Introduction

CS 475: Concurrent & Distributed Systems (Fall 2021)
Lecture 1

Yue Cheng

Licensed for use under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Course staff

e Instructor
* Dr. Yue Cheng (web: cs.gmu.edu/~yuecheng)
« Email: yuecheng@gmu.edu

» Research interests: Distributed systems, cloud
computing, operating systems

Y. Cheng GMU CS§475 Fall 2021

http://cs.gmu.edu/~yuecheng
mailto:yuecheng@gmu.edu

Course staff

« GTA:
* Rui Yang: ryang22@gmu.edu

Y. Cheng GMU CS§475 Fall 2021

mailto:ryang22@gmu.edu

Getting help

* My office hours
* T10:30 am - 12 pm, 5324 Engineering
* By appointment

e Rui’s office hours
e MW 9am-11 am
e |ocation: TBD

* Ed (trial): https://edstem.org

 An alternative (maybe good?) place to ask and answer
qguestions
« About labs
« About material from lectures
* NO anonymous posts or questions

« Can send private messages to instructor/GTA

https://edstem.org/

Course organization

Big picture course goals

e | earn about some of the most influential works
In distributed systems

* Learn how to approach, discuss, and
communicate about difficult & technical subject

matter

» Get a sense of how massive scale systems “fit”
together

* Learn how to manage writing highly concurrent
and non-deterministic code

* In my opinion, much harder than “just” parallel
programming

Lectures

* (Review) + lecture + (lab tutorial)
» Slides available on course website (night before)

e First five weeks: Fundamentals of concurrent &
distributed systems

* \Week 5-8:; Fault tolerance and consensus

» After midterm: Week 9-11: Consistency,
scalabllity, transactions

* Week 11-15: Datacenter computing

Calendar (tentative)

» Readings, assignments, due dates

 Less concrete further out; don’t get too far
ahead

CS 475: Concurrent & CS 475

Distributed Systems
George Mason University

Course Schedule

Course Information . i .
The course schedule is tentative and subject to change*.

Course Schedule

Date Topics Readings Notes
Lab O (Intro to Go)
Tue Introduction
08/24
Lab 1 (MapReduce)
Lab 2 (Raft) Thu Go system programming Lab 0 out
08/26
Lab 3 (Fault-tolerant Raft
Key/Value Service) Tue Concurrency overview OSTEP: Threads, Concurrency
08/31 intro, Locks
GitLab Setup
Thu Networking, RPC Lab 0 due
Announcements 92
Tue MapReduce MapReduce paper Lab 1 out
09/07

Textbooks?

» Papers (required or optional) serve as reference
for many topics that aren’t directly covered by a
text

e Slides/lecture notes

« “Distributed Systems 3 edition” by van Steen
and Tenenbaum will supply optional alternate
explanations

Programming labs

 Four lab assignments (Go) — all individually
 Lab O: Intro to Go
* |L.ab 1: MapReduce
« Lab 2: Raft
| ab 3: Raft fault-tolerant KV service (built on Lab 2)

* Require comfort with (Go) concurrency that
takes awhile to acquire

* Your labs will be autograded; you can resubmit
and view your score in real-time

CAUTION
Heavy Programming

Next 13 Weeks...

By the end of the semester...

 You will have built some sophisticated,
functional, distributed systems using Go

» Get started early on labs

* Each lab component is mostly out for 2-3 weeks: it
will take 2 weeks to do the assignment

* |t you start the day before, there won't be enough
hours in the day to complete the lab

 Labs are graded on functionality but not
performance

« Bad designs, however, may significantly affect the
performance and thus force autograder to timeout

Grading

 Labs (60% total)

* Late turnings are graded with 10% deducted each
day; no credit after 3 days

« Quizzes and in-class activities (5%)
« Midterm exam (15%)

 Final exam (20%)

Distributed systems: What?

[

* Multiple cooperating computers
« Connected by a network
* Doing something together

« Storage for big websites, MapReduce, etc.
e | ots of critical infrastructure is distributed

Y. Cheng GMU CS§475 Fall 2021

Distributed systems: Why?

* Or, why not 1 computer to rule them all?

