NoSG L

KvS

Amazon Dynamo

CS 475: Concurrent & Distributed Systems (Fall 2021)
Lecture 13

Yue Cheng

Some material taken/derived from:

* Princeton COS-418 materials created by Michael Freedman.

* MIT 6.824 by Robert Morris, Frans Kaashoek, and Nickolai Zeldovich.

Licensed for use under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Horizontal or vertical scalability

shaved wmem

0000
s
1000
1000
o B e
10
1000
1000
1000
::
10

Vertical scaling

(Scaling-up)

—

Horizontal or vertical scalability

1000
oy
7 0000 7

1000
3 cPu Em
7 1000 7

H cpu B

0000
::
100

Vertical scaling Horizontal scaling
(Scaling-up) (Scaling-out)

Horizontal scaling is challenging

S tok
 Probability of any failure in given period = 1—(1 —p@
« p = probability a machine fails in given period o

* n = number of machines Month

5 1. [
» For 50K machines, each with 99.99966% available
* 16% of the time, data center experiences failures

* For 100K machines, failures 30% of the timel!

Y. Cheng GMU CS§475 Fall 2021 4

Horizontal scaling is challenging

 Probability of any failure in given period = 1-(1-p)”
« p = probability a machine fails in given period
* n = number of machines

« For 50K machines, each with 99.99966% available
* 16% of the time, data center experiences failures

* For 100K machines, failures 30% of the timel!

Main challenge: Coping with constant failures |

Y. Cheng GMU CS§475 Fall 2021 5

Outline

1. Techniques for partitioning data
* Metrics for success

2. Case study

 Amazon Dynamo key-value store

Scaling out: Placement

* You have key-value pairs to be partitioned
across nodes based orman ID
—
"
» Problem 1: Data placement

« On which node(s) to place each key-value pair?
« Maintain mapping from data object to node(s)
« Evenly distribute data/load

Y. Cheng GMU CS§475 Fall 2021

Scaling out: Partition management

* Problem 2: Partition management

* How to recover from node failure
* e.g., bringing another node into partition group
« Changes in system size, i.e., nodes joining/leaving

* Heterogeneous nodes
—-——\q

Y. Cheng GMU CS§475 Fall 2021

Scaling out: Partition management

* Problem 2: Partition management

* How to recover from node failure

* e.g., bringing another node into partition group
« Changes in system size, i.e., nodes joining/leaving
* Heterogeneous nodes

» Centralized: Cluster manager
e,

~ Decentralized: Deterministic hashing and

“algorthms—

Y. Cheng GMU CS§475 Fall 2021

Modulo hashing

* First consider problem of data partition:

» Given object id X, choose one of k servers to
use

* Suppose we use modulo hashing:
* Place X on serve@ hash(X) mod k

—r

Qlly g,q/q_ U (\\LS"@Y.

Y. Cheng GMU CS§475 Fall 2021 10

Modulo hashing

* First consider problem of data partition:

» Given object id X, choose one of K servers to
use

* Suppose we use modulo hashing:
» Place X on server i = hash(X) mod k

« What happens if a server fails or joins (k € k+1)7

» or different clients have different estimate of
k? =~

Y. Cheng GMU CS§475 Fall 2021 I

Problem for modulo hashing:

Changing number of servers
i=h(x)mod@ VAL S

1] IR @ ® - -
211 - @ - @ - e
1 N ..
on------ ® -------. "I BT,
5 7 (10) 11 27 29 36 38 40

0\ k“ﬁs' h(x) =x + 1

Y. Cheng GMU CS§475 Fall 2021 12

Problem for modulo hashing:

Changing number of servers

| = h(x) mod 4
Add one machine: i = h(x) mod 5

=1

O ® - ® --@ ----M-----iiiii
O 5711 27 29 36 38 40
h(x) =x + 1

Y. Cheng GMU CS§475 Fall 2021 ~— 13

Problem for modulo hashing:

