alice

100

Bank Account

Read b = 100

b = b + 10

Write b = 110

Read b = 100



Example: Bank account

Y. Cheng GMU CS475 Fall 2021 53

Bob Alice

100

Bank Account

Read b = 100

b = b + 10

Write b = 110 110

Read b = 100



Example: Bank account

Y. Cheng GMU CS475 Fall 2021 54

Bob Alice

100

Bank Account

Read b = 100

b = b + 10

Write b = 110 110

Read b = 100

b = b + 10



Example: Bank account

Y. Cheng GMU CS475 Fall 2021 55

Bob Alice

100

Bank Account

Read b = 100

b = b + 10

Write b = 110 110

Read b = 100

b = b + 10

Write b = 110



Example: Bank account

Y. Cheng GMU CS475 Fall 2021 56

Bob Alice

100

Bank Account

Read b = 100

b = b + 10

Write b = 110 110

Read b = 100

b = b + 10

Write b = 110110



Example: Bank account

Y. Cheng GMU CS475 Fall 2021 57

Bob Alice

100

Bank Account

Read b = 100

b = b + 10

Write b = 110 110

Read b = 100

b = b + 10

Write b = 110110



What went wrong?

• Changes to balance are not atomic

Y. Cheng GMU CS475 Fall 2021 58



Root cause: Let’s look at a C example…

Y. Cheng GMU CS475 Fall 2021 59



60

Threaded counting example

$ git clone https://github.com/tddg/demo-ostep-code
$ cd demo-ostep-code/threads-intro
$ make
$ ./t1 <loop_count>

Try it yourself

https://github.com/tddg/demo-ostep-code


Back-to-back runs
Run 1…
main: begin (counter = 0)
A: begin
B: begin
A: done
B: done
main: done with both (counter = 10706438)
Run 2…
main: begin (counter = 0)
A: begin
B: begin
A: done
B: done
main: done with both (counter = 11852529)

61Y. Cheng GMU CS475 Fall 2021



What exactly happened??

62Y. Cheng GMU CS475 Fall 2021



What exactly happened??

% otool -t -v thread_rc [Mac OS X]
% objdump -d thread_rc [Linux]

…
0000000100000d52 movl 0x2f8e %eax
0000000100000d58 addl $0x1,   %eax
0000000100000d5b movl %eax,  0x2f8e

…

63

counter = counter + 1;

