
Byzantine
Fault Tolerance

Some material taken/derived from:
• Princeton COS-418 materials created by Kyle Jamieson.
• MIT 6.824 by Robert Morris, Frans Kaashoek, and Nickolai Zeldovich.
Licensed for use under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

CS 475: Concurrent & Distributed Systems (Fall 2021)
Lecture 10

Yue Cheng

• Traditional state machine replication
tolerates fail-stop failures:
• Node crashes
• Network breaks or partitions

• State machine replication with N = 2f+1
replicas can tolerate f simultaneous fail-
stop failures

• Two algorithms: Paxos, Raft

So far: Fail-stop failures

Y. Cheng GMU CS475 Fall 2021 2

Byzantine faults

• Byzantine fault: Node/component fails
arbitrarily
•Might perform incorrect computation
•Might give conflicting information to

different parts of the system
•Might collude with other failed nodes

Y. Cheng GMU CS475 Fall 2021 3

Byzantine faults
• Byzantine fault: Node/component fails

arbitrarily
• Might perform incorrect computation
• Might give conflicting information to

different parts of the system
• Might collude with other failed nodes

•Why might nodes or components fail
arbitrarily?
• Software bug present in code
• Hardware failure occurs
• Hack attack on system

Y. Cheng GMU CS475 Fall 2021 4

• Can we provide state machine replication for
a service in the presence of Byzantine faults?

• Such a service is called a Byzantine Fault
Tolerant (BFT) service

•Why might we care about this level of
reliability?

5

Today: Byzantine fault tolerance

Y. Cheng GMU CS475 Fall 2021

Motivation for BFT

• The ideas surrounding Byzantine fault tolerance
have found numerous applications:

• Commercial airliner flight control computer systems
• Digital currency systems

• Some limitations, but...
• Inspired much follow-on research to address these

limitations

Y. Cheng GMU CS475 Fall 2021 6

• Triple-redundant, dissimilar
processor hardware:

1. Intel 80486
2. Motorola
3. AMD

• Each processor runs code from
a different compiler

7

Mini-case-study: Boeing 777 fly-by-wire
primary flight control system

Simplified design:
• Pilot inputs à three processors
• Processors voteàcontrol surface

Key techniques:
Hardware and software diversity,

Voting between components

Y. Cheng GMU CS475 Fall 2021

1. Traditional state-machine replication for BFT?

2. Practical BFT replication algorithm

8

Today

Y. Cheng GMU CS475 Fall 2021

• Traditional state machine replication (Paxos)
requires, e.g., 2f + 1 = three replicas, if f = 1

• Operations are totally ordered à correctness
• A two-phase protocol

• Each operation uses ≥ f + 1 = 2 of them
• Overlapping quorums
• So at least one replica “remembers”

9

Review: Tolerating one fail-stop failure

Y. Cheng GMU CS475 Fall 2021

1. Can’t rely on the primary to assign seqno
• Could assign same seqno to different requests

2. Can’t use Paxos for view change
• Under Byzantine faults, the intersection of two

majority (f + 1 node) quorums may be bad node

• Bad node tells different quorums different things!
• e.g. tells N0 accept val1, but N1 accept

val2

Use Paxos for BFT?

Y. Cheng GMU CS475 Fall 2021 10

Paxos under Byzantine faults (f = 1)

Prepare(N0:1)

N0 N1

N2

nh=N0:1nh=N0:1

Prep
are

(N
0:1

)

OK(val=null)

OK
(va
l=n
ull
)

OK

Y. Cheng GMU CS475 Fall 2021 11

Paxos under Byzantine faults (f = 1)

N0 N1

N2

nh=N0:1nh=N0:1

Accept(N
0:1, v

al=xyz)

Accept(N0:1, val=xyz)

OK

OK

Decide
xyz

f +1 ✓

Y. Cheng GMU CS475 Fall 2021 12

Paxos under Byzantine faults (f = 1)

N0 N1

N2

nh=N2:1nh=N0:1

Prepare(N2:1)OK

Decide
xyz

Y. Cheng GMU CS475 Fall 2021 13

Paxos under Byzantine faults (f = 1)

N0 N1

N2

nh=N2:1nh=N0:1
Decide
xyz

OK

Accept(N1:1, val=abc)

