
2PL and OCC

Some material taken/derived from:
• Princeton COS-418 materials created by Michael Freedman and Kyle Jamieson.
• MIT 6.824 by Robert Morris, Frans Kaashoek, and Nickolai Zeldovich.
Licensed for use under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

CS 475: Concurrent & Distributed Systems (Fall 2021)
Lecture 15

Yue Cheng

Recap: Transaction serializability

Serializability:

Execution of a set of transactions over multiple
items is equivalent to some serial execution of
transactions

Y. Cheng GMU CS475 Fall 2021 2

Q: How to ensure correctness
when running concurrent
transactions?

3

What does correctness mean?

Transactions should have property of isolation,
i.e., all operations in a transaction appear to
happen together at the same time

Y. Cheng GMU CS475 Fall 2021 4

What does correctness mean?

Transactions should have property of isolation,
i.e., all operations in a transaction appear to
happen together at the same time

We need serializability

Y. Cheng GMU CS475 Fall 2021 5

Fixing concurrency problems

Strawman: Just run transactions serially —
prohibitively bad performance

Y. Cheng GMU CS475 Fall 2021 6

Fixing concurrency problems

Strawman: Just run transactions serially —
prohibitively bad performance

Observation: Problems only arise when:
1. Two transactions touch the same data
2. At least one of these transactions involves a

write to the data

Y. Cheng GMU CS475 Fall 2021 7

Fixing concurrency problems

Strawman: Just run transactions serially —
prohibitively bad performance

Observation: Problems only arise when:
1. Two transactions touch the same data
2. At least one of these transactions involves a

write to the data

Key idea: Only permit schedules whose effects are
guaranteed to be equivalent to serial schedules
Y. Cheng GMU CS475 Fall 2021 8

Serializability of schedules

Two operations conflict if
1. They belong to different transactions
2. They operate on the same data
3. One of them is a write

Y. Cheng GMU CS475 Fall 2021 9

Serializability of schedules

Two operations conflict if
1. They belong to different transactions
2. They operate on the same data
3. One of them is a write

Two schedules are equivalent if
1. They involve the same transactions and

operations
2. All conflicting operations are ordered the same

way

Y. Cheng GMU CS475 Fall 2021 10

Serializability of schedules
Two operations conflict if
1. They belong to different transactions
2. They operate on the same data
3. One of them is a write

Two schedules are equivalent if
1. They involve the same transactions and

operations
2. All conflicting operations are ordered the same

way

A schedule is serializable if it is equivalent to a serial
schedule

Y. Cheng GMU CS475 Fall 2021 11

Testing for serializability

Intuition: Swap non-conflicting operations until you
reach a serial schedule

Y. Cheng GMU CS475 Fall 2021 12

Testing for serializability

Y. Cheng GMU CS475 Fall 2021 13

T1: R(A), W(A), Commit
T2: R(A), R(B), W(B), Commit

time

Intuition: Swap non-conflicting operations until you
reach a serial schedule

Testing for serializability

Y. Cheng GMU CS475 Fall 2021 14

T1: R(A), W(A), Commit
T2: R(A), R(B), W(B), Commit

time

Intuition: Swap non-conflicting operations until you
reach a serial schedule

Testing for serializability

Y. Cheng GMU CS475 Fall 2021 15

time

Intuition: Swap non-conflicting operations until you
reach a serial scheduleT1: R(A), W(A), Commit
T2: R(A), R(B), W(B), Commit

Intuition: Swap non-conflicting operations until you
reach a serial schedule

Testing for serializability

Y. Cheng GMU CS475 Fall 2021 16

time

Intuition: Swap non-conflicting operations until you
reach a serial scheduleT1: R(A), W(A), Commit
T2: R(A), R(B), W(B) Commit

Intuition: Swap non-conflicting operations until you
reach a serial schedule

Serializable

Testing for serializability

Y. Cheng GMU CS475 Fall 2021 17

time

Intuition: Swap non-conflicting operations until you
reach a serial scheduleT1: R(A), W(A), W(B), Commit
T2: R(B), W(B), R(A), Commit

