NG
AN

Concurrency Control,

Recovery, and Locking

CS 475: Concurrent & Distributed Systems (Fall 2021)
Lecture 14

Yue Cheng

Some material taken/derived from:

* Princeton COS-418 materials created by Michael Freedman and Kyle Jamieson.

* MIT 6.824 by Robert Morris, Frans Kaashoek, and Nickolai Zeldovich.

Licensed for use under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

The transaction

e Definition: A unit of work:

« May consist of @gltigle data accesses or updates

« Must commit or abort as a single atomic unit
—_— ¢ Au_ov_ f\o\—l*u'ua_

e [ransactions can either commit, or abort

* When commit, all updates performed on database
are made permanent, visible to other transactions

» When abort, database restored to a state such that
the aborting transaction never executed

Y. Cheng GMU CS§475 Fall 2021 2

Transaction examples

» Bank account transfer B L""“A,.
e Turing -= $100
* Lovelace += $100

» Maintaining symmetric relationships Sotial webtite.
 Lovelace FriendOf Turing
« Turing FriendOf Lovelace

 Order product E_ tomuarco,
« Charge customer card

e Decrement stock
« Ship stock

Y. Cheng GMU CS§475 Fall 2021 3

Relationship with replication

 Replication (e.g., Raft) is about doing the same

thing in multiple places to provide fault tolerance
(_\ —

» Sharding is about doing different things in
ﬁ. - —
multiple places for scalability

A_‘
* €.9., using consistent hashing to partition data in
distributed storage (Dynamo)

-
A\ =0
» Atomic commit is about doing different things
in different places together

Y. Cheng GMU CS§475 Fall 2021

Relationship with replication

Replication Dimension e—

—
l

Sharding
Dimension ’

%

0000

Y. Cheng GMU CS475 Fall 2021

Focus on sharding for today

Replication Dimension

A

Sharding \Y%
Dimensio

R W
«
<
a&r
@«

Y. Cheng GMU CS475 Fall 2021

- . . ACID
Defining properties of transactions ——

« Atomicity: Either all constituent operations of the
transaction complete successfully, or none do

.\\I\V&f\"am—.“-
- Consistency: Each transaction in isolation preserves
a set of integrity constraints on the data "‘"“\T B
— — %h B,

* Isolation: Transactions’ behavior not impacted by

presence of other concurrent transactions
(ovrectnees A TxnB.
|

* Durability: The transaction’s effects suw@"fﬂlﬂ"e‘?_

of volatile (memory) or nogq@at,ﬂ dlisk) storage”
Y. Cheng GMU CS475 Fall 2021 ~—-\7

Challenges

1. High transaction speed requirements

* [f always £sync () to disk for each result on
transaction, yields terrible performance

2. Atomic and durable writes to disk are
difficuit '

* [In a manner to handle arbitrary crashes

» Hard disks and solid-state storage use write
buffers in volatile memory

Outline

Technigques for achieving ACID properties

* Write-ahead logging and checkpointing

 Serializability and two-phase locking

What does the system need to do?

 Transaction's properties: ACID
* Atomicity, Consistency, Isolation, Durability

—_

 Application logic checks consistency (&j

e —

* This leaves two main goals for the system:

) Ar\'ICu"‘& L'!':_’l'(’"}

— (o vvectdef

1. Handle failures (A, D)

2. Handle concurrency (l)
- &

Y. Cheng GMU CS§475 Fall 2021 10

Y. Cheng

Goal #1: Concurrency control
Transaction recovery

GMU CS475 Fall 2021

11

Failure model: crash failures

N

o Standard “crash failure” model:

* Machines are prone to crashes:
 Disk contents (non-volatile storage) okay
* Memory contents (volatile storage) lost

» Machines don’t misbehave (“Byzantine”)

Y. Cheng GMU CS§475 Fall 2021 12

Account transfer transaction

 Transfers $10 from account A to account B

transaction transfer(A, B):
~s | begin_tx
a < read(A)
(— |ifa <10 then abort ix
> else write(A, a-10)

b < read(B)
write(B, b+10)

vcommlt_txj 7

Problem

e Suppose $100in A, $100 in B
iy !)
4190

transaction transfer(A, B):

begin_tx

a < read(A)

if a < 10 then abort _tx

else write(A, a-10)
b < read(B)
write(B, b+10)
commit_tx

e commit_tx starts the commit protocol:

(st .~ =+ write(A, $90) to disk
. =" write(B, $110) to disk
WV

» What happens if system crash after first write, but

before_second write?

