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Concurrency

• Process vs. thread

• Race conditions

• Locks

• Concurrency in Go
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What is a process?
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What is a process?

• Programs are code (static entity)
• Processes are running programs

• Java analogy
• class -> “program”
• object -> “process”
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What is in a process?
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Process

What things change as a program runs?
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What is in a process?
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Process

What things change as a program runs?

Code
Heap
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Peeking inside

• Processes share code, but each has its own 
“context”

• CPU
• Instruction pointer (Program Counter)
• Stack pointer

• Memory
• Set of memory addresses (“address space”)
• cat /proc/<PID>/maps

• Disk
• Set of file descriptors
• cat /proc/<PID>/fdinfo/*
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Threads
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Why thread abstraction?
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Process abstraction: Challenge 1

• Inter-process communication (IPC)
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Inter-process communication

• Mechanism for processes to communicate and 
to synchronize their actions

• Two models
• Communication through a shared memory region
• Communication through message passing
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Communication models
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• Message system – processes communicate with 
each other without resorting to shared variables

• A message-passing facility must provide at least two 
operations:
• send(message, recipient) 
• receive(message, sender)

• With indirect communication, the messages are sent 
to and received from mailboxes (or, ports)
• send(A, message) /* A is a mailbox */
• receive(A, message)

Communication through message passing
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Communication through message passing

16

• Message passing can be either blocking
(synchronous) or non-blocking (asynchronous)
• Blocking Send: The sending process is blocked until the 

message is received by the receiving process or by the 
mailbox
• Non-blocking Send: The sending process resumes the 

operation as soon as the message is received by the 
kernel
• Blocking Receive: The receiver blocks until the message 

is available
• Non-blocking Receive: “Receive” operation does not 

block; it either returns a valid message or a default value 
(null) to indicate a non-existing message
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• The memory region to be shared must be explicitly 
defined

• System calls (Linux): 
• shmget creates a shared memory block 
• shmat maps/attaches an existing shared memory 

block into a process’s address space
• shmdt removes (“unmaps”) a shared memory block 

from the process’s address space
• shmctl is a general-purpose function allowing various 

operations on the shared block (receive information 
about the block, set the permissions, lock in memory, 
…)

• Problems with simultaneous access to the shared 
variables

Communication through shared memory

Y. Cheng GMU CS475 Fall 2021



Process abstraction: Challenge 1

• Inter-process communication (IPC)
• Cumbersome programming!
• Copying overheads (inefficient communication)
• Expensive context switching (why expensive?)
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Process Abstraction: Challenge 2

• Inter-process communication (IPC)
• Cumbersome programming!
• Copying overheads (inefficient communication)
• Expensive context switching (why expensive?)

• CPU utilization
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Moore’s law is ending!

Moore’s law: # transistors doubles every ~2 years



CPU trends – What Moore’s Law implies…

• The future
• Same CPU speed
• More cores (to scale-up or scale-out)

• Faster programs => concurrent execution

• Goal: Write applications that fully utilize many 
CPU cores… 

24Y. Cheng GMU CS475 Fall 2021



Goal

• Write applications that fully utilize many CPUs…
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Strategy 1

• Build applications from many communication 
processes
• Like Chrome (process per tab)
• Communicate via pipe() or similar

• Pros/cons?
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Strategy 1
• Build applications from many communication 

processes
• Like Chrome (process per tab)
• Communicate via pipe() or similar

• Pros/cons? – That we’ve talked about in previous slides
• Pros: 

• Don’t need new abstractions!
• Better (fault) isolation?

• Cons: 
• Cumbersome programming using IPC
• Copying overheads
• Expensive context switching
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Strategy 2

• New abstraction: the thread
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Introducing thread abstraction

• New abstraction: the thread

• Threads are just like processes, but threads 
share the address space
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Thread

• A process, as defined so far, has only one thread 
of execution

• Idea: Allow multiple threads of concurrently 
running execution within the same process 
environment, to a large degree independent of 
each other
• Each thread may be executing different code at the 

same time
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Process vs. Thread

• Multiple threads within a process will share
• The address space
• Open files (file descriptors)
• Other resources

• Thread
• Efficient and fast resource sharing
• Efficient utilization of many CPU cores with only one 

process
• Less context switching overheads
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Running 
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Running 
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Linux process Threads within a Linux process

*: https://computing.llnl.gov/tutorials/pthreads/



Single- vs. Multi-threaded Process
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Concurrency

• Process vs. thread

• Race conditions

• Locks

• Concurrency in Go
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Example: Bank account

Y. Cheng GMU CS475 Fall 2021 43

Bob Alice

100

Bank Account



Example: Bank account
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What went wrong?

