
Concurrency Control,
Recovery, and Locking

Some material taken/derived from:
• Princeton COS-418 materials created by Michael Freedman and Kyle Jamieson.
• MIT 6.824 by Robert Morris, Frans Kaashoek, and Nickolai Zeldovich.
Licensed for use under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

CS 475: Concurrent & Distributed Systems (Fall 2021)
Lecture 14

Yue Cheng

• Definition: A unit of work:
• May consist of multiple data accesses or updates
• Must commit or abort as a single atomic unit

• Transactions can either commit, or abort
• When commit, all updates performed on database

are made permanent, visible to other transactions

• When abort, database restored to a state such that
the aborting transaction never executed

2

The transaction

Y. Cheng GMU CS475 Fall 2021

Transaction examples

• Bank account transfer
• Turing -= $100
• Lovelace += $100

• Maintaining symmetric relationships
• Lovelace FriendOf Turing
• Turing FriendOf Lovelace

• Order product
• Charge customer card
• Decrement stock
• Ship stock

Y. Cheng GMU CS475 Fall 2021 3

Relationship with replication

• Replication (e.g., Raft) is about doing the same
thing in multiple places to provide fault tolerance

• Sharding is about doing different things in
multiple places for scalability

• e.g., using consistent hashing to partition data in
distributed storage (Dynamo)

• Atomic commit is about doing different things
in different places together

Y. Cheng GMU CS475 Fall 2021 4

Relationship with replication

Y. Cheng GMU CS475 Fall 2021 5

A-F

G-L

M-R

S-Z

A-F

G-L

M-R

S-Z

A-F

G-L

M-R

S-Z

Replication Dimension

Sharding
Dimension

Focus on sharding for today

Y. Cheng GMU CS475 Fall 2021 6

A-F

G-L

M-R

S-Z

A-F

G-L

M-R

S-Z

A-F

G-L

M-R

S-Z

Replication Dimension

Sharding
Dimension

7

Defining properties of transactions

• Atomicity: Either all constituent operations of the
transaction complete successfully, or none do

• Consistency: Each transaction in isolation preserves
a set of integrity constraints on the data

• Isolation: Transactions’ behavior not impacted by
presence of other concurrent transactions

• Durability: The transaction’s effects survive failure
of volatile (memory) or non-volatile (disk) storage

Y. Cheng GMU CS475 Fall 2021

1. High transaction speed requirements
• If always fsync() to disk for each result on

transaction, yields terrible performance

2. Atomic and durable writes to disk are
difficult
• In a manner to handle arbitrary crashes

• Hard disks and solid-state storage use write
buffers in volatile memory

Challenges

Y. Cheng GMU CS475 Fall 2021 8

Techniques for achieving ACID properties

•Write-ahead logging and checkpointing

• Serializability and two-phase locking

9

Outline

Y. Cheng GMU CS475 Fall 2021

• Transaction's properties: ACID
• Atomicity, Consistency, Isolation, Durability

• Application logic checks consistency (C)

• This leaves two main goals for the system:

1. Handle failures (A, D)

2. Handle concurrency (I)

10

What does the system need to do?

Y. Cheng GMU CS475 Fall 2021

Goal #1: Concurrency control
Transaction recovery

11Y. Cheng GMU CS475 Fall 2021

• Standard “crash failure” model:

• Machines are prone to crashes:
• Disk contents (non-volatile storage) okay
• Memory contents (volatile storage) lost

• Machines don’t misbehave (“Byzantine”)

12

Failure model: crash failures

Y. Cheng GMU CS475 Fall 2021

• Transfers $10 from account A to account B

13

Account transfer transaction

transaction transfer(A, B):
begin_tx
a ß read(A)
if a < 10 then abort_tx
else write(A, a−10)

b ß read(B)
write(B, b+10)
commit_tx

Y. Cheng GMU CS475 Fall 2021

• Suppose $100 in A, $100 in B

• commit_tx starts the commit protocol:
• write(A, $90) to disk
• write(B, $110) to disk

• What happens if system crash after first write, but
before second write?

• After recovery: Partial writes, money is lost

14

Problem
transaction transfer(A, B):
begin_tx
a ß read(A)
if a < 10 then abort_tx
else write(A, a−10)

b ß read(B)
write(B, b+10)
commit_tx

Lack atomicity in the presence of failures
Y. Cheng GMU CS475 Fall 2021

System architecture
• Smallest unit of storage that can be atomically

written to non-volatile storage is called a page

• Buffer manager moves pages between buffer
pool (in volatile memory) and disk (in non-volatile
storage)

Y. Cheng 15

Buffer pool

Buffer manager
Page

Non-volatile storage

Disk

1. Force all of a transaction’s writes to disk
before transaction commits?

• Yes: force policy
• No: no-force policy

2. May uncommitted transactions’ writes
overwrite committed values on disk?

• Yes: steal policy
• No: no-steal policy

16

Two design choices

Y. Cheng GMU CS475 Fall 2021

1. Force all of a transaction’s writes to disk
before transaction commits?

• Yes: force policy

2. May uncommitted transactions’ writes
overwrite committed values on disk?

• No: no-steal policy

17

Performance implications

Then slower disk writes appear on the
critical path of a committing transaction

Then buffer manager loses write scheduling flexibility
Y. Cheng GMU CS475 Fall 2021