Y. Cheng GMU CS475 Fall 2021



64

OS Thread 1 Thread 2

Time

Enter into critical section
movl 0x2f8e, %eax
addl $0x1, %eax

50
51

Value

Y. Cheng GMU CS475 Fall 2021

Concurrent access to the same memory address



65

OS Thread 1 Thread 2

Time

Enter into critical section
movl 0x2f8e, %eax
addl $0x1, %eax

50
51

Value

Y. Cheng GMU CS475 Fall 2021

Interrupt
Save T1’s state
Restore T2’s state

movl 0x2f8e, %eax
addl $0x1, %eax
movl %eax, 0x2f8e

Concurrent access to the same memory address



66

OS Thread 1 Thread 2

Time

Enter into critical section
movl 0x2f8e, %eax
addl $0x1, %eax

50
51

Value

Y. Cheng GMU CS475 Fall 2021

Interrupt
Save T1’s state
Restore T2’s state

movl 0x2f8e, %eax
addl $0x1, %eax
movl %eax, 0x2f8e

50
51
51

Concurrent access to the same memory address



67

OS Thread 1 Thread 2

Time

Enter into critical section
movl 0x2f8e, %eax
addl $0x1, %eax

50
51

Value

Y. Cheng GMU CS475 Fall 2021

Interrupt
Save T1’s state
Restore T2’s state

movl 0x2f8e, %eax
addl $0x1, %eax
movl %eax, 0x2f8e

50
51
51

Interrupt
Save T2’s state
Restore T1’s state

Concurrent access to the same memory address



68

OS Thread 1 Thread 2

Time

Enter into critical section
movl 0x2f8e, %eax
addl $0x1, %eax

50
51

Value

Y. Cheng GMU CS475 Fall 2021

Interrupt
Save T1’s state
Restore T2’s state

movl 0x2f8e, %eax
addl $0x1, %eax
movl %eax, 0x2f8e

50
51
51

Interrupt
Save T2’s state
Restore T1’s state

movl %eax, 0x2f8e

Concurrent access to the same memory address



Concurrent access to the same memory address

69

OS Thread 1 Thread 2

Time

Enter into critical section
movl 0x2f8e, %eax
addl $0x1, %eax

50
51

Value

Y. Cheng GMU CS475 Fall 2021

Interrupt
Save T1’s state
Restore T2’s state

movl 0x2f8e, %eax
addl $0x1, %eax
movl %eax, 0x2f8e

50
51
51

Interrupt
Save T2’s state
Restore T1’s state

movl %eax, 0x2f8e 51



Concurrent access to the same memory address

70

OS Thread 1 Thread 2

Time

Enter into critical section
movl 0x2f8e, %eax
addl $0x1, %eax

50
51

Value

Y. Cheng GMU CS475 Fall 2021

Interrupt
Save T1’s state
Restore T2’s state

movl 0x2f8e, %eax
addl $0x1, %eax
movl %eax, 0x2f8e

50
51
51

Interrupt
Save T2’s state
Restore T1’s state

movl %eax, 0x2f8e 51



71

• Observe: In a time-shared system, the exact 
instruction execution order cannot be predicted
• Deterministic vs. Non-deterministic

• Any possible orders can happen, which result in 
different output across runs

Race conditions

Y. Cheng GMU CS475 Fall 2021



72

• Situations like this, where multiple threads are 
writing or reading some shared data and the final 
result depends on who runs precisely when, are 
called race conditions
• A serious problem for any concurrent system using 

shared variables

• Programmers must make sure that some high-
level code sections are executed atomically
• Atomic operation: It completes in its entirety without 

worrying about interruption by any other potentially 
conflict-causing thread

Race conditions

Y. Cheng GMU CS475 Fall 2021



The critical-section problem
• N threads all competing to access the shared data

• Each process/thread has a code segment, called 
critical section (critical region), in which the shared 
data is accessed

• Problem – ensure that when one thread is executing 
in its critical section, no other thread is allowed to 
execute in that critical section

• The execution of the critical sections by the threads 
must be mutually exclusive in time

Y. Cheng GMU CS475 Fall 2021 73



Mutual exclusion

Y. Cheng GMU CS475 Fall 2021 74



Solving critical-section problem

Any solution to the problem must satisfy four conditions!
Mutual Exclusion:

No two threads may be simultaneously inside the same critical 
section

Bounded Waiting: 
No thread should have to wait forever to enter a critical section

Progress:
No thread executing a code segment unrelated to a given critical 

section can block another thread trying to enter the same critical 
section

Arbitrary Speed:
No assumption can be made about the relative speed of different 
threads (though all threads have a non-zero speed)

Y. Cheng GMU CS475 Fall 2021 75



Locks

• A lock is a variable

• Two states
• Available or free
• Locked or held

• lock(): tries to acquire the lock
• unlock(): releases the lock that has been 

acquired by caller

76Y. Cheng GMU CS475 Fall 2021



Using Lock to protect shared data

• Changes to balance are not atomic
Thread A:                       Thread B:

balance = balance + amount     balance = balance + amount

Y. Cheng GMU CS475 Fall 2021 77

func Deposit(amount) {
balanceLock.lock()
read balance
balance = balance + amount
write balance
balanceLock.unlock()

}



Using Lock to protect shared data

• Changes to balance are not atomic
Thread A:                       Thread B:

balance = balance + amount     balance = balance + amount

Y. Cheng GMU CS475 Fall 2021 78

Critical 
section

func Deposit(amount) {
balanceLock.lock()
read balance
balance = balance + amount
write balance
balanceLock.unlock()

}



Concurrency

• Process vs. thread

• Race conditions

• Locks

• Concurrency in Go
• Two synchronization mechanisms

• Locks
• Channels

79Y. Cheng GMU CS475 Fall 2021



Two synchronization mechanisms in Go

• Locks: limit access to a critical section
• Access to a critical section (e.g., shared variables) 

must be mutually exclusive

• Channels: pass information across threads using 
a queue

Y. Cheng GMU CS475 Fall 2021 80



Mutex locks in Go

Y. Cheng GMU CS475 Fall 2021 81

package account

import "sync"

type Account struct {
balance int
lock sync.Mutex

}



Mutex locks in Go

Y. Cheng GMU CS475 Fall 2021 82

package account

import "sync"

type Account struct {
balance int
lock sync.Mutex

}

func NewAccount(init int) Account {
return Account{balance: init}

}



Mutex locks in Go

Y. Cheng GMU CS475 Fall 2021 83

package account

import "sync"

type Account struct {
balance int
lock sync.Mutex

}

func NewAccount(init int) Account {
return Account{balance: init}

}

func (a *Account) CheckBalance() int {
a.lock.Lock()
defer a.lock.Unlock()
return a.balance

}



Mutex locks in Go

Y. Cheng GMU CS475 Fall 2021 84

package account

import "sync"

type Account struct {
balance int
lock sync.Mutex

}

func (a *Account) Deposit(v int) {
a.lock.Lock()
defer a.lock.Unlock()
a.balance += v