* To organize physically separate entities
* To tolerate faults via replication

* To scale up throughput via parallel
CPUs/mem/disk/net

b i
~

' Y s
I e o 5L

- “ P L e T

i P— - Bl Rt Lt o e g
i = - -

"‘,"W

%
v
2
2
2
==

ol g

Goals of “distributed systems”

 Service with higher-level abstractions/interface

* E.g., file system, database, key-value store,
programming model, ...

* High complexity
» Scalable (scale-out)
 Reliable (fault-tolerant)
» \Well-defined semantics (consistent)

* Do “heavy lifting” so app developer doesn’t need
to

Distributed systems: Where?

Distributed systems: Where?

» Web search (e.g., Google, Bing) (Google

- Shopping (e.9,. Amazon, Walmart) @Mazon Walmart

e money. Live better.

* File sync (e.g., Dropbox, iCloud) "ISiCIOUd
» Teleconferencing (e.g,. Zoom, WebEX) Q CiSCOO
200Mm ex
« Music (e.g., Spotify, Apple Music)
Spotify

Ride sharing (e.g., Uber, Lyft lgn
UBER
* Video (e.g., Youtube, Netflix) ° .

Y. Cheng GMU CS§475 Fall 2021 21

Why take this course?

e Interesting — hard problems, powerful solutions

* Used by real systems — driven by the rise of big
websites (e.g., Amazon, Facebook)

* Active research area — lots of progress + big
unsolved problems

* Hands-on — you’ll build serious systems in the
programming assignments (labs)

Exciting time in distributed systems
research

Moore’s law ending = many challenges

10%
HUMAN
10" BRAIN
ELECTROMECHANICAL SOLID- VACUUM TRANSISTOR INTEGRATED CIRCUIT
STATE TUBE
on RELAY
MOUSE
CORE i7 QUAD§p BRAIN
°1°|0 —
g pENTIUM 4, @ " CORE 2DUO
> PENTIUM Il ‘ B
10 |- PENTIUM II :
w UANTUM,
a COMPAQ QUNA
2 DESKPRO 386 COMPUTING?
Q10¢ |- ~
S Amunasoo ‘ PENTIUM
“ I8M1130 :
w10 p~
IBM AT-80286
- DEC PDP-1
5 IBM PC
= 100 ™
< UNIVAC | Ec APPLE Il
3 PDP-10
a, 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 L 1
o COLOSSUS
2 o IBM ssec 'BM704
102 |- TABULATOR
HOLLERITH
TABULATOR
| heugs pels
10+ & NATIONAL CALCULATOR
ELLIS 3000 o] © BCA Research 2013
ANALYTICAL ENGINE
TR EEEEEEEEEEEEEEEEEEEEEER
¢ 2% 3 822 288 2 & 2 8 & 8 & 2 8 8 & & g8 &g & g %

SOURCE: RAY KURZWEIL, "THE SINGULARITY IS NEAR: WHEN HUMANS TRANSCEND BIOLOGY™, P.67, THE VIKING PRESS, 2006. DATAPOINTS BETWEEN 2000 AND
2012 REPRESENT BCA ESTIMATES.