Changing number of servers

| = h(x) mod 4
Add one machine: i = h(x) mod 5

Many entries get remapped to new nodes!
- Need to move objects over the network

5 7 10 11 27 29 36 38 40
h(x) =x + 1

LD%-_
Consistent hashing r b\g

— Assign n tokens to random points on
mod 2% circle; hash key size = k

— Hash object to random circle position

— Put object to closest clockwise bucket
— successor (key) =2 bucket

M

Y. Cheng GMU CS§475 Fall 2021 I5

Consistent hashing

— Assign n tokens to random points on
mod 2% circle; hash key size = k

— Hash object to random circle position

— Put object to closest clockwise bucket
— successor (key) =2 bucket

» Desirable features:
— Balance: No bucket has “too many” objects;
E(oucket size)=1/nt"

— Smoothness: Addition/removal of token minimizes

object movements for other buckets

M
Y. Cheng GMU CS475 Fall 2021 16

Consistent hashing’s load balancing
problem

« Each node owns 1/n'" of the ID space in expectation
(./—\ l
* Hot keys — some buckets have higher request rate

0

Y. Cheng GMU CS§475 Fall 2021 |7

Consistent hashing’s load balancing
problem

« Each node owns 1/n'" of the ID space in expectation
« Hot keys — some buckets have higher request rate

0

 [f a node falls, its successor takes over bucket
- Smoothness goal V': Only localized shift, not O(n)

T

« But now successor owns two buckets: 2/n'" of key space
» The failure has upset the load balance
“

Y. Cheng GMU CS§475 Fall 2021 18

Consistent hashing’s load balancing
problem

« Each node owns 1/n'" of the ID space in expectation

« Hot keys — some buckets have higher request rate 0

14

S
8

 [f a node falls, its successor takes over bucket
» Smoothness goal V': Only localized shift, not O(n)

« But now successor owns two buckets: 2/n'" of key space
» The failure has upset the load balance

Y. Cheng GMU CS§475 Fall 2021 19

Virtual nodes (N

'\’ .

* Idea: Each physical node implements_v virtual nodes

» Each physical node maintains v > 1 token ids
» Each token id corresponds to a virtual node

» Each physical node can have a different v based on strength of
node (heterogeneity)

 Each virtual node owns an expected 1/(vn)" of ID
space —

Y. Cheng GMU CS§475 Fall 2021 20

Virtual nodes

* |dea: Each physical node implements v virtual nodes

» Each physical node maintains v > 1 token ids
» Each token id corresponds to a virtual node

» Each physical node can have a different v based on strength of
node (heterogeneity)

 Each virtual node owns an expected 1/(vn)" of ID
space

 Upon a physical node’s failure, v virtual nodes fall

 Each of their successors takes over 1/(vn)" more
» Expected to be distributed across physical nodes

Y. Cheng GMU CS§475 Fall 2021 21

Virtual nodes: Example

4 Physical Nodes

72 \/No

N2. o Ao

/\

14

Y. Cheng GMU CS§475 Fall 2021

@ Same phys% node

7\

4 Vy

22

Virtual nodes: Example

4 Physical Nodes
V=2

14 Same physicalxde

Result: Better load balance with larger v

Y. Cheng GMU CS§475 Fall 2021 23

Outline

2. Case study
« Amazon Dynamo key-value store

Dynamo: The P2P context

* Chord and DHash mtended for wide-area P2P
systems

* Individual nodes at Internet’s edge, file sharing

Dynamo: The P2P context

« Chord and DHash intended for wide-area P2P
systems
* Individual nodes at Internet’s edge, file sharing

« Central challenge: low-latency key lookup with high
availability
 Trades off consistency for availability and latency

Y. Cheng GMU CS§475 Fall 2021 26

Dynamo: The P2P context

» Chord and DHash intended for wide-area P2P
systems
* Individual nodes at Internet’s edge, file sharing

« Central challenge: low-latency key lookup with high
availability
 Trades off consistency for availability and latency

 Techniques:
« Consistent hashing to map keys to nodes

—>+ Vegtor clocks for conflict resolution

» Gossip for node membership
__?- Replication at successors for availability under failure

Y. Cheng GMU CS§475 Fall 2021

i fEAmazon’s workload (in 2007)

T ’ W
-+ Tens of thousands of servers in globally-
" .distributed data centers .

