Byzantine
Fault Tolerance

CS 475: Concurrent & Distributed Systems (Fall 2021)
Lecture 10

Yue Cheng

Some material taken/derived from:

* Princeton COS-418 materials created by Kyle Jamieson.

* MIT 6.824 by Robert Morris, Frans Kaashoek, and Nickolai Zeldovich.

Licensed for use under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

So far: Fail-stop failures

* Traditional state machine replication
tolerates fail-stop failures:

 Node crashes
* Network breaks or partitions

Livenecs

————

» State machine replication with N = 2f+1
replicas can tolerate f simultaneous fail- f=2

stop failures ﬁ,y_ 4 @ .

 Two algorithms: Paxos, Raft P

Y. Cheng GMU CS§475 Fall 2021 2

Byzantine faults

» Byzantine fault: Node/component fails

_arbitrarily

* Might perform incorrect computation

* Might give conflicting information to
different parts of the system

» Might collude with other failed nodes

Y. Cheng GMU CS§475 Fall 2021

Byzantine faults @W

. B)ézantine fault: Node/component fails
arbitrarily
* Might perform incorrect computation

* Might give conflicting information to
different parts of the system

» Might collude with other failed nodes

* Why might nodes or components fall
arbitrarily”?

« Software bug present in code
* Hardware failure occurs
» Hack attack on system

ﬂ

Y. Cheng GMU CS§475 Fall 2021

Today: Byzantine fault tolerance

« Can we provide state machine replication for
a service in the presence of Byzantine faults?

» Such a service is called a Byzantine Fault
Tolerant (BFT) service

* Why might we care about this level of
reliability?

Y. Cheng GMU CS§475 Fall 2021

Motivation for BFT

 The ideas surrounding Byzantine fault tolerance
have found numerous applications:
—>, « Commercial airliner flight control computer systems
* Digital currency systems];4(sown E{oc\ﬂ&%

« Some limitations, but...

T T = — ey
* Inspired much follow-on research to address these
imitations

Y. Cheng GMU CS§475 Fall 2021

Mini-case-study: Boeing 777 fly-by-wire
primary flight control system

* Triple-redundant, dissimilar
processor hardware:

1. Intel 80486

2. Motorola

fi Key techniques: :
) 5 Hardware and software diversity,

_____voting between components |

Simplified design: e [}
* Pilotinputs = three processors 5 = ol
e Processors vote = control surface

P i

{ »
Y. Cheng GMU CS475 Falt2021

,/, 0
— L=
il
ﬂnul‘““m“ [
DIk
po® s

Today

1. Traditional state-machine replication for BFT?

2. Practical BFT replication algorithm

/'\

T

Review: Tolerating one fail-stop failure

- Traditional state machine replication (Paxos)
requires, e.g., 2f + 1 = three replicas, if f = 1

aswe agV‘Qe
» OQperations are totally ordered - Correictnessl
* A two-phase protocol — -
PR [@& O
‘ A
» Each operation uses > f + 1 = 2 of them |

» Overlapping gquorums
» SO at least one replica “remembers”

Y. Cheng GMU CS§475 Fall 2021 9

Use Paxos for BFT?

1. Can’t rely on the primary to assign segno
« Could assign same segno to different requests

glew i, primey \‘“““‘Pﬂ

—

C——

2. Gan’t use Paxos for Xiew%hange

* Under Byzantine faults, the_intersectﬁn of two
majority (f + 1 node) quorums may be bad node

—

« Bad node tells different quorums different things!

* e.9. tells NO accept vall, but N1 accept
val2

Y. Cheng GMU CS§475 Fall 2021 10

Paxos under Byzantine faults (F=1)

n,=NO:1

Y. Cheng GMU CS§475 Fall 2021 I

Paxos under Byzantine faults (F=1)

N1
n,=NO:1

Y. Cheng GMU CS§475 Fall 2021 12

Paxos under Byzantine faults (F=1)

yo)

‘ﬁ@

YYYYYY

Paxos under Byzantine faults (F=1)

2T Ny

"Decide DeC|de N1 /’
n,=N0:1 nh—N2 1

Conflicting decisions!

Y. Cheng GMU CS§475 Fall 2021 14

Theoretical fundamentals:
Byzantine Generals

Unreliable
messenge

General #2

General #1

Y. Cheng

Theoretical fundamentals:
Byzantine Generals

Unreliable
messenger

General #2

Put burden on client instead?