Datacenter evolution

* Facebook’s dally logs: 60 TB

« Google web index: 10+ PB

Datacenter evolution

AWS Blog

Amazon S3 — Two Trillion Objects, 1.1 Million Requests / Second

by Jeff Barr | on 18 APR 2013 | in Amazon S3 | Permalink | @ Comments

2500 1 # S3 objects in Billions

2000

2000 -

1500 A

1000 A

500 -
29 14

2006 2007 2008 2009 2010 2011 2012 2013

Y. Cheng GMU CS475 Fall 2021 25

Increased complexity - Computation

Software

CPU

Y. Cheng GMU CS§475 Fall 2021

26

Increased complexity - Computation

Software

i
i
7

Software

G

CPU CPU
+

SGX

Y. Cheng GMU CS§475 Fall 2021

27

Increased complexity - Computation

Software

Software

CPU

Y. Cheng GMU CS§475 Fall 2021

28

Increased complexity - Memory

2015

L1/L2 cache ~1ns

L3 cache ~10ns

Main memory ~100 ns / ~80 GB/s / ~100GB

NAND SSD ~100 usec/~10GB/s/~1TB

Fast HDD ~10 msec /~100 MB/s /~10 TB

Y. Cheng GMU CS§475 Fall 2021

29

Increased complexity - Memory

2015 2020

L1/L2 cache

L3 cache

Main memory

NAND SSD

Fast HDD

Y. Cheng

~1ns L1/L2 cache

~10 ns L3 cache

~100 ns / ~80 GB/s / ~100GB
Main memory

NVM
~100 usec / ~10 GB/s / ~1 TB Intel Optane

NAND SSD
~10 msec /~100 MB/s /~10 TB Fast HDD

GMU CS§475 Fall 2021

~1ns

~10 ns
~10ns/~1TB/s /~10GB
~100 ns / ~80 GB/s / ~100GB

~1 usec/~10GB/s/~1TB

~100 usec /~10GB/s/~10TB

~10 msec / ~100 MB/s / ~100 TB

30

Increased complexity - more and

more choices

Basic tier: AO, A1, A2, A3, A4
Optimized Compute : D1, D2,
D3, D4, D11, D12, D13
D1v2, D2v2, D3v2, D11v2,...
Latest CPUs: G1, G2, G3, ...
Network Optimized: A8, A9

Compute Intensive: A10, A11,...

Microsoft Azure

Y. Cheng

t2.nano, t2.micro, t2.small
m4.large, m4.xlarge, m4.2xlarge,
m4.4xlarge, m3.medium,
c4.large, c4.xlarge, c4.2xlarge,
c3.large, c3.xlarge, c3.4xlarge,
r3.large, r3.xlarge, r3.4xlarge,
i2.2xlarge, i2.4xlarge, d2.xlarge
d2.2xlarge, d2.4xlarge,...

Amazon EC2

GMU CS§475 Fall 2021

n1-standard-1, ns1-standard-2,
ns1-standard-4, ns1-standard-8,
ns1-standard-16, ns1highmem-2,
ns1-highmem-4, ns1-highmem-8,
n1-highcpu-2, n1-highcpu-4, n1-
highcpu-8, n1-highcpu-16, n1-
highcpu-32, f1-micro, g1-small...

Google Cloud
Engine

31

Increased complexity - more and
more requirements
« Scale (highly concurrent, physically distributed)

 Latency
» Cost
e Security

 And a lot more...

The Joys of Real Hardware

Typical first year for a new cluster:

~0.5 overheating (power down most machines in <5 mins, ~1-2 days to recover)
~1 PDU failure (~500-1000 machines suddenly disappear, ~6 hours to come back)
~1 rack-move (plenty of warning, ~500-1000 machines powered down, ~6 hours)
~1 network rewiring (rolling ~5% of machines down over 2-day span)

~20 rack failures (40-80 machines instantly disappear, 1-6 hours to get back)

~5 racks go wonky (40-80 machines see 50% packetloss)

~8 network maintenances (4 might cause ~30-minute random connectivity losses)
~12 router reloads (takes out DNS and external vips for a couple minutes)

~3 router failures (have to immediately pull traffic for an hour)

~dozens of minor 30-second blips for dns

~1000 individual machine failures

~thousands of hard drive failures

slow disks, bad memory, misconfigured machines, flaky machines, etc.

Long distance links: wild dogs, sharks, dead horses, drunken hunters, etc.

* Jeff Dean, LADIS’09

Y. Cheng GMU CS475 Fall 2021 33

Urs Holzle @uhoelzle - May 21, 2020
Replying to @uhoelzle

Urs Holzle
@uhoelzle

Don't believe me? Here's a picture capturing the
situation: the power line, the fiber on the ground, and a
cow in the background.

You heard it here first == i
ou heard it here firs disappear, 1-6 hours

% packetloss)
30-minute random connectivity I
ernal vips for a couple minutes)
traffic for an hour)

achines, flaky machines, etc.

d horses, drunken hunters, etc.

* Jeff Dean, LADIS’09

Y. Cheng GMU CS475 Fall 2021 34

Research results matter: NoSQL

Consistent Hashing and Random Trees:
Distributed Caching Protocols for Relieving Hot Spots on the World Wide Web*

David Karger' Eric Lehman' Tom Leighton'* Matthew Levine! Daniel Lewin'
Rina Panigrahy

Abstract l‘lun;n-ﬂycuﬁpndloh& Ilﬁl.lntmymn
many requests that # b ampod.” which typ renders.