—

. _"..Peakload: Tens of millions of customers |

>, Y

-+ Tered service-oriented architecture

- ., . e Stateless web page rendering servers, atop
- e Stateless aggregator servers, atop

+ Stateful data stores (e.g. Dynamo)

* put(), get(): values “usually less than 1 MB”

"# Y,Cheng GMU CS475 Fall 2021 . 28

. -How does Amazon use Dynamo?
f:-’Shopping cart

_*'Session info
« Maybe “recently visited products” etc.”?

.+ Product list
» Mostly read-only, replication for high read throughput
e T 4] | e |

- '

* Y,Cheng GMU CS475 Fall 2021

297

:How does Amazon use Dynamo?
: Shopplng cart
j Session info

« Maybe “recently visited products” etc.”?

~*Product list
* Mostly read-only, replication for high read throughput

Each instance contains a few hundred servers

" Y,Cheng GMU CS475 Fall 2021

% \ \ 5 .

,» Com

Highly available writes despite failures

’ﬁcu“‘*\ﬁ

« Despite disks failing, network routes flapping, “data

-Dynamo requirements

centers destroyed by tornadoes”

. Always respond quickly, even during failures = rephcahon

Sewite <lewd Ajm

. Low request response latency: focus on 99.9% SLA

—— e v

. Incrementally scalable as servers grow to workload

* Adding “nodes” should be seamless

v

iIble conflict resolution

~

« High'availability in above sense implies conflicts

“# Y, Cheng

GMU CS475 Fall 2021

31 ¢

«

Design questions

* How is data placed and replicated?

* How are requests routed and handled in a
replicated system??

* How to cope with temporary and permanent
node failures?

Y. Cheng GMU CS§475 Fall 2021

32

Dynamo’s system interface

» Basic interface is a key-value store
e get(k) and put(k, v)
» Keys and values opague to Dynamo

» get(key) - value, [context] I/
C— —

* Returns one value or multiple conflicting values
» Context describes version(s) of value(s)

_* put(key, context, value) 9

« Context indicates WhICh versions th|s version

supersedes or merges T
LSS S S

Y. Cheng GMU CS§475 Fall 2021 33

Dynamo’s techniques

* Place replicated data on nodes with consistent hashing

* Maintain consistency of replicated data with vector
clocks

. Eventual consistency for replicated data: prioritize success and
low latency of writes over reads

» And availability over consistency (unlike DBs)

« Efficiently synchronize replicas using Merkle trees

—

Y. Cheng GMU CS§475 Fall 2021 34

Dynamo’s techniques

* Place replicated data on nodes with consistent hashing

* Maintain consistency of replicated data with vector
clocks

» Eventual consistency for replicated data: prioritize success and
low latency of writes over reads

» And availability over consistency (unlike DBs)

« Efficiently synchronize replicas using Merkle trees

! Key tradeoffs: Response time vs. consistency vs.
'durablllty

Y. Cheng GMU CS§475 Fall 2021 35

Data placement

put(K,..), get(K)
requests go to me

Nodes B, C

and D store

. keysin

i range (A,B)

" including
K.