}

func NewAccount(init int) Account {
return Account{balance: init}

}

func (a *Account) CheckBalance() int {
a.lock.Lock()
defer a.lock.Unlock()
return a.balance

}

func (a *Account) Withdraw(v int) {
a.lock.Lock()
defer a.lock.Unlock()
a.balance -= v

}



Read write locks in Go

Y. Cheng GMU CS475 Fall 2021 85

package account

import "sync"

type Account struct {
balance int
lock sync.RWMutex

}

func (a *Account) Deposit(v int) {
a.lock.Lock()
defer a.lock.Unlock()
a.balance += v

}

func NewAccount(init int) Account {
return Account{balance: init}

}

func (a *Account) CheckBalance() int {
a.lock.RLock()
defer a.lock.RUnlock()
return a.balance

}

func (a *Account) Withdraw(v int) {
a.lock.Lock()
defer a.lock.Unlock()
a.balance -= v

}



Two solutions to the same problem

Y. Cheng GMU CS475 Fall 2021 86

• Locks:
• Multiple threads can 

reference same 
memory location

• Use lock to ensure 
only one thread is 
updating it at any time

• Channels:
• Data item initially 

stored in channel

• Threads must request 
item from channel, 
make updates, and 
return item to channel

T1 T2 T3

0x1000: 100

T1 T2 T3

100

C



Go channels

Y. Cheng GMU CS475 Fall 2021 87

// Launch workers
for i := 0; i < numWorkers; i++ {

go func() {
// ... do some work

}()
}

• In Go, channels and 
goroutines are more 
idiomatic than locks



Go channels

Y. Cheng GMU CS475 Fall 2021 88

// Launch workers
for i := 0; i < numWorkers; i++ {

go func() {
// ... do some work

}()
}

result := make(chan int, numWorkers)

result <- i

• In Go, channels and 
goroutines are more 
idiomatic than locks



Go channels

Y. Cheng GMU CS475 Fall 2021 89

// Launch workers
for i := 0; i < numWorkers; i++ {

go func() {
// ... do some work

}()
}

result := make(chan int, numWorkers)

// Wait until all worker threads have finished
for i := 0; i < numWorkers; i++ {

handleResult(<-result)
}
fmt.Println("Done!")

result <- i

• In Go, channels and 
goroutines are more 
idiomatic than locks



Bank account code (using channels)

Y. Cheng GMU CS475 Fall 2021 90

package account

type Account struct {
// Fill in Here

}

func NewAccount(init int) Account {
// Fill in Here

}

func (a *Account) CheckBalance() int {
// What goes Here?

}

func (a *Account) Withdraw(v int) {
// ???

}

func (a *Account) Deposit(v int) {
// ???

}



Bank account code (using channels)

Y. Cheng GMU CS475 Fall 2021 91

package account

type Account struct {
balance chan int

}

func NewAccount(init int) Account {
a := Account{make(chan int, 1)}
a.balance <- init
return a

}

func (a *Account) CheckBalance() int {
bal := <-a.balance
a.balance <- bal
return bal

}

func (a *Account) Withdraw(v int) {
bal := <-a.balance
a.balance <- (bal - v)

}

func (a *Account) Deposit(v int) {
bal := <-a.balance
a.balance <- (bal + v)

}



select statement in Go

• select allows a goroutine to wait on multiple 
channels at once

Y. Cheng GMU CS475 Fall 2021 92

for {
select {

case money := <-dad:
buySnacks(money)

case money := <-mom:
buySnacks(money)

case default:
starve()
time.Sleep(5 * time.Second)

}
}



Handle timeouts using select

Y. Cheng GMU CS475 Fall 2021 93

result := make(chan int)
timeout := make(chan bool)

// Asynchronously request an
// answer from server, timing
// out after X seconds
askServer(result, timeout)

// Wait on both channels
select {

case res := <-result:
handleResult(res)

case <-timeout:
fmt.Println("Timeout!")

}

func askServer(
result chan int,
timeout chan bool) {

// Start timer
go func() {

time.Sleep(5 * time.Second)
timeout <- true

}()

// Ask server
go func() {

response := // ... send RPC
result <- response

}()
}



Handle timeouts using select

Y. Cheng GMU CS475 Fall 2021 94

result := make(chan int)
timeout := make(chan bool)

// Asynchronously request an
// answer from server, timing
// out after X seconds
askServer(result, timeout)

// Wait on both channels
select {

case res := <-result:
handleResult(res)

case <-timeout:
fmt.Println("Timeout!")

}

func askServer(
result chan int,
timeout chan bool) {

// Start timer
go func() {

time.Sleep(5 * time.Second)
timeout <- true

}()

// Ask server
go func() {

response := // ... send RPC
result <- response

}()
}