18

Undo & redo

1. Force all a transaction’s writes to disk before
transaction commits?

• Choose no: no-force policy
☞ Need support for redo: complete a committed

transaction’s writes on disk

2. May uncommitted transactions’ writes
overwrite committed values on disk?

• Choose yes: steal policy
☞ Need support for undo: removing the effects of an

uncommitted transaction on disk

Y. Cheng GMU CS475 Fall 2021

• Log: A sequential file that stores information
about transactions and system state

• Resides in separate, non-volatile storage

• One entry in the log for each update, commit,
abort operation: called a log record

• Log record contains:
• Monotonic-increasing log sequence number (LSN)
• Old value (before image) of the item for undo
• New value (after image) of the item for redo

19

How to implement undo & redo?

Y. Cheng GMU CS475 Fall 2021

System architecture
• Buffer pool (volatile memory) and disk (non-

volatile)

• The log resides on a separate partition or disk
(in non-volatile storage)

Y. Cheng GMU CS475 Fall 2021 20
Non-volatile storage

Disk
Log

Buffer pool

Buffer manager Page

• Ensures atomicity in the event of system crashes
under no-force/steal buffer management

1. Force all log records pertaining to an updated
page into the (non-volatile) log before any
(over)-writes to page itself

2. A transaction is not considered committed until
all its log records (including commit record) are
forced into the log

21

Write-ahead logging (WAL)

Y. Cheng GMU CS475 Fall 2021

force_log_entry(A, old=$100, new=$90)
force_log_entry(B, old=$100, new=$110)
write(A, $90)
write(B, $110)
force_log_entry(commit)

• What if the commit log record size > the page size?

• How to ensure each log record is written atomically?
• Write a checksum of entire log entry

22

WAL example

Does not have
to flush to disk

Y. Cheng GMU CS475 Fall 2021

Goal #2: Concurrency control
Transaction isolation

23Y. Cheng GMU CS475 Fall 2021

24

Two concurrent transactions

transaction sum(A, B):
begin_tx
a ß read(A)
b ß read(B)
print a + b
commit_tx

transaction transfer(A, B):
begin_tx
a ß read(A)
if a < 10 then abort_tx
else write(A, a−10)

b ß read(B)
write(B, b+10)
commit_tx

Y. Cheng GMU CS475 Fall 2021

• Isolation: sum appears to happen either
completely before or completely after transfer
• Sometimes called before-after atomicity

• Schedule for transactions is an ordering of
the operations performed by those
transactions

25

Isolation between transactions

Y. Cheng GMU CS475 Fall 2021

• Serial execution of transactions—transfer then sum:

transfer: rA wA rB wB ©
sum: rA rB ©

• Concurrent execution resulting in inconsistent
retrieval, result differing from any serial execution:

transfer: rA wA rB wB ©
sum: rA rB ©

Time à
© = commit

26

Problem for concurrent execution:
Inconsistent retrieval

debit credit

debit credit

Y. Cheng GMU CS475 Fall 2021

• Isolation: sum appears to happen either
completely before or completely after transfer
• Sometimes called before-after atomicity

• Given a schedule of operations:
• Is that schedule in some way “equivalent”

to a serial execution of transactions?

27

Isolation between transactions

Y. Cheng GMU CS475 Fall 2021

• Two operations from different transactions are
conflicting if:

1. They read and write to the same data item
2. The write and write to the same data item

• Two schedules are equivalent if:
1. They contain the same transactions and

operations
2. They order all conflicting operations of non-

aborting transactions in the same way
28

Equivalence of schedules

Y. Cheng GMU CS475 Fall 2021

• Ideal isolation semantics: conflict serializability

• A schedule is conflict serializable if it is
equivalent to some serial schedule
• i.e., non-conflicting operations can be

reordered to get a serial schedule

29

Conflict serializability

Y. Cheng GMU CS475 Fall 2021

• Ideal isolation semantics: conflict serializability

• A schedule is conflict serializable if it is equivalent
to some serial schedule

• i.e., non-conflicting operations can be reordered
to get a serial schedule

transfer: rA wA rB wB ©
sum: rA rB ©

Time à
© = commit

30

A serializable schedule

Conflict-free!
Serial schedule

rA

Y. Cheng GMU CS475 Fall 2021

• Ideal isolation semantics: conflict serializability

• A schedule is conflict serializable if it is equivalent
to some serial schedule

• i.e., non-conflicting operations can be reordered
to get a serial schedule

transfer: rA wA rB wB ©
sum: rA rB ©

Time à
© = commit

31

A non-serializable schedule

Conflicting opsConflicting ops

But in a serial schedule, sum’s reads
either both before wA or both after wB

Y. Cheng GMU CS475 Fall 2021

• Each node t in the precedence graph
represents a transaction t

• Edge from s to t if some action of s precedes
and conflicts with some action of t