» After recovery: Partial writes, money is lost

Y. Cheng GMU CS§475 Fall 2021

System architecture

« Smallest unit of storage that can lbe atomically

written to non-volatile storage is called a page
i

- Buffer manager moves pages between buffer
pool (in volatile memory) and disk (in non-volatile
storage) deta

«\ Buffer pool =
- !_Paﬁmww\

[Buffer manager } pmmlomellolITiTiI T T —

(ovive\ ‘,\ow. i ‘ Disk \
|
|
|
\

e
Non-volatile storage

Y. Cheng / M ——— 15

F\o fe.

-----_’

Two design choices

1. Force all of a transaction’s writes to disk
before transaction commits?
 Yes: force policy
_

——— .
 No: no-force policy
ﬁ

2. May uncommitted transactions’ writes
— overwrite committed values on disk?
. ~
* _Yes: stealpolicy

. I\Lo: no-steal policy

Y. Cheng GMU CS§475 Fall 2021

Performance implications

1. Force all of a transaction’s writes to disk
before transaction commits?

2. May uncommitted transactions’ writes
‘ overwrite committed values on disk?

. . no-steal policy

Y. Cheng GMU CS§475 Fall 2021 |7

Undo & redo

1. Force all a transaction’s writes to disk before
transaction commits?

 (Choose no: no-force policy
-

== Need support for redo: complete a committed
transaction’s wrifBs O disk ==

2. May uncommitted transactions’ writes
—=me. overwrite committed values on disk?

* Choose yes: steal policy

=~ Need support for ; removing the effects of an
uncommitted transaction on disk

T

Y. Cheng GMU CS§475 Fall 2021 18

How to implement undo & redo?

* Log: A sequential file that stores information
about transactions and system state
» Resides in separate, non-volatile storage

* One entry in the log for each update, commit,
abort operation: called a log record
e

 Log record contains:

« Monotonic-increasing log sequence number (LSN)
— « Old value (before image) of the item for undo <je (
—3 * New value (after image) of the item for redo o]L"

\

Y. Cheng GMU CS§475 Fall 2021 19

V..

System architecture

» Buffer pool (volatile memory) and disk (non-
volatile)

* The log resides on a separate partition or disk
(in non-volatile storage) ot
ovo

Cowhvol,

[Buffer manager

Buffer pool ‘
r
Page DRAM

a e, Cape GEENmD =

|
|
|
|
|
|
|
|
|
\

Y. Cheng \

O

wn

U
r
(@)

EQ

Non-volatile storage

———

Write-ahead logging (WAL)

* Ensures atomicity in the event of system crashes
under no-force/steal buffer management

1. Force all log records pertaining to an updated
page into the (non-volatile) log before any @*L“Q.

(over)-writes to page itself > fucue Judo wﬁ“

2. A transaction is not considered committed until
all its log records (including commit record) are
forced intothelog ——= ECwwe Redo "‘"ﬁ

L (o

Y. Cheng GMU CS§475 Fall 2021 21

for&).

WAL example bnde. Recde

-~

f
— force_log_entry(A, |old=$100, evv:$90)$

,_>force_log_eﬂTW(B,@U\:$LOO’ lew=511 -

- write(A, $90) — Does not have

—* write(B, $110)— — to flush to disk

~» force_log_entry(commit)
_—

« What if the commit log record size > the page size”

* How to ensure € record is written atomically?

