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• Definition: A unit of work:
• May consist of multiple data accesses or updates
• Must commit or abort as a single atomic unit

• Transactions can either commit, or abort
• When commit, all updates performed on database 

are made permanent, visible to other transactions

• When abort, database restored to a state such that 
the aborting transaction never executed

2

The transaction
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Transaction examples

• Bank account transfer
• Turing -= $100
• Lovelace += $100

• Maintaining symmetric relationships
• Lovelace FriendOf Turing
• Turing FriendOf Lovelace

• Order product
• Charge customer card
• Decrement stock
• Ship stock
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Relationship with replication

• Replication (e.g., Raft) is about doing the same
thing in multiple places to provide fault tolerance

• Sharding is about doing different things in 
multiple places for scalability 

• e.g., using consistent hashing to partition data in 
distributed storage (Dynamo)

• Atomic commit is about doing different things 
in different places together
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Relationship with replication
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Focus on sharding for today
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Defining properties of transactions

• Atomicity: Either all constituent operations of the 
transaction complete successfully, or none do

• Consistency: Each transaction in isolation preserves 
a set of integrity constraints on the data

• Isolation: Transactions’ behavior not impacted by 
presence of other concurrent transactions

• Durability: The transaction’s effects survive failure 
of volatile (memory) or non-volatile (disk) storage
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1. High transaction speed requirements
• If always fsync() to disk for each result on 

transaction, yields terrible performance

2. Atomic and durable writes to disk are 
difficult
• In a manner to handle arbitrary crashes

• Hard disks and solid-state storage use write 
buffers in volatile memory 

Challenges
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Techniques for achieving ACID properties

•Write-ahead logging and checkpointing

• Serializability and two-phase locking
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Outline
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• Transaction's properties: ACID
• Atomicity, Consistency, Isolation, Durability

• Application logic checks consistency (C)

• This leaves two main goals for the system:

1. Handle failures (A, D)

2. Handle concurrency (I)
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What does the system need to do?
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Goal #1: Concurrency control
Transaction recovery
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• Standard “crash failure” model:

• Machines are prone to crashes:
• Disk contents (non-volatile storage) okay
• Memory contents (volatile storage) lost

• Machines don’t misbehave (“Byzantine”)
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Failure model: crash failures
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• Transfers $10 from account A to account B
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Account transfer transaction

transaction transfer(A, B):
begin_tx
a ß read(A)
if a < 10 then abort_tx
else write(A, a−10)

b ß read(B)
write(B, b+10)
commit_tx
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• Suppose $100 in A, $100 in B

• commit_tx starts the commit protocol:
• write(A, $90) to disk 
• write(B, $110) to disk

• What happens if system crash after first write, but 
before second write?

• After recovery: Partial writes, money is lost
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Problem
transaction transfer(A, B):
begin_tx
a ß read(A)
if a < 10 then abort_tx
else write(A, a−10)

b ß read(B)
write(B, b+10)
commit_tx

Lack atomicity in the presence of failures
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System architecture
• Smallest unit of storage that can be atomically 

written to non-volatile storage is called a page

• Buffer manager moves pages between buffer 
pool (in volatile memory) and disk (in non-volatile 
storage)
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1. Force all of a transaction’s writes to disk 
before transaction commits?

• Yes: force policy
• No: no-force policy

2. May uncommitted transactions’ writes 
overwrite committed values on disk?

• Yes: steal policy
• No: no-steal policy
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Two design choices
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1. Force all of a transaction’s writes to disk 
before transaction commits?