Intuition: Swap non-conflicting operations until you
reach a serial schedule

Testing for serializability

Y. Cheng GMU CS475 Fall 2021 18

time

Intuition: Swap non-conflicting operations until you
reach a serial scheduleT1: R(A), W(A), W(B), Commit
T2: R(B), W(B), R(A), Commit

Intuition: Swap non-conflicting operations until you
reach a serial schedule

Testing for serializability

Y. Cheng GMU CS475 Fall 2021 19

time

Intuition: Swap non-conflicting operations until you
reach a serial scheduleT1: R(A), W(A) W(B), Commit
T2: R(B), W(B), R(A), Commit

Intuition: Swap non-conflicting operations until you
reach a serial schedule

Testing for serializability

Y. Cheng GMU CS475 Fall 2021 20

time

Intuition: Swap non-conflicting operations until you
reach a serial schedule

NOT serializable

T1: R(A), W(A), W(B), Commit
T2: R(B), W(B), R(A), Commit

Intuition: Swap non-conflicting operations until you
reach a serial schedule

Testing for serializability

Another way to test serializability
• Draw arrows between conflicting operations
• Arrow points in the direction of time
• If no cycles between transactions, the schedule

is serializable

Y. Cheng GMU CS475 Fall 2021 21

Testing for serializability

Another way to test serializability
• Draw arrows between conflicting operations
• Arrow points in the direction of time
• If no cycles between transactions, the schedule

is serializable

Y. Cheng GMU CS475 Fall 2021 22

T1: R(A), W(A), Commit
T2: R(A), R(B), W(B), Commit

time

Testing for serializability

Another way to test serializability
• Draw arrows between conflicting operations
• Arrow points in the direction of time
• If no cycles between transactions, the schedule

is serializable

Y. Cheng GMU CS475 Fall 2021 23

time

T1: R(A), W(A), Commit
T2: R(A), R(B), W(B), Commit

Testing for serializability

Another way to test serializability
• Draw arrows between conflicting operations
• Arrow points in the direction of time
• If no cycles between transactions, the schedule

is serializable

Y. Cheng GMU CS475 Fall 2021 24

time

T1: R(A), W(A), Commit
T2: R(A), R(B), W(B), Commit

Testing for serializability

Another way to test serializability
• Draw arrows between conflicting operations
• Arrow points in the direction of time
• If no cycles between transactions, the schedule

is serializable

Y. Cheng GMU CS475 Fall 2021 25

time

T1: R(A), W(A), Commit
T2: R(A), R(B), W(B), Commit

No cycles,
serializable

Testing for serializability

Another way to test serializability
• Draw arrows between conflicting operations
• Arrow points in the direction of time
• If no cycles between transactions, the schedule

is serializable

Y. Cheng GMU CS475 Fall 2021 26

time

T1: R(A), W(A), W(B), Commit
T2: R(B), W(B), R(A), Commit

Testing for serializability

Another way to test serializability
• Draw arrows between conflicting operations
• Arrow points in the direction of time
• If no cycles between transactions, the schedule

is serializable

Y. Cheng GMU CS475 Fall 2021 27

time

T1: R(A), W(A), W(B), Commit
T2: R(B), W(B), R(A), Commit

Testing for serializability

Another way to test serializability
• Draw arrows between conflicting operations
• Arrow points in the direction of time
• If no cycles between transactions, the schedule

is serializable

Y. Cheng GMU CS475 Fall 2021 28

time

T1: R(A), W(A), W(B), Commit
T2: R(B), W(B), R(A), Commit

Testing for serializability

Another way to test serializability
• Draw arrows between conflicting operations
• Arrow points in the direction of time
• If no cycles between transactions, the schedule