• Changes to balance are not atomic
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Root cause: Let’s look at a C example…
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Threaded counting example

$ git clone https://github.com/tddg/demo-ostep-code
$ cd demo-ostep-code/threads-intro
$ make
$ ./t1 <loop_count>

Try it yourself

https://github.com/tddg/demo-ostep-code


Back-to-back runs
Run 1…
main: begin (counter = 0)
A: begin
B: begin
A: done
B: done
main: done with both (counter = 10706438)
Run 2…
main: begin (counter = 0)
A: begin
B: begin
A: done
B: done
main: done with both (counter = 11852529)
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What exactly happened??
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What exactly happened??

% otool -t -v thread_rc [Mac OS X]
% objdump -d thread_rc [Linux]

…
0000000100000d52 movl 0x2f8e %eax
0000000100000d58 addl $0x1,   %eax
0000000100000d5b movl %eax,  0x2f8e

…

63

counter = counter + 1;
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OS Thread 1 Thread 2

Time

Enter into critical section
movl 0x2f8e, %eax
addl $0x1, %eax

50
51

Value
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Concurrent access to the same memory address
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OS Thread 1 Thread 2

Time

Enter into critical section
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Interrupt
Save T1’s state
Restore T2’s state

movl 0x2f8e, %eax
addl $0x1, %eax
movl %eax, 0x2f8e

Concurrent access to the same memory address
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Concurrent access to the same memory address
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Concurrent access to the same memory address
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• Observe: In a time-shared system, the exact 
instruction execution order cannot be predicted
• Deterministic vs. Non-deterministic

• Any possible orders can happen, which result in 
different output across runs

Race conditions
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• Situations like this, where multiple threads are 
writing or reading some shared data and the final 
result depends on who runs precisely when, are 
called race conditions
• A serious problem for any concurrent system using 

shared variables

• Programmers must make sure that some high-
level code sections are executed atomically
• Atomic operation: It completes in its entirety without 

worrying about interruption by any other potentially 
conflict-causing thread

Race conditions
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The critical-section problem
• N threads all competing to access the shared data

• Each process/thread has a code segment, called 
critical section (critical region), in which the shared 
data is accessed

• Problem – ensure that when one thread is executing 
in its critical section, no other thread is allowed to 
execute in that critical section

• The execution of the critical sections by the threads 
must be mutually exclusive in time
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Mutual exclusion
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Solving critical-section problem

Any solution to the problem must satisfy four conditions!
Mutual Exclusion:

No two threads may be simultaneously inside the same critical 
section

Bounded Waiting: 
No thread should have to wait forever to enter a critical section

Progress:
No thread executing a code segment unrelated to a given critical 

section can block another thread trying to enter the same critical 
section

Arbitrary Speed:
No assumption can be made about the relative speed of different 
threads (though all threads have a non-zero speed)
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Locks

• A lock is a variable

• Two states
• Available or free
• Locked or held

• lock(): tries to acquire the lock
• unlock(): releases the lock that has been 

acquired by caller
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Using Lock to protect shared data

• Changes to balance are not atomic
Thread A:                       Thread B:

balance = balance + amount     balance = balance + amount
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func Deposit(amount) {
balanceLock.lock()
read balance
balance = balance + amount
write balance
balanceLock.unlock()

}



Using Lock to protect shared data

• Changes to balance are not atomic
Thread A:                       Thread B:

balance = balance + amount     balance = balance + amount
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Critical 
section

func Deposit(amount) {
balanceLock.lock()
read balance
balance = balance + amount
write balance
balanceLock.unlock()

}



Concurrency

• Process vs. thread

• Race conditions

• Locks

• Concurrency in Go
• Two synchronization mechanisms

• Locks
• Channels
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Two synchronization mechanisms in Go

• Locks: limit access to a critical section
• Access to a critical section (e.g., shared variables) 

must be mutually exclusive

• Channels: pass information across threads using 
a queue
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Mutex locks in Go
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package account

import "sync"

type Account struct {
balance int
lock sync.Mutex

}



Mutex locks in Go
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package account

import "sync"

type Account struct {
balance int
lock sync.Mutex

}

func NewAccount(init int) Account {
return Account{balance: init}

}



Mutex locks in Go
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package account

import "sync"

type Account struct {
balance int
lock sync.Mutex

}

func NewAccount(init int) Account {
return Account{balance: init}

}

func (a *Account) CheckBalance() int {
a.lock.Lock()
defer a.lock.Unlock()
return a.balance