Each data item is replicated at N virtual nodes (e.g., N=3)
L N

Y. Cheng GMU CS§475 Fall 2021 36

Data replication

. ;A\ l;ey—value pair 2> key’s N successors (preference
Ist —
 Coordinator receives a put for some key

» Coordinator then replicates data onto nodes in
the key’s preference list

Y. Cheng GMU CS§475 Fall 2021

37

Data replication

. ;A\ l;ey—value pair 2> key’s N successors (preference
Ist
 Coordinator receives a put for some key

» Coordinator then replicates data onto nodes in
the key’s preference list

« Writes to more than just /N successors |n case of
failure

D

Y. Cheng GMU CS§475 Fall 2021 38

Data replication

. ;A\ l;ey—value pair 2> key’s N successors (preference
Ist
 Coordinator receives a put for some key

» Coordinator then replicates data onto nodes in
the key’s preference list

* Writes to more than just N successors in case of
failure

» For robustness, the preference list skips tokens to
ensure distinct physical nodes

Y. Cheng GMU CS§475 Fall 2021 39

Gossip and lookup

» Gossip: Once per second, each node contacts a
randomly chosen other node

* They exchange their lists of known nodes
(including virtual node IDs)

* Assumes all nodes will come back eventually,
doesn’t repartition

« Each node learns which others handle all key
ranges

Y. Cheng GMU CS§475 Fall 2021 40

Gossip and lookup

» Gossip: Once per second, each node contacts a
randomly chosen other node

* They exchange their lists of known nodes
(including virtual node IDs)

* Assumes all nodes will come back eventually,
doesn’t repartition

« Each node learns which others handle all key
ranges

» Result: All nodes can send directly to any
key’s coordinator (“zero-hop DHT”)

- Reduces variability imresponse times

Y. Cheng GMU CS§475 Fall 2021 41

Partitions force a choice between
availability and consistency
» SUppose three replicas are partitioned into two

and one e
E = @@

(

* If one replica fixed as master, no client in other
partition can write

* Traditional distributed databases emphasize
consistency over availability when there are
partitions

Alternative: Eventual consistency

» Dynamo emphasizes availability over consistency when
there are partitions

* Tell client write complete when only some replicas have
stored it

* Propagate to other replicas in background

 Allows writes in both partitions...but risks:
» Returning stale data \‘ Vo L V.

* Write conflicts when partition heals:

et

put(k,v,) put(k,v,)

o
Y. Cheng ?7@ A’$” GMU CS§475 Fall 2021 43

Mechanism: Sloppy quorums

* [f no failure, reap “consistency” benefits of single
master
* Else sacrifice “consistency” to allow progress

* Dynamo tries to store all values put() under a key on
first N live nodes of coordinator’s preference list

Y. Cheng GMU CS§475 Fall 2021 44

Mechanism: Sloppy quorums

* [f no failure, reap “consistency” benefits of single
master
* Else sacrifice “consistency” to allow progress

* Dynamo tries to store all values put() under a key on
first N live nodes of coordinator’s preference list

N=2<
« BUT to speed up get () and put(): w= 12

» Coordinator returns “success” for put when W< N 2 = 2.
replicas have completed write —

« Coordinator returns “success” for get when R < N
replicas have completed read

Y. Cheng GMU CS§475 Fall 2021 45

Consistency under sloppy quorums! I=lineanzability

Sloppy quorum of (N=3, W= 3 F\%@ '

: set x ’ time
Writer e —— ik
S

Reader A %
———

Reader B %

&=

*: https://www.oreilly.com/library/view/designing-data-intensive-applications/9781491903063/ (Page 334)
Y. Cheng GMU CS475 Fall 2021 46

https://www.oreilly.com/library/view/designing-data-intensive-applications/9781491903063/

Sloppy quorums: Hinted handoff

* Suppose coordinator doesn’t receive W replles
when replicatinga put ()

« Could return failure, but remember goal of
high availability for writes. .

Y. Cheng GMU CS§475 Fall 2021

47

Sloppy quorums: Hinted handoff

* Suppose coordinator doesn’t receive W replles
when replicating a put ()

« Could return failure, but remember goal of
high availability for writes. .