• Yes: force policy

2. May uncommitted transactions’ writes 
overwrite committed values on disk?

• No: no-steal policy
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Performance implications

Then slower disk writes appear on the 
critical path of a committing transaction

Then buffer manager loses write scheduling flexibility
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Undo & redo

1. Force all a transaction’s writes to disk before
transaction commits?

• Choose no: no-force policy
☞ Need support for redo: complete a committed 

transaction’s writes on disk

2. May uncommitted transactions’ writes 
overwrite committed values on disk?

• Choose yes: steal policy
☞ Need support for undo: removing the effects of an 

uncommitted transaction on disk
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• Log: A sequential file that stores information 
about transactions and system state

• Resides in separate, non-volatile storage

• One entry in the log for each update, commit, 
abort operation: called a log record

• Log record contains:
• Monotonic-increasing log sequence number (LSN)
• Old value (before image) of the item for undo
• New value (after image) of the item for redo
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How to implement undo & redo?
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System architecture
• Buffer pool (volatile memory) and disk (non-

volatile)

• The log resides on a separate partition or disk 
(in non-volatile storage)
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• Ensures atomicity in the event of system crashes 
under no-force/steal buffer management

1. Force all log records pertaining to an updated 
page into the (non-volatile) log before any 
(over)-writes to page itself

2. A transaction is not considered committed until 
all its log records (including commit record) are 
forced into the log
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Write-ahead logging (WAL)
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force_log_entry(A, old=$100, new=$90)
force_log_entry(B, old=$100, new=$110)
write(A, $90)
write(B, $110)
force_log_entry(commit)

• What if the commit log record size > the page size?

• How to ensure each log record is written atomically?
• Write a checksum of entire log entry
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WAL example

Does not have 
to flush to disk
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Goal #2: Concurrency control
Transaction isolation
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Two concurrent transactions

transaction sum(A, B):
begin_tx
a ß read(A)
b ß read(B)
print a + b
commit_tx

transaction transfer(A, B):
begin_tx
a ß read(A)
if a < 10 then abort_tx
else write(A, a−10)

b ß read(B)
write(B, b+10)
commit_tx
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• Isolation: sum appears to happen either 
completely before or completely after transfer
• Sometimes called before-after atomicity

• Schedule for transactions is an ordering of 
the operations performed by those 
transactions
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Isolation between transactions
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• Serial execution of transactions—transfer then sum:

transfer: rA wA rB wB ©
sum: rA rB ©

• Concurrent execution resulting in inconsistent 
retrieval, result differing from any serial execution:

transfer: rA wA rB wB ©
sum: rA rB ©

Time à
© = commit

26

Problem for concurrent execution: 
Inconsistent retrieval

debit credit

debit credit
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• Isolation: sum appears to happen either 
completely before or completely after transfer
• Sometimes called before-after atomicity

• Given a schedule of operations:
• Is that schedule in some way “equivalent” 

to a serial execution of transactions?
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Isolation between transactions
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• Two operations from different transactions are 
conflicting if:

1. They read and write to the same data item
2. The write and write to the same data item

• Two schedules are equivalent if:
1. They contain the same transactions and 

operations
2. They order all conflicting operations of non-

aborting transactions in the same way
28

Equivalence of schedules
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• Ideal isolation semantics: conflict serializability

• A schedule is conflict serializable if it is 
equivalent to some serial schedule
• i.e., non-conflicting operations can be 

reordered to get a serial schedule

29

Conflict serializability

Y. Cheng GMU CS475 Fall 2021



• Ideal isolation semantics: conflict serializability

• A schedule is conflict serializable if it is equivalent 
to some serial schedule

• i.e., non-conflicting operations can be reordered
to get a serial schedule

transfer: rA wA rB wB ©
sum: rA rB ©

Time à
© = commit

30

A serializable schedule

Conflict-free!
Serial schedule

rA
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• Ideal isolation semantics: conflict serializability

• A schedule is conflict serializable if it is equivalent 
to some serial schedule

• i.e., non-conflicting operations can be reordered
to get a serial schedule

transfer: rA wA rB wB ©
sum: rA rB ©

Time à
© = commit
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A non-serializable schedule

Conflicting opsConflicting ops

But in a serial schedule, sum’s reads 
either both before wA or both after wB

Y. Cheng GMU CS475 Fall 2021



• Each node t in the precedence graph 
represents a transaction t

• Edge from s to t if some action of s precedes 
and conflicts with some action of t

32

Testing for serializability
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• Each node t in the precedence graph 
represents a transaction t

• Edge from s to t if some action of s precedes 
and conflicts with some action of t

transfer: rA wA rB wB ©
sum: rA rB ©

Time à
© = commit
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Serializable schedule, acyclic graph

transfer sum

Serializable
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• Each node t in the precedence graph 
represents a transaction t