is serializable

Y. Cheng GMU CS475 Fall 2021 29

time

T1: R(A), W(A), W(B), Commit
T2: R(B), W(B), R(A), Commit

Cycle exists
(T1 ⇄ T2),

NOT serializable

Linearizability vs. Serializability

Y. Cheng GMU CS475 Fall 2021 30

• Linearizability: a guarantee
about single operations on
single objects
• Once write completes, all later

reads (by wall clock) should
reflect that write

• Serializability is a
guarantee about
transactions over one or
more objects
• Doesn’t impose real-time

constraints

• Linearizability + serializability = strict serializability
– Transaction behavior equivalent to some serial

execution
• And that serial execution agrees with real-time

Some new terms

Lost update: the result of a transaction is
overwritten by another transaction

Y. Cheng GMU CS475 Fall 2021 31

Some new terms

Lost update: the result of a transaction is
overwritten by another transaction

Dirty read: uncommitted results are read by a
transaction

Y. Cheng GMU CS475 Fall 2021 32

Some new terms

Lost update: the result of a transaction is
overwritten by another transaction

Dirty read: uncommitted results are read by a
transaction

Non-repeatable read: two reads in the same
transaction return different results

Y. Cheng GMU CS475 Fall 2021 33

Some new terms

Lost update: the result of a transaction is
overwritten by another transaction

Dirty read: uncommitted results are read by a
transaction

Non-repeatable read: two reads in the same
transaction return different results

Phantom read: later reads in the same transaction
return extra rows
Y. Cheng GMU CS475 Fall 2021 34

Serial schedule – No problem

Y. Cheng GMU CS475 Fall 2021 35

T1: R(A), W(A), R(B), W(B), Abort
T2: R(A), W(A), Commit

time

Quiz: Which concurrency problem is this?

Y. Cheng GMU CS475 Fall 2021 36

Quiz: Which concurrency problem is
this?T1: R(A), W(A) R(B), W(B), Abort
T2: R(A), W(A), Commit

Lost update Dirty read Non-repeatable read Phantom read

time

??

Quiz: Which concurrency problem is this?

Y. Cheng GMU CS475 Fall 2021 37

Quiz: Which concurrency problem is
this?T1: R(A) R(A), W(A), Commit
T2: R(A), W(A), Commit

time

Lost update Dirty read Non-repeatable read Phantom read ??

Quiz: Which concurrency problem is this?

Y. Cheng GMU CS475 Fall 2021 38

Quiz: Which concurrency problem is
this?

time

Lost update Dirty read Non-repeatable read Phantom read

T1: R(A), W(A) W(B), Commit
T2: R(A) W(A), W(B), Commit

??

Quiz: Which concurrency problem is this?

Y. Cheng GMU CS475 Fall 2021 39

Quiz: Which concurrency problem is
this?

time

Lost update Dirty read Non-repeatable read Phantom read

T1: R(A), W(A) W(A), Commit
T2: R(A), R(B), W(B), Commit

??

40

Lock-based concurrency control

Y. Cheng GMU CS475 Fall 2021

• Big Global Lock: Results in a serial transaction
schedule at the cost of performance

• 2PL: Two-phase locking with finer-grain locks:
• Growing phase when txn acquires locks
• Shrinking phase when txn releases locks (typically

commit)
• Allows txns to execute concurrently, improving

performance

2PL

• 2PL guarantees serializability by disallowing
cycles between txns

• There could be dependencies in the waits-for
graph among txns waiting for locks:
• Edge from T2 to T1 means T1 acquired lock first and

T2 has to wait
• Edge from T1 to T2 means T1 acquired lock first and

T2 has to wait
• Cycles mean DEADLOCK, and in that case 2PL

won’t proceed

Y. Cheng GMU CS475 Fall 2021 41

2PL

Deal with deadlocks by aborting one of the twn txns (e.g.,
detect with timeout)