» Hinted handoff: Coordinator tries further nodes
in preference list (beyond first N) if necessary

* Indicates the mtended replica node to
recipient

 Recipient will periodically try to forward to the
intended replica node

Y. Cheng GMU CS§475 Fall 2021 48

Hinted handoff: Example

« Suppose C fails Key K
* Node E is in preference list /

* Needs to receive /@\\'\
©

replica of the data Coordinator

* Hinted Handoff: replica at | \ NoderB,
E points to node C; E @ keysin
periodically forwards to G \J et

\ : K.

Y. Cheng GMU CS§475 Fall 2021 49

Hinted handoff: Example

« Suppose C fails Key K
* Node E is in preference list

* Needs to receive @
i (©)

replica of the data / ‘ Coordinator
* Hinted Handoff: replica at / % Nodes B, C

. i and D store
E points to node C; E @ ! keysin
periodically forwards to G \& | g,

 When C comes back

 E forwards the replicated
data back to G

Wide-area replication

 Last 9|,54.6: Preference lists always contain
nodes from more than one data center

» Consequence: Data likely to survive failure of
entire data center

Y. Cheng GMU CS§475 Fall 2021

51

Wide-area replication

 Last 9|,54.6: Preference lists always contain
nodes from more than one data center

» Consequence: Data likely to survive failure of
entire data center

 Blocking on writes to a remote data center
would incur unacceptably high latency

« Compromise: W < N, eventual consistency

» Better durabillity, latency but worse
consistency

Y. Cheng GMU CS§475 Fall 2021 52

Sloppy quorums and get()s

» SUppose coordinator doesn’t receive R replies
when processing a get ()

* Penultimate 9,§4.5: “R.s the min. number of
nodes that must participate in a successiul
read operation.”

« Sounds like these get () s falil

* Why not return whatever data was found,
though?
* As we will see, consistency not guaranteed
anyway...

Sloppy quorums and freshness

r\

« Common case givenin paper: N=3; R=W =2
» With these values, do sloppy quorums
guarantee a get () sees all prior put()s?

Sloppy quorums and freshness

« Common case givenin paper: N=3; R=W =2
» With these values, do sloppy quorums
guarantee a get () sees all prior put()s?

* If no failures, yes: @ ©7

 Two writers saw each put()
* Two readers responded to each get ()

Y. Cheng GMU CS§475 Fall 2021 55

Sloppy quorums and freshness

« Common case givenin paper: N=3; R=W =2
» With these values, do sloppy quorums
guarantee a get () sees all prior put()s?

* |f no failures, yes:
 Two writers saw each put ()
* Two readers responded to each get ()
» Write and read quorums must overlap!

Sloppy quorums and freshness

« Common case given in paper: N=3; R=W =2

« With these values, do sloppy quorums guarantee a
get () sees all prior put()s?

 \With node failures, no:

 Two nodes in preference list go down

* put() replicated outside preference list; Hinted
handoff nodes have data

» Two nodes in preference list come back up
« get () occurs before they receive prior put ()

Conflicts

» Suppose N =3, W =R =2, nodes are named A, B,
a 2L
« 1stput(k, ..) completes on A and B
« 29 put(k, ..) completes on B and C
* Now get (k) arrives, completes first at Aand C

[———— —

Y. Cheng GMU CS§475 Fall 2021 58

Conflicts

» Suppose N =3, W =R =2, nodes are named A, B,
C
» 18t put(k, ..) completes on Aand B

. 2%“ put(k, ..) completes on B and C
* Now get (k) arrives, completes first at Aand C

» Conflicting results from A and C
» Each has seen a different put(k, ...)

Y. Cheng GMU CS§475 Fall 2021 59

Conflicts

» Suppose N =3, W =R =2, nodes are named A, B,
C
« 1stput(k, ..) completes on A and B
« 29 put(k, ..) completes on B and C
* Now get (k) arrives, completes first at Aand C

» Conflicting results from A and C
» Each has seen a different put(k, ...)