« Write a checksum of entire log entry
—_—

Y. Cheng GMU CS§475 Fall 2021 22

Y. Cheng

Goal #2: Concurrency control
Transaction isolation

GMU CS475 Fall 2021

23

Two concurrent transactions

transaction sum(A, B): transaction transfer(A, B):
begin_tx begi”_b; .
a € rea

a < read(A) ifa<10 t(he)n abort_tx

b & read(B) else write(A, a-10)
— . S— b & read(B)
printa + b write(B, b+10)
commit tx commit_tx

AN — 7

P_:m.)v O(AL\}‘ w |

Isolation between transactions

P (pvvectneq(
» Isolation: sum appears to happen either
completely before or completely after transfer

. Sometimges called before-after atomicity
{ G TT‘:'S,{-"' T <

\ Tmmgfw.) — ‘ —> \

» Schedule for transactions is an ordering of

the opéerations performed by those
transactions

L
\

——

N

Y. Cheng GMU CS§475 Fall 2021 25

Problem for concurrent execution:
Inconsistent retrieval

» Serial execution of transactions —transfer then sum:

| debit || credi
transfer: A Wa rg Wg ©
-~ e

~— &

sum: rpn g ©

« Concurrent execution resulting ir/ inconsistent
retr/eval,| result differing from any serial execution:

debit credit
transfer: ra W2 g Wg
sum: > r, © /?'T
gl .
: Time =

—Q/;"\alo © = commit
S N

Y. Cheng GMU CS§475 Fall 2021 26

Isolation between transactions

* Isolation: sum appears to happen either
completely before or completely after transfer

» Sometimes called before-after atomicity

®

» Given a_schedule of operations:

* Is that scheaule in some way “equivalent”
to a serial execution of transactions?

Y. Cheng GMU CS§475 Fall 2021 27

*_ "fY“W‘ Two +xh ¢
Equivalence of schedules s come cleie

% ocf lewtt OR@ OF
. Two operations from different transactions areL‘jW

r__,conflicﬁng i
1.1 They read and write to the same data item
2. | The write and write to the same data item
LI

* Two schedules are equivalent if:

1. They contain the same transactions and
perations

0
2. They order all conflicting operations of non-
aborting transactions in the same way

Y. Cheng GMU CS§475 Fall 2021 28

Conflict serializability

e |deal isolation semantics: conflict serializability

» A schedule is conflict serializable if it is
equivalent to some serial schedule

* /€., non-conflicting operations can be
reordered to get a serial schedule

Y. Cheng GMU CS§475 Fall 2021

29

A serializable schedule

* |deal isolation semantics: conflict serializability

* A schedule is conflict serializable if It is equivalent
to some serial schedule

* i.€., non-conflicting operations can be reordered
to get a serial schedule

transfer: rn Wa
sum:

Time =
© = commit

Conflict-free!

Y. Cheng GMU CS§475 Fall 2021 30

A non-serializable schedule

r\N\/_’-_—__

* |deal isolation semantics: conflict serializability

* A schedule is conflict serializable if It is equivalent
to some serial schedule

* i.€., non-conflicting operations can be reordered
to get a serial schedule

transfer: A WA\ (//\(g (wg ©
sum: ralrgl ©
_____________________ e

Time =
i either both before w, or both after wg i© = commit

e,

Y. Cheng GMU CS§475 Fall 2021 31

Testing for serializability @/\‘@
=

» Each node t in the precedence graph ~ “cyclic-
represents a transactiont i

. . (‘ZC L(\C .
« Edge from s to t if some action of s precedes ~
and conflicts with some action of t

Y. Cheng GMU CS§475 Fall 2021 32

Serializable schedule, acyclic graph
A yay

* Each node t In the precedence graph
represents a transaction t

« Edge from s to t if some action of s precedes
and conflicts with some action of t

transfer: r,/w, g
sum: ™~ A

—

— ! Time >
Ctransfer) sum © = commit

Y. Cheng GMU CS§475 Fall 2021 33

Non-serializable schedule, cyclic graph
C—N——

* Each node t In the precedence graph
represents a transaction t

« Edge from s to t if some action of s precedes
and conflicts with some action of t

transfer: rp\w, ﬁ ©
sum. \rA g 1

——————————————————————————

= Ccomm
e !