Y. Cheng GMU CS475 Fall 2021 42

time

T1: R(A), W(A), W(B), Commit
T2: R(B), W(B), R(A) Commit

2PL

Y. Cheng GMU CS475 Fall 2021 43

time

T1: R(A), W(A), W(B), Commit
T2: R(B), W(B), R(A) Commit

Lock_X(A)

2PL

Y. Cheng GMU CS475 Fall 2021 44

time

T1: R(A), W(A), W(B), Commit
T2: R(B), W(B), R(A) Commit

Lock_X(A)

Lock_X(B)

2PL

Y. Cheng GMU CS475 Fall 2021 45

time

T1: R(A), W(A), W(B), Commit
T2: R(B), W(B), R(A) Commit

Lock_X(A)

Lock_X(B) Lock_S(A)

2PL

Y. Cheng GMU CS475 Fall 2021 46

time

T1: R(A), W(A), W(B), Commit
T2: R(B), W(B), R(A) Commit

Lock_X(A)

Lock_X(B) Lock_S(A)

Lock_X(B)

2PL

Y. Cheng GMU CS475 Fall 2021 47

time

T1: R(A), W(A), W(B), Commit
T2: R(B), W(B), R(A) Commit

Lock_X(A)

Lock_X(B) Lock_S(A)

Lock_X(B)

DEADLOCK!

2PL

Deal with deadlocks by aborting one of the two txns (e.g.,
detect with timeout)

Y. Cheng GMU CS475 Fall 2021 48

time

T1: R(A), W(A), W(B), Commit
T2: R(B), W(B), R(A) Commit

Lock_X(A)

Lock_X(B) Lock_S(A)

Lock_X(B)

DEADLOCK!

2PL: Releasing locks too soon?
What if we release the lock as soon as we can?

Y. Cheng GMU CS475 Fall 2021 49

2PL: Releasing locks too soon?
What if we release the lock as soon as we can?

Y. Cheng GMU CS475 Fall 2021 50

time

T1: R(A), W(A), Abort
T2: R(B), W(B), R(A) Abort Abort

2PL: Releasing locks too soon?
What if we release the lock as soon as we can?

Y. Cheng GMU CS475 Fall 2021 51

time

T1: R(A), W(A), Abort
T2: R(B), W(B), R(A) Abort Abort

Lock_X(A)

2PL: Releasing locks too soon?
What if we release the lock as soon as we can?

Y. Cheng GMU CS475 Fall 2021 52

time

T1: R(A), W(A), Abort
T2: R(B), W(B), R(A) Abort Abort

Lock_X(A) Unlock_X(A)

2PL: Releasing locks too soon?
What if we release the lock as soon as we can?

Y. Cheng GMU CS475 Fall 2021 53

time

T1: R(A), W(A), Abort
T2: R(B), W(B), R(A) Abort Abort

Lock_X(A) Unlock_X(A)

Lock_X(B)

2PL: Releasing locks too soon?
What if we release the lock as soon as we can?

Y. Cheng GMU CS475 Fall 2021 54

time

T1: R(A), W(A), Abort
T2: R(B), W(B), R(A) Abort Abort

Lock_X(A) Unlock_X(A)

Lock_X(B) Lock_S(A)

2PL: Releasing locks too soon?
What if we release the lock as soon as we can?

Y. Cheng GMU CS475 Fall 2021 55

time

T1: R(A), W(A), Abort
T2: R(B), W(B), R(A) Abort Abort

Lock_X(A)

Lock_X(B) Lock_S(A)

Unlock_X(A)

Rollback of T1 requires rollback of T2, since T2 reads a
value written by T1

2PL: Releasing locks too soon?
What if we release the lock as soon as we can?

Y. Cheng GMU CS475 Fall 2021 56

time

T1: R(A), W(A), Abort
T2: R(B), W(B), R(A) Abort Abort

Lock_X(A)

Lock_X(B) Lock_S(A)

Unlock_X(A)

Rollback of T1 requires rollback of T2, since T2 reads a
value written by T1
Cascading aborts: the rollback of one txn causes rollback
of another

Strict 2PL

• Release locks at the end of the transaction

• Variant of 2PL implemented by most DBs in
practice

Y. Cheng GMU CS475 Fall 2021 57

Y. Cheng GMU CS475 Fall 2021 58

Q: What if access patterns rarely,
if ever, conflict?