* Dynamo returns both results; what does client do
NOowW?

Y. Cheng GMU CS§475 Fall 2021 60

Version vectors (vector clocks)

* \ersion vectors: List of (coordinator node,
counter) pairs |,

ce.g. (A 1).(B,3), ...

—4
- Vevgion (outy
« Dynamo stores a version vector with each stored key-

value pair

 Tracks causal relationship between different versions of
data stored under the same key Kk

Y. Cheng GMU CS§475 Fall 2021 6l

Version vectors (VV) in Dynamo

[1(,435((,
 Rule: If vector clock comparison of vl < v2, then

the first is an ancestor of the second — Dynamo
can forget v1
vl #+= vi. = vrllve

* Each time a put () accurs, Dynamo increments
the counter In the V.V. for the coordinator node

* Each time a get () occurs, Dynamo returns the
V.V. for the value(s) returned (in the “context”)

* Then users must supply that context to put()s that
modify the same key

Y. Cheng GMU CS§475 Fall 2021 62

Version vectors (auto-resolving case)

put handled

by node A @

V1 [(A1)] ~— put(R).
X vL{L)A> ') *

<

Y. Cheng GMU CS§475 Fall 2021

63

Version vectors (auto-resolving case)

vl [(A1)] &

by node

<

put handled

A

A

Vi.&e Se’f(").
put handled

‘ M(k«)

by node C

<_

wilan (o]

Y. Cheng

v2 [(A,1), (C,1)]

o ——

L)
&

{

A

GMU CS§475 Fall 2021

¢

J

w(k, V|)+

v

64

Version vectors (auto-resolving case)

put handled
by node A

v [(;\,1)] — vt L@, C[()]

put handled
by node C

[v2 (A1), C€.1)] —

Y. Cheng GMU CS§475 Fall 2021 65

Version vectors (app-resolving case)

put handled
by node A

vl [(A,1)]

put handled
by node B
e

v2 [(A,1), (B,1)]

Version vectors (app-resolving case)

put handled
by node A

vl [(A,1)]

put handled put handled
by node B by node C

v2 [(A,1), (B,1)] U v3 [(A,1), (C,1)]

Version vectors (app-resolving case)

put handled
by node A

vl [(A,1)]
put handled put handled
by node B by node C

v2 [(A,1), (B,1)] v3 [(A,1), (C,1)]

v2 Il v3, so a client must perform -
| semantlc reconciliation |

Version vectors (app-resolving case)

put handled
by node A
vl [(A,1)]
put handled put handled
by node B by node C
v2 [(A,1), v3 [(A,1),

[(A,1), (semantic reconciliation !

Cliont rea dS V2 V3 Comtoxt \ /v2 Il v3, soacllent must perform:

v4[A2

Version vectors (app-resolving case)

put handled
by node A
vl [
put handled put handled
by node B by node C
v2 [(A,1), v3 [(A,1),

Client reads v2 v3 context:

! V2l v3,s0a cllent must perform
(A1), (B,

/ semantic reconciliation

v4 [(A,2),

Trimming version vectors

» Many nodes may process a series of put()s to
same key
* Version vectors may get long — do they grow forever?

Y. Cheng GMU CS§475 Fall 2021 71

Trimming version vectors

» Many nodes may process a series of put()s to
same key
* Version vectors may get long — do they grow forever?
* |In practice, unlikely: unless failures, upper limit of N

Y. Cheng GMU CS§475 Fall 2021 72

Trimming version vectors

» Many nodes may process a series of put()s to
same key
* Version vectors may get long — do they grow forever?
* |In practice, unlikely: unless failures, upper limit of N

* Dynamo also uses a clock truncation scheme
« Stores time of modification with each V.V. entry

* When V.V. > 10 nodes long, V.V. drops the timestamp
of the node that least recently processed that key