Decide
abc

Conflicting decisions!

f +1 ✓

Y. Cheng GMU CS475 Fall 2021 14

Theoretical fundamentals:
Byzantine Generals

Y. Cheng GMU CS475 Fall 2021 15

General #1

General #2

General #3

Unreliable
messenger

Theoretical fundamentals:
Byzantine Generals

Y. Cheng GMU CS475 Fall 2021 16

General #1

General #2

General #3

Result: Using messengers, problem
solvable iff > ⅔ of the generals are loyal

Unreliable
messenger

• Clients sign input data before storing it, then
verify signatures on data retrieved from service

• Example: Store signed file f1=“aaa” with server
• Verify that returned f1 is correctly signed

Put burden on client instead?

But a Byzantine node can replay
stale, signed data in its response

Inefficient: Clients have to perform
computations and sign data

Y. Cheng GMU CS475 Fall 2021 17

1. Traditional state-machine replication for BFT?

2. Practical BFT replication algorithm
[Castro & Liskov, 1999]

18

Today

Y. Cheng GMU CS475 Fall 2021

• Uses 3f+1 replicas to survive f failures
• Shown to be minimal (Lamport)

• Requires three phases (not two)

• Provides state machine replication
• Arbitrary service accessed by operations, e.g.,

• File system ops read and write files and directories
• Tolerates Byzantine-faulty clients

19

Practical BFT: Overview

Y. Cheng GMU CS475 Fall 2021

• Assume
• Operations are deterministic
• Replicas start in same state

• Then if replicas execute the same requests in the
same order:
• Correct replicas will produce identical results

20

Correctness argument

Client

ReplicasY. Cheng

• Clients can’t cause internal inconsistencies of
the data in servers

• State machine replication property

• Clients can write bogus data to the system
• Sol’n: Authenticate clients and separate their data

• This is a separate problem

21

Non-problem: Client failures

Client

ReplicasY. Cheng

1. Send requests to the primary replica

2. Wait for f+1 identical replies
• Note: The replies may be deceptive

• i.e., replica returns “correct” answer, but locally does otherwise!

• But at least one reply is from a non-faulty replica

22

What clients do

Client 3f+1 replicas

f+1 matching replies

Y. Cheng GMU CS475 Fall 2021

• Carry out a protocol that ensures that
• Replies from honest replicas are correct

• Enough replicas process each request to ensure that
• The non-faulty replicas process the same requests
• In the same order

• Non-faulty replicas obey the protocol

23

What replicas do

Y. Cheng GMU CS475 Fall 2021

• Primary-Backup protocol: Group runs in a view
• View number designates the primary replica

• Primary is the node whose id == view# (modulo N)

24

Primary-Backup protocol

Client ViewPrimary Backups

Y. Cheng GMU CS475 Fall 2021

• Primary picks the ordering of requests
• But the primary might be a liar!

• Backups ensure primary behaves correctly
• Check and certify correct ordering
• Trigger view changes to replace faulty primary

25

Ordering requests

Client ViewPrimary Backups

Y. Cheng GMU CS475 Fall 2021

• One op’s quorum overlaps with next op’s quorum
• There are 3f+1 replicas, in total

• So overlap is ≥ f+1 replicas

• f+1 replicas must contain ≥ 1 non-faulty replica

26

Byzantine quorums (f = 1)

A Byzantine quorum contains ≥ 2f+1 replicas

Y. Cheng GMU CS475 Fall 2021

• Quorum certificate: a collection of 2f + 1 signed,
identical messages from a Byzantine quorum

• All messages agree on the same statement

27

Quorum certificates
A Byzantine quorum contains ≥ 2f+1 replicas

Y. Cheng GMU CS475 Fall 2021

• Each client and replica has a private-public
keypair

• Secret keys: symmetric cryptography
• Key is known only to the two communicating parties
• Bootstrapped using the public keys

• Each client, replica has the following secret keys:
• One key per replica for sending messages
• One key per replica for receiving messages

28

Keys

Y. Cheng GMU CS475 Fall 2021

• Primary chooses the request’s sequence number (n)
• Sequence number determines order of execution

29

Ordering requests

Primary

Backup 1

Backup 2

Backup 3

request:
mSigned,Client

Let seq(m)=nSigned, Primary

Primary could be lying,
sending a different message to
each backup!