59

Today

Y. Cheng GMU CS475 Fall 2021

• Optimistic concurrency control (OCC)
• Be optimistic, or opportunistic, that conflicts rarely

happen

Be optimistic!

• Goal: Low overhead for non-conflicting txns

• Assume success!
• Process transaction as if would succeed
• Check for serializability only at commit time
• If fails, abort transaction

• Optimistic Concurrency Control (OCC)
• Higher performance when few conflicts vs. locking
• Lower performance when many conflicts vs. locking

Y. Cheng GMU CS475 Fall 2021 60

OCC: Three-phase approach

• Begin: Record timestamp marking the transaction’s
beginning

Y. Cheng GMU CS475 Fall 2021 61

OCC: Three-phase approach

• Begin: Record timestamp marking the transaction’s
beginning
• Modify phase:
• Txn can read values of committed data items
• Updates only to local copies (versions) of items (in DB

cache)

Y. Cheng GMU CS475 Fall 2021 62

OCC: Three-phase approach

• Begin: Record timestamp marking the transaction’s
beginning
• Modify phase:
• Txn can read values of committed data items
• Updates only to local copies (versions) of items (in DB

cache)

• Validate phase

Y. Cheng GMU CS475 Fall 2021 63

OCC: Three-phase approach

• Begin: Record timestamp marking the transaction’s
beginning
• Modify phase:
• Txn can read values of committed data items
• Updates only to local copies (versions) of items (in DB

cache)

• Validate phase
• Commit phase
• If validates, transaction’s updates applied to DB
• Otherwise, transaction restarted
• Care must be taken to avoid “TOCTTOU” issues

Y. Cheng GMU CS475 Fall 2021 64

OCC: Three-phase approach

• Begin: Record timestamp marking the transaction’s
beginning
• Modify phase:
• Txn can read values of committed data items
• Updates only to local copies (versions) of items (in DB

cache)

• Validate phase
• Commit phase
• If validates, transaction’s updates applied to DB
• Otherwise, transaction restarted
• Care must be taken to avoid “TOCTTOU” issues

Y. Cheng GMU CS475 Fall 2021 65

Execute optimistically!

OCC: Three-phase approach

• Begin: Record timestamp marking the transaction’s
beginning
• Modify phase:
• Txn can read values of committed data items
• Updates only to local copies (versions) of items (in DB

cache)

• Validate phase
• Commit phase
• If validates, transaction’s updates applied to DB
• Otherwise, transaction restarted
• Care must be taken to avoid “TOCTTOU” issues

Y. Cheng GMU CS475 Fall 2021 66

Execute optimistically!

These should happen together!

67

OCC: Why validation is necessary!

txn
coordinator O

Q

P

When commits txn updates,
create new versions at some
timestamp t

• New txn creates shadow
copies of P and Q

• P and Q’s copies at
inconsistent state

txn
coordinator

Y. Cheng GMU CS475 Fall 2021

• Transaction is about to commit. System must ensure:
• Initial consistency: Versions of accessed objects at start

consistent
• No conflicting concurrency: No other txn has committed an

operation at object that conflicts with one of this txn’s invocations

• Consider transaction T: For all other txns O either committed or in
validation phase, one of the following holds:

A. O completes commit before T starts modify
B. T starts commit after O completes commit,

and ReadSet T and WriteSet O are disjoint
C. Both ReadSet T and WriteSet T are disjoint from WriteSet O,

and O completes modify phase

• When validating T, first check (A), then (B), then (C).
If all fail, validation fails and T aborted

68

OCC: Validate phase

Y. Cheng GMU CS475 Fall 2021

Atomic commit for OCC

• Use two-phase commit (2PC) to achieve atomic
commit (validate + commit writes)