ﬁ

Y. Cheng GMU CS§475 Fall 2021 73

Impact of deleting a VV entry

put handled

by node A
F_A

v

vl [(A,1)]

Impact of deleting a VV entry

put handled
by node A

v

vl [(A,1)]

put handled
by node C

v2 [QA___,—‘li—, (C,1)]

Impact of deleting a VV entry

put handled
by node A
SN Vi
2
put handled vi v{
by node C

Concurrent writes

« What if two clients concurrently write w/o failure?
* e.9. add different items to same cart at same time
« Each does get-modify-put

* They both see the same initial version
« And they both send put () to same coordinator

* Will coordinator create two versions with
conflicting VVs?

Y. Cheng GMU CS§475 Fall 2021 77

Concurrent writes

« What if two clients concurrently write w/o failure?
* e.9. add different items to same cart at same time
« Each does get-modify-put

* They both see the same initial version
« And they both send put () to same coordinator

 WIll coordinator create two versions with
conflicting VVs?
* \We want that outcome, otherwise one was thrown
away

* Paper doesn't say, but coordinator could detect
problem via put () context —

Removing threats to durability

» Hinted handoff node crashes before it can
replicate datato node in preference list

* Need another way to_ensure that each key-
value pair is replicateaellzlti\mes

Dure L,-m:{

Y. Cheng GMU CS§475 Fall 2021

79

Removing threats to durability

» Hinted handoff node crashes before it can
replicate data to node in preference list

* Need another way to ensure that each key-
value pair is replicated N times

* Mechanism: replica synchronization
* Nodes nearby on ring periodically gossip
» Compare the (k, v) pairs they hold
» Copy any missing keys the other has

Y. Cheng GMU CS§475 Fall 2021 80

Removing threats to durability

» Hinted handoff node crashes before it can
replicate data to node in preference list

* Need another way to ensure that each key-
value pair is replicated N times

* Mechanism: replica synchronization
* Nodes nearby on ring periodically gossip
» Compare the (K, v) pairs they hold
» Copy any missing keys the other has

r How to compare and copy replica
i state quickly and efficiently?

Y. Cheng GMU CS§475 Fall 2021

8l

hqclq Tree
Efficient synchronization with Merkle trees

» Merkle trees hierarchically summarize the key-
value pairs a node holds

Yoot

* One Merkle tree for each virtual node key range R
| eaf node = hash of one key’s value -

- Internal node = hash of concatenation of 1o
chidrén—— — |

Les leef2,
« Compare roots; if match, values match hesk hah.
. If they don’t match, compare children < v
e |terate this process down the tree

Y. Cheng GMU CS§475 Fall 2021 82

Merkle tree reconciliation 6

* B is missing orange key; A is missing green one

« Exchange and compare hash nodes from root
downwards, pruning when hashes match

A’s values: B’s values:
[O 2128) [O 2128)

[O 2127)/.\2127 2128) [O 2127)/‘\2127 2128)

ﬁ%ﬂm T g5 el

Finds differing keys quickly and with
minimum information exchange i

[o
How useful is it to vary N, R, W? | -

Buoyum

AV —

‘_’LR W | Behavior
m Parameters from paper:

- Good durability, good R/W latency
“

e,

»

—
.

3 Slow reads, weak durability, fast writes
3 3 Slow writes, strong durability, fast reads

3 3 More likely that reads see all prior writes?
1 1)Read quorum doesn’t overlap write quorum

1jw

Y. Cheng GMU CS§475 Fall 2021 84

Dynamo: Take-aways

» Consistent hashing broadly useful for replication—
not only in P2P systems

« Extreme emphasis on availability and low latency,
unusually, at the cost of some inconsistency

« Eventual consistency lets writes and reads return
quickly, even when partitions and failures

* \ersion vectors allow some conflicts to be resolved
automatically; others left to application

Y. Cheng GMU CS§475 Fall 2021 85