* Clients sign input data before storing it, then
verify signatures on data retrieved from service

« Example: Store signed file f1="aaa” with server
 Verify that returned 1 is correctly signed

But a Byzantine node can
signed In its response

Clients have to perform
computations and sign data

Y. Cheng GMU CS§475 Fall 2021

Today

1. Traditional state-machine replication for BFT™

2. Practical BFT replication algorithm ~ NT S
[Castro & Liskov, 1999] .
S %

Y. Cheng GMU CS§475 Fall 2021 19

Practical BFT: Overview ¢, - ¢

f—

* Uses 3f+1 replicas to survive f failures

orll
« Shown to be minimal (Lamport)

* Requires three phases (not two)

—

aC\o 9 VCCW;.

* Provides state machine replication

 Arbitrary service accessed by operations, e.g.,
 File system ops read and write files and directories

* Tolerates Byzantine-faulty clients

Y. Cheng GMU CS§475 Fall 2021 20

Correctness argument

 Assume
« Qperations are deterministic
» Replicas start in same state

— ~

* Then if replicas execute the same requests in the
same order:
« Correct replicas will produce identical results

Y. Cheng Replicas

21

Non-problem: Client failures

e Clients Can’t cause internal inconsistencies of
the datain servers — — — ——— —

» State machine replication property

 Clients can write data to the system
- Sol’n: Authenticate clients and separate their data

* This is a separate problem
Client w

Y. Cheng Replicas

22

What clients do

1. Send requests to the primary replica

2. Wait fot f entical replies

* Note: F les may be deceptive
* j.e., replica returns “correct” answer, but locally does otherwise!

* But at least one reply is from a non-faulty replica

§=1 L42)

3f+1 replicas

Y. Cheng GMU CS§475 Fall 2021 23

What replicas do

« Carry out a protocol that ensures that |>~<\o/ pri- ey

» Replies from honest replicas are correct
o \

* Enough replicas process each request to ensure that

« The non-faulty replicas process the same requests
(_—‘—_\
* In the same order

S

* Non-faulty replicas obey the protocol

Y. Cheng GMU CS§475 Fall 2021 24

Primary-Backup protocol ferm ,kﬁl

* Primary-Backup protocol: Group runs in a view

e |

» \/iew number designates the primary replica (‘/‘\'ﬂ‘

P
; \ Peckups
5 i L Mf\l
Client ' Pri Vi
= Primary Backups i View 914
* Primary is the node whose (id /== view# (modulo N)

1 % N= N=%
h =D ool =0

Y. Cheng GMU CS§475 Fall 2021 25

Ordering requests

* Primary picks the ordering of requests
 But the primary might be a liar!

-———————l

Client View

Primary Backups

Nm O NN N BN BN NN BN BN NN BN BN EEN BN BN BEN BEN BN NN BN BN EEN BN BN BN B B BN B

» Backups ensure primary behaves correctly
« Check and certify correct ordering
* Trigger view changes to replace faulty primary

Byzantine quorums (= 1)

A Byzantine quorum contains = 2f+1 replicas
______ e —
P e

—————————————————————

* One op’s quorum overlaps with next op’s quorum
* There are 3f+1 replicas, in total
* SO overlap is > f+1 replicas

O —

* 41 _yeplicas must contain > 1 non-faulty replica i=2.

f=2. el =1 s Deoc €00,
25«1 = & = @

Y. Cheng GMU CS475 Fall 2021 'f‘t ‘ -

27

Quorum certificates

A Byzantine quorum contains = 2f+1 replicas

—————————————————————

* Quorum certificate: a collection of 2f + 1 signed,
identical messages from a Byzantine quorum

» All messages agree on the same statement

Y. Cheng GMU CS§475 Fall 2021 28

Keys ety © "I

— Each client and replica has a private-public
keypair

» Secret keys: symmetric cryptography
* Key Is known only to the two communicating parties
» Bootstrapped using the public keys

 Each client, replica has the following secret keys:
* One key per replica for sending messages
* One key per replica for receiving messages

G0

Ordering requests —
request: Y%r m |

M —
mSigned,CIie/mA Let S‘eq(rn)__E_Signed, Primary

Backup 1 \\ Primary could be

sending a different message to
each backup!