• Edge from s to t if some action of s precedes 
and conflicts with some action of t

transfer: rA wA rB wB ©
sum: rA rB ©

Time à
© = commit
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Non-serializable schedule, cyclic graph

transfer sum

Non-serializable
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• Each node t in the precedence graph represents 
a transaction t
• Edge from s to t if some action of s precedes 

and conflicts with some action of t

35

Testing for serializability

In general, a schedule is conflict-serializable 
if and only if its precedence graph is acyclic
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• Locking-based approaches

• Strawman 1: Big global lock
• Acquire the lock when transaction starts
• Release the lock when transaction ends

36

How to ensure a serializable schedule?

Results in a serial transaction schedule 
at the cost of performance
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• Locks maintained by transaction manager
• Transaction requests lock for a data item
• Transaction manager grants or denies lock

• Lock types
• Shared: Need to have before read object
• Exclusive: Need to have before write object

37

Locking

Shared (S) Exclusive (X)
Shared (S) Yes No
Exclusive (X) No No
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• Strawman 2: Grab (fine-grained) locks independently, for 
each data item (e.g., bank accounts A and B)

transfer: ◢A rA wA ◣A ◢B rB wB ◣B  © 
sum: ◿A rA ◺A ◿B rB ◺B ©

Time à
© = commit

◢ /◿ = eXclusive- / Shared-lock; ◣ / ◺ = X- / S-unlock
38

How to ensure a serializable schedule?

Permits this non-serializable interleaving
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• 2PL rule: Once a transaction has released a lock it 
is not allowed to obtain any other locks

• A growing phase when txn acquires locks
• A shrinking phase when txn releases locks

• In practice:
• Growing phase is the entire transaction
• Shrinking phase is during commit

39

Two-phase locking (2PL)
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• 2PL rule: Once a transaction has released a lock it is not 
allowed to obtain any other locks

transfer: ◢A rA wA ◣A ◢B rB wB ◣B  © 
sum: ◿A rA ◺A ◿B rB ◺B ©

Time à
© = commit

◢ /◿ = X- / S-lock; ◣ / ◺ = X- / S-unlock

40

2PL allows only serializable schedules

2PL precludes this non-serializable interleaving
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• 2PL rule: Once a transaction has released a lock it is not 
allowed to obtain any other locks

transfer: ◿A rA ◢A wA ◿B rB ◢B wB✻© 
sum: ◿A rA ◿B rB✻©

Time à
© = commit

◢ /◿ = X- / S-lock; ◣ / ◺ = X- / S-unlock; ✻ = release all locks

41

2PL and transaction concurrency

2PL permits this serializable, interleaved schedule
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• 2PL rule: Once a transaction has released a lock it is not 
allowed to obtain any other locks

transfer: rA wA rB wB ©
sum: rA rB ©

Time à
© = commit

(locking not shown)

42

2PL doesn’t exploit all opportunities
for concurrency

2PL precludes this serializable, interleaved schedule
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• What if a lock is unavailable?  Is deadlock
possible?
• Yes; but a central controller can detect deadlock 

cycles and abort involved transactions

• The phantom problem
• Database has fancier ops than key-value store
• T1: begin_tx; update employee (set salary = 1.1×salary) 

where dept = “CS”; commit_tx
• T2: insert into employee (“carol”, “CS”)

• Even if they lock individual data items, could result in non-
serializable execution

43

Issues with 2PL
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Linearizability vs. Serializability

Y. Cheng GMU CS475 Fall 2021 44

• Linearizability: a guarantee 
about single operations on 
single objects
• Once write completes, all later 

reads (by wall clock) should 
reflect that write

• Serializability is a 
guarantee about 
transactions over one or 
more objects
• Doesn’t impose real-time 

constraints

• Linearizability + serializability = strict serializability
– Transaction behavior equivalent to some serial 

execution
• And that serial execution agrees with real-time



Techniques for achieving ACID properties
•Write-ahead logging and check-pointing àA, D

• Serializability and two-phase locking à I

45

Summary
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