Y. Cheng GMU CS§475 Fall 2021 34

Testing for serializability

* Each node t in the precedence graph represents
a transaction t

« Edge from s to t if some action of s precedes
and conflicts with some action of t

i In general, a schedule is conflict-serializable

{If and only if its precedence graph is acyclic

Y. Cheng GMU CS§475 Fall 2021 35

How to ensure a serializable schedule?

| ocking-based approaches

- Strawman 1: Big global lock
* Acquire the lock when transaction starts
* Release the lock when transaction ends

Locking

 Locks maintained by transaction manager
 Transaction requests lock for a data item
* Transaction manager grants or denies lock

« Lock types R~ lock R locke.
—y * Shared:Need to have before read object T
~ * Exclusive: Need to have before write object

Ten2
Y2 e Qe L T <
(Svmpert _f,&l‘;_iﬂ‘_‘“ Shared (S) Exclusive (X)
[xu o B
s, _Shared (S} _Yes No

Excluswe (X) No L\l_o-

e

Y. Cheng GMU CS§475 Fall 2021 37

How to ensure a serializable schedule?

» Strawman 2: Grab (fine-grained) locks independently, for

each data item (e.g., bankaccournts A and B)
SL(4) xv@ x.(B) XxU(B).
transfer: M,y wa N, SLCB) A; 5 W hg ©
sum: T T Axra Np Aglg A ©

SLCA) Su(A) su(g)

Time =2
© = commit
y @ eXclusive- / Shared-lock: A\ /(& = X- / S-unlock

Y. Cheng GMU CS§475 Fall 2021 38

Two-phase locking (2PL)

* 2PL rule: Once a transaction has released a lock it
IS not allowed to obtain any other locks

AN

o A)| ng when txn acquires locks
o A when txn releases locks
. In practice: 2ta<h 2PL

 Growing phase is the entire transaction
 Shrinking phase is during commit

Y. Cheng GMU CS§475 Fall 2021 39

2PL allows only serializable schedules

« 2PL rule: Once a transaction has released a lock it is not
allowed to obtain any other locks

bxA), X
transfer: M,y wa K, X B g Wg kg ©
sum: ApTp mBrB Ng©
/\
______________________________ DSCA).
'2PL precludes this non-serializable interleaving J
Time =2
© = commit

4 /4 =X-/S-lock; N / n =X-/ S-unlock

Y. Cheng GMU CS§475 Fall 2021 40

2PL and transaction concurrency

« 2PL rule: Once a transaction has released a lock it is not
allowed to obtain any other locks

1
transfer: Ap A A, W, Agrg AB®
- = e = [. -—
sSum: ApTa Agrg¥© -
— . c— -Aé'“

EFQPL permits thﬁasei,aliz?pj,@{tjnterleaved schedule .

____________________ < . TN B e
Time =2
© = commit
4 /4 =X-/S-lock: A\ / N =X-/S-unlock; * = release all locks
NN A A A ——
Sk».‘ulml&

Y. Cheng GMU CS§475 Fall 2021 41

2PL doesn’t exploit all opportunities
for concurrency

« 2PL rule: Once a transaction has released a lock it is not
allowed to obtain any other locks

Lx@®)
a L
transfer: A g Wg ©
sum: jrA rg ©
o L_SCM-

Time =
© = commit
(locking not shown)

Y. Cheng GMU CS§475 Fall 2021 42

Issues with 2PL oikse for goph

 What if a lock is unavailable”? Is deadlock
possible?

e Yes: but a central controller can detect deadlock
cycles and abort involved transactions

» The phantom problem "%

» Database has fancier ops than key-value store

« T1: begin_tx; update employee (set salary = 1.1xsalary)
where dept = “CS”; commit_tx

« T2: insert into employee (“carol”, “CS”)

« Even if they lock individual data items, could result in non-
serializable execution

Y. Cheng GMU CS§475 Fall 2021 43

Linearizability vs. Serializability

* Linearizability: a guarantee < Serializability is a
about single operations on guarantee about

single objects transactions over one or
« Once write completes, all later ~ more objects
reads (by wall clock) should « Doesn’t impose real-time
reflect that write constraints

 Linearizability + serializability = strict serializability

— [ransaction behavior equivalent to some serial
execution

* And that serial execution agrees with real-time

Y. Cheng GMU CS§475 Fall 2021 44

Summary

Technigques for achieving ACID properties
* White-ahead logging and check-pointing = A, D

* Serializability and two-phase locking =2 |

Y. Cheng GMU CS§475 Fall 2021 45