32

Testing for serializability

Y. Cheng GMU CS475 Fall 2021

• Each node t in the precedence graph
represents a transaction t

• Edge from s to t if some action of s precedes
and conflicts with some action of t

transfer: rA wA rB wB ©
sum: rA rB ©

Time à
© = commit

33

Serializable schedule, acyclic graph

transfer sum

Serializable

Y. Cheng GMU CS475 Fall 2021

• Each node t in the precedence graph
represents a transaction t

• Edge from s to t if some action of s precedes
and conflicts with some action of t

transfer: rA wA rB wB ©
sum: rA rB ©

Time à
© = commit

34

Non-serializable schedule, cyclic graph

transfer sum

Non-serializable

Y. Cheng GMU CS475 Fall 2021

• Each node t in the precedence graph represents
a transaction t
• Edge from s to t if some action of s precedes

and conflicts with some action of t

35

Testing for serializability

In general, a schedule is conflict-serializable
if and only if its precedence graph is acyclic

Y. Cheng GMU CS475 Fall 2021

• Locking-based approaches

• Strawman 1: Big global lock
• Acquire the lock when transaction starts
• Release the lock when transaction ends

36

How to ensure a serializable schedule?

Results in a serial transaction schedule
at the cost of performance

Y. Cheng GMU CS475 Fall 2021

• Locks maintained by transaction manager
• Transaction requests lock for a data item
• Transaction manager grants or denies lock

• Lock types
• Shared: Need to have before read object
• Exclusive: Need to have before write object

37

Locking

Shared (S) Exclusive (X)
Shared (S) Yes No
Exclusive (X) No No

Y. Cheng GMU CS475 Fall 2021

• Strawman 2: Grab (fine-grained) locks independently, for
each data item (e.g., bank accounts A and B)

transfer: ◢A rA wA ◣A ◢B rB wB ◣B ©
sum: ◿A rA ◺A ◿B rB ◺B ©

Time à
© = commit

◢ /◿ = eXclusive- / Shared-lock; ◣ / ◺ = X- / S-unlock
38

How to ensure a serializable schedule?

Permits this non-serializable interleaving

Y. Cheng GMU CS475 Fall 2021

• 2PL rule: Once a transaction has released a lock it
is not allowed to obtain any other locks

• A growing phase when txn acquires locks
• A shrinking phase when txn releases locks

• In practice:
• Growing phase is the entire transaction
• Shrinking phase is during commit

39

Two-phase locking (2PL)

Y. Cheng GMU CS475 Fall 2021

• 2PL rule: Once a transaction has released a lock it is not
allowed to obtain any other locks

transfer: ◢A rA wA ◣A ◢B rB wB ◣B ©
sum: ◿A rA ◺A ◿B rB ◺B ©

Time à
© = commit

◢ /◿ = X- / S-lock; ◣ / ◺ = X- / S-unlock

40

2PL allows only serializable schedules

2PL precludes this non-serializable interleaving

Y. Cheng GMU CS475 Fall 2021

• 2PL rule: Once a transaction has released a lock it is not
allowed to obtain any other locks

transfer: ◿A rA ◢A wA ◿B rB ◢B wB✻©
sum: ◿A rA ◿B rB✻©

Time à
© = commit

◢ /◿ = X- / S-lock; ◣ / ◺ = X- / S-unlock; ✻ = release all locks

41

2PL and transaction concurrency

2PL permits this serializable, interleaved schedule

Y. Cheng GMU CS475 Fall 2021

• 2PL rule: Once a transaction has released a lock it is not
allowed to obtain any other locks

transfer: rA wA rB wB ©
sum: rA rB ©

Time à
© = commit

(locking not shown)

42

2PL doesn’t exploit all opportunities
for concurrency

2PL precludes this serializable, interleaved schedule

Y. Cheng GMU CS475 Fall 2021

• What if a lock is unavailable? Is deadlock
possible?
• Yes; but a central controller can detect deadlock

cycles and abort involved transactions

• The phantom problem
• Database has fancier ops than key-value store
• T1: begin_tx; update employee (set salary = 1.1×salary)

where dept = “CS”; commit_tx
• T2: insert into employee (“carol”, “CS”)

• Even if they lock individual data items, could result in non-
serializable execution

43

Issues with 2PL

Y. Cheng GMU CS475 Fall 2021

Linearizability vs. Serializability

Y. Cheng GMU CS475 Fall 2021 44

• Linearizability: a guarantee
about single operations on
single objects
• Once write completes, all later

reads (by wall clock) should
reflect that write

• Serializability is a
guarantee about
transactions over one or
more objects
• Doesn’t impose real-time

constraints

• Linearizability + serializability = strict serializability
– Transaction behavior equivalent to some serial

execution
• And that serial execution agrees with real-time

Techniques for achieving ACID properties
•Write-ahead logging and check-pointing àA, D

• Serializability and two-phase locking à I

45

Summary

Y. Cheng GMU CS475 Fall 2021