}



Mutex locks in Go
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package account

import "sync"

type Account struct {
balance int
lock sync.Mutex

}

func (a *Account) Deposit(v int) {
a.lock.Lock()
defer a.lock.Unlock()
a.balance += v

}

func NewAccount(init int) Account {
return Account{balance: init}

}

func (a *Account) CheckBalance() int {
a.lock.Lock()
defer a.lock.Unlock()
return a.balance

}

func (a *Account) Withdraw(v int) {
a.lock.Lock()
defer a.lock.Unlock()
a.balance -= v

}



Read write locks in Go
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package account

import "sync"

type Account struct {
balance int
lock sync.RWMutex

}

func (a *Account) Deposit(v int) {
a.lock.Lock()
defer a.lock.Unlock()
a.balance += v

}

func NewAccount(init int) Account {
return Account{balance: init}

}

func (a *Account) CheckBalance() int {
a.lock.RLock()
defer a.lock.RUnlock()
return a.balance

}

func (a *Account) Withdraw(v int) {
a.lock.Lock()
defer a.lock.Unlock()
a.balance -= v

}



Two solutions to the same problem
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• Locks:
• Multiple threads can 

reference same 
memory location

• Use lock to ensure 
only one thread is 
updating it at any time

• Channels:
• Data item initially 

stored in channel

• Threads must request 
item from channel, 
make updates, and 
return item to channel

T1 T2 T3

0x1000: 100

T1 T2 T3

100

C



Go channels
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// Launch workers
for i := 0; i < numWorkers; i++ {

go func() {
// ... do some work

}()
}

• In Go, channels and 
goroutines are more 
idiomatic than locks



Go channels
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// Launch workers
for i := 0; i < numWorkers; i++ {

go func() {
// ... do some work

}()
}

result := make(chan int, numWorkers)

result <- i

• In Go, channels and 
goroutines are more 
idiomatic than locks



Go channels

Y. Cheng GMU CS475 Fall 2021 89

// Launch workers
for i := 0; i < numWorkers; i++ {

go func() {
// ... do some work

}()
}

result := make(chan int, numWorkers)

// Wait until all worker threads have finished
for i := 0; i < numWorkers; i++ {

handleResult(<-result)
}
fmt.Println("Done!")

result <- i

• In Go, channels and 
goroutines are more 
idiomatic than locks



Bank account code (using channels)
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package account

type Account struct {
// Fill in Here

}

func NewAccount(init int) Account {
// Fill in Here

}

func (a *Account) CheckBalance() int {
// What goes Here?

}

func (a *Account) Withdraw(v int) {
// ???

}

func (a *Account) Deposit(v int) {
// ???

}



Bank account code (using channels)
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package account

type Account struct {
balance chan int

}

func NewAccount(init int) Account {
a := Account{make(chan int, 1)}
a.balance <- init
return a

}

func (a *Account) CheckBalance() int {
bal := <-a.balance
a.balance <- bal
return bal

}

func (a *Account) Withdraw(v int) {
bal := <-a.balance
a.balance <- (bal - v)

}

func (a *Account) Deposit(v int) {
bal := <-a.balance
a.balance <- (bal + v)

}



select statement in Go

• select allows a goroutine to wait on multiple 
channels at once
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for {
select {

case money := <-dad:
buySnacks(money)

case money := <-mom:
buySnacks(money)

case default:
starve()
time.Sleep(5 * time.Second)

}
}



Handle timeouts using select
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result := make(chan int)
timeout := make(chan bool)

// Asynchronously request an
// answer from server, timing
// out after X seconds
askServer(result, timeout)

// Wait on both channels
select {

case res := <-result:
handleResult(res)

case <-timeout:
fmt.Println("Timeout!")

}

func askServer(
result chan int,
timeout chan bool) {

// Start timer
go func() {

time.Sleep(5 * time.Second)
timeout <- true

}()

// Ask server
go func() {

response := // ... send RPC
result <- response

}()
}



Handle timeouts using select
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result := make(chan int)
timeout := make(chan bool)

// Asynchronously request an
// answer from server, timing
// out after X seconds
askServer(result, timeout)

// Wait on both channels
select {

case res := <-result:
handleResult(res)

case <-timeout:
fmt.Println("Timeout!")

}

func askServer(
result chan int,
timeout chan bool) {

// Start timer
go func() {

time.Sleep(5 * time.Second)
timeout <- true

}()

// Ask server
go func() {

response := // ... send RPC
result <- response

}()
}