Y. Cheng GMU CS475 Fall 2021

• Backups locally verify they’ve seen ≤ one client
request for sequence number n

• If local check passes, replica broadcasts accept message
• Each replica makes this decision independently

30

Checking the primary’s message

Primary

Backup 1

Backup 2

Backup 3

I accept seq(m)=nSigned, Backup 1

I accept seq(m)=nSigned, Backup 2

Let seq(m)=nSigned, Primary

request:
mSigned,Client

Y. Cheng GMU CS475 Fall 2021

• Backups wait to collect a prepared quorum certificate
• Message is prepared (P) at a replica when it has:

• A message from the primary proposing the seqno
• 2f messages from itself and others accepting the seqno

31

Collecting a prepared certificate (f = 1)

Primary

Backup 1

Backup 2

Backup 3

request:
mSigned,Client

I accept seq(m)=nSigned, Backup 1

I accept seq(m)=nSigned, Backup 2

Let seq(m)=nSigned, Primary

Each correct node has a prepared certificate locally,
but does not know whether the other correct

nodes do too! So, we can’t commit yet!

P

P

P

Y. Cheng GMU CS475 Fall 2021

• Prepared replicas announce: they know a quorum accepts
• Replicas wait for a committed quorum certificate C:

2f+1 different statements that a replica is prepared
32

Collecting a committed certificate (f = 1)

Primary

Backup 1

Backup 2

Backup 3

request: m

accept

Let seq(m)=n

P

P

P
—”—Signed, Backup 1

Have cert for
seq(m)=nSigned, Primary

—”—Signed, Backup 2

C

C

C

Once the request is committed, replicas
execute the operation and send a reply

directly back to the client.
Y. Cheng GMU CS475 Fall 2021

• The client assigns each request a unique,
monotonically increasing timestamp t
• Servers track greatest t executed for each client c,

T(c), and their corresponding reply
• On receiving request to execute with timestamp t:

• If t < T(c), skip the request execution
• If t = T(c), resend the reply but skip execution.
• If t > T(c), execute request, set T(c) ß t, remember reply

33

Byzantine primary: replaying old requests

Malicious primary can invoke t = T(c)
case but cannot compromise safety

Y. Cheng GMU CS475 Fall 2021

• Recall: To prepare, need primary message and 2f accepts
• Backup 1: Won’t prepare m’
• Backups 2, 3: Will prepare m

34

Byzantine primary: Splitting replicas (f = 1)

Primary

Backup 1

Backup 2

Backup 3

request: m

accept m’Let seq(m’)=n

Let seq(m)=n

Let seq(m)=n

accept m

Replayed request,
signed by client

Y. Cheng GMU CS475 Fall 2021

• In general, backups won’t prepare two different
requests with the same seqno if primary lies

• Suppose they did: two distinct requests m and
m′ for the same sequence number n

• Then prepared quorum certificates (each of size 2f+1)
would intersect at an honest replica

• So that honest replica would have sent an accept
message for both m and m′
• So m = m′

35

Byzantine primary: Splitting replicas

Y. Cheng GMU CS475 Fall 2021

• If a replica suspects the primary is faulty, it requests a view
change
• Sends a viewchange request to all replicas

• Everyone acks the view change request

• New primary collects a quorum (2f+1) of responses
• Sends a new-view message with this certificate

View change

Client ViewPrimary Backups

Y. Cheng GMU CS475 Fall 2021 36

• Need committed operations to survive into next
view

• Client may have gotten answer

• Need to preserve liveness
• If replicas are too fast to do view change, but really

primary is okay – then performance problem

• Or malicious replica tries to subvert the system by
proposing a bogus view change

37

Considerations for view change

Y. Cheng GMU CS475 Fall 2021

• Storing all messages and certificates into a log
• Can’t let log grow without bound

• Protocol to shrink the log when it gets too big
• Discard messages, certificates on commit?

• No! Need them for view change
• Replicas have to agree to shrink the log

38

Garbage collection

Y. Cheng GMU CS475 Fall 2021