• Recall 2PC protocol:
1. Coordinator sends prepare messages to all nodes,

other nodes vote yes or no
a. If all nodes accept, proceed
b. If any node declines, abort

2. Coordinator sends commit or abort messages to all
nodes, and all nodes act accordingly

Y. Cheng GMU CS475 Fall 2021 69

Atomic commit for OCC
• Execute optimistically: Read committed values, write

changes locally
• Validate: Check if data has changed since original read
• Commit (Write): Commit if no change, else abort

• Phase 1: send prepare to each shard: include buffered
write + original reads for that shard
• Shards validate reads and acquire locks (exclusive for write

locations, shared for read locations)
• If this succeeds, respond with yes; else respond with no

• Phase 2: collect votes, send result (abort or commit) to
all shards
• If commit, shards apply buffered writes
• All shards release locks

Y. Cheng GMU CS475 Fall 2021 70

Phase 1

Phase 2

Atomic commit for OCC
• Execute optimistically: Read committed values, write

changes locally
• Validate: Check if data has changed since original read
• Commit (Write): Commit if no change, else abort

• Phase 1: send prepare to each shard: include buffered
write + original reads for that shard
• Shards acquire locks and validate reads (exclusive for write

locations, shared for read locations)
• If this succeeds, respond with yes; else respond with no

• Phase 2: collect votes, send result (abort or commit) to
all shards
• If commit, shards apply buffered writes
• All shards release locks

Y. Cheng GMU CS475 Fall 2021 71

Phase 1

Phase 2

Atomic commit for OCC
• Execute optimistically: Read committed values, write

changes locally
• Validate: Check if data has changed since original read
• Commit (Write): Commit if no change, else abort

• Phase 1: send prepare to each shard: include buffered
write + original reads for that shard
• Shards acquire locks and validate reads (exclusive for write

locations, shared for read locations)
• If this succeeds, respond with yes; else respond with no

• Phase 2: collect votes, send result (abort or commit) to
all shards
• If commit, shards apply buffered writes
• All shards release locks

Y. Cheng GMU CS475 Fall 2021 72

Phase 1

Phase 2

Two ways of implementing
serializability: 2PL, OCC
• 2PL (pessimistic):
• Assume conflict, always lock
• High overhead for non-conflicting txn
• Must check for deadlock

• OCC (optimistic):
• Assume no conflict
• Low overhead for low-conflict workloads (but high for

high-conflict workloads)
• Ensure correctness by aborting txns if conflict occurs

Y. Cheng GMU CS475 Fall 2021 73

Lock_X(A) <granted>
Read(A) Lock_S(A)

A := A-50
Write(A)

Unlock(A) <granted>
Read(A)

Unlock(A)
Lock_S(B) <granted>

Lock_X(B)
Read(B)

<granted> Unlock(B)

Read(B)
B := B +50
Write(B)

Unlock(B)

Is this a 2PL schedule?
No

Is this a serializable schedule?
No

Lock_X(A) <granted>
Read(A) Lock_S(A)

A := A-50
Write(A)

Lock_X(B) <granted>
Unlock(A) <granted>

Read(A)
Lock_S(B)

Read(B)
B := B +50
Write(B)

Unlock(B) <granted>
Unlock(A)
Read(B)

Unlock(B)

Is this a 2PL schedule?
Yes, and it is serializable

Is this a Strict 2PL schedule?
No, cascading aborts possible

Lock_X(A) <granted>
Read(A) Lock_S(A)

A := A-50
Write(A)

Lock_X(B) <granted>
Read(B)

B := B +50
Write(B)

Unlock(A)
Unlock(B) <granted>

Read(A)
Lock_S(B) <granted>

Read(B)
Unlock(A)
Unlock(B)

Is this a 2PL schedule?
Yes, and it is serializable

Is this a Strict 2PL schedule?
Yes, cascading aborts not
possible