Backup 2

~ Gt *\

* Primary chooses the request’s sequence number (n)
e Sequence number determines order of execution

Y. Cheng GMU CS§475 Fall 2021 30

Checking the primary’s message
request: VW\MF%) Wrm'

Let seq(m)=n., |
mSigned,CIient\ A(M)=Nsigned, primary

Primary N‘

| accept Seq(m)anigned, Backup 1

| accept Seq(m)anigned, Backup 2

Backup 1 \

Backup 2 \ \
Backup 3 “ ﬁ

» Backups locally verify they’ve seen < one client
request for sequence number n

* |t local check passes, replica broadcasts accept message
» Each replica makes this decision independently

— —
Y. Cheng GMU CS§475 Fall 2021 31

Collecting a prepared certificate (1

2
request: Y’&V L 122
mSlgned Cllent\ Let S€q m) nSlgnedVPrlmary o
Primary .
1z 3 | qccept Seq(m)anigned, Backup 1
_Backup 1 !
| gccept sed(m)=Ngigneq, Backup 2

TR e
,,\ N

Backup 3 G

' Each correct node has a prepared certificate locally, |
but does not know whether the other correct
nodes do too! So, we can’t commit yet!

Y. Cheng GMU CS§475 Fall 2021 32

C l (.QI."'_

Collecting a committed certificate (=1 4

request: m Have cert for

\ Let seq(m)=n Seﬁ(m)anigned, Prijnary

Primary\/ .) "
7 Signed, Backup 1

Backup 1\/ ,!
accept ~ " Signed, Backup 2
Backup 2
—_

Backup 3

U TN N M N M N R N R N R N R N M N RN N RN N RN N RN N M N RN N M N RN RN M N RN N RN RN RN RN RN RN RN RN RN N RN RN RN N RN RN RN N RN N RN N M N M N M N M N M N M N N M

Once the request is committed, replicas
. execute the operation and send areply |
i directly back to the client. 5

Y. Cheng GMU CS§475 Fall 2021 33

Byzantine primary: replaying old requests

* The client assigns each request a unique,
monotonically increasing timestamp t

« Servers track greatest t executed for each client c,
T(c), and their corresponding reply

*/On receiving request to execute with timestamp t:
¢ \eHf t < T(c), skip the request execution
« Ift =T(c), resend the reply but skip execution.

C),
« Ift> T(c), execute request, set T(c) € t, remember reply
- p— 2 “

{ a

Malicious primary can invoke t = T(c)
case but cannot compromise safety

Byzantine primary: Splitting replicas (7=1)

request: m Replayed request,
\ S|gned by client

Prlmary V
Let seq(m)=n ccept@

Backup \\ 7 seatmyr % X

Backup2
Let seq(m)=n

Backup3 acce pt m

 Recall: To prepare, need primary message and 2f accepts

» Backup 1: Won'’t prepare m\’
» Backups 2, 3: Will prepare@

Y. Cheng GMU CS§475 Fall 2021 35

Byzantine primary: Splitting replicas

* In general, backups won’t prepare two different
requests with the same segno if primary lies

. Suppose they did: two distinct requests m and
m’ for the same sequence number n™

* Then prepared quorum certificates (each of size 27+1)
would intersect at an honest replica —

T ——

* SO that honest replica would have sent an accept
message for both m and m’

eSOm=m’

Y. Cheng GMU CS§475 Fall 2021 36

View change

Client

-———————,

View

* |f a replica suspects the primary is faulty, it requests a view
change —

*—Sends a viewchange request to all replicas
» Everyone acks the view change request

. N/e_vg_ggiw collects a quorum (27+1) of responses

« Sends a new-view message with this certificate

Y. Cheng GMU CS§475 Fall 2021 37

Considerations for view change

* Need committed operations to survive into next
view
 Client may have gotten answer

* Need to preserve liveness

* |f replicas are too fast to do view change, but really
primary is okay — then performance problem

—38 Or malicious replica tries to subvert the system by
proposing a bogus view change

Y. Cheng GMU CS§475 Fall 2021

38

Garbage collection

 Storing all messages and certificates into a log
« Can’t let log grow without bound

 Protocol to shrink the log when it gets too big

 Discard messages, certificates on commit?
« No! Need them for view change

* Replicas have to agree to shrink the log