We describe a family of caching p s for distrib-uted s it bie. Besides making the ooc site inaccessible, beavy trafiic

that can be used 104 or‘ inate the of hot spots d d 10 onc location can cong ork near it, mtorforing

inthe wi. Our p I icularly designed for use with with traffic at ncarby sites.

very large ok nl:hls!he‘ nha\:ddly!cmsedby As use of the Wb has & d, so has the =d

bot spots can be severe, and where it is not feassble for every server
whwmﬂmdmmhmmdum
pr Is are casy % impl using cxisting net-
wnrkpmocclsnrha’lt?ﬂndmmyhlﬂem
The protocols work with local control, make cfficient use of exist-
ing and scale gracefullly as the network grows.
Ql@mgmd:mh-dmawulkmdofhhq
that we call comsistent havking. Roughly speaking, a consistent
anmmmwy-uwon&
function Through the devel of good

mpact of hot spots. Recont famous examples of hot spots on e
Web include the JPL site after the Shoemalker-Levy 9 comet struck
Jepmicr, an IBM ssic during the Decp Blue-Kasparov chess toer-
nament, and scveral political sites on the mght of the clection. In
some of these cases, users were demiod access 10 2 site for howss or
cven days. Other examples include sites sdentaficd as “Wed-sac-of-
the-day™ duumwmmofmm
Our work was onigis d by the problem of hot spots
on the Workd Wide Web, tham&nob-cm-yhe

changes.
bash functions, we are sbic 10 develop caching protocols which do
ot roquire users to have a current or oven consistent view of the
setwork. We belicve that i Bash functions may Il
prove 1o be usefil in other applications such as distribused name
servers and/or quonem systems.

1 Introduction

In this papes, wmmthMWna-
works that cam be used to & or the

of “hot spots™, Hor spots occur any tine 3 large number of clicnts
wish 10 simultancously access dats from a single server, If the site
is not provisioned 10 deal with all of these clicnss simultancously,
service may be degraded or lost,

Y. Cheng

bm.ydﬂmm&hhmmm
and Comtent Label servers are also susceptible to hot spoes.

1.1 Past Work

Several approaches 10 overcoming the hot spots have been pro-
posed. Most use some kind of replication strategy 10 store copees of
hot pages throughout the Internes; this spreads the work of serving
2 hot page across several servers. In cae approach, already in wide
use, several clients share 2 praxy cache. All user reguesss are for-
warded through the proxy, which tries to keep copées of feguently
roguested pages. It tries to satisfy requests with 2 cached copy; fal-
ing thix, &t forwards the request 10 the home server. The Slemma
in this scheme s that there is more benefit if more users share the

GMU CS475 Fall 2021

35

Research results matter: NoSQL

Y. Cheng

Consistern
Distributed Caching Protocol|
David Karger' Eric Lehman'
Abstract

\h‘educnbcnfmlyolad-uwuncols‘uchmh
that can be used 1
inthe wk. Our p ! larly desi
\ayhmena\w'bn.:hu!helmuhaedda
bot spots can be severe, and where it is not feasible fol
%o have complese information about the current state)
network. The p Is are casy %o impl usang
work protocols such as TCPVIP, nqumnvu)llJ
Tb:pruocoh-wkmtloalm&mlkcﬁaul
ing and scale gracefullly as the nctwork gro
Ql'achmgmolsmb-edmawnlkm
that we call comsistens harking. Roughly speaking,|
hash fumction is one which changes minimally as the
function changes. Through the development of goy
Bash functions, we are sblc 1o develop caching proted
not roquire users to have a carent or oven consisten)
setwork, We belicve that consistent bash functions
prove o be usefid in other applications such as disg
servers and/or quonam systems.

1 Introduction

In this paper, we describe caching protocols for dif
works that can be used to decrease or clinvinate the
of “hot spots”™, Hor spoes occur any tene 3 lasge num)
wish 10 simultancously access dats from 3 single sery
is not provisioned 10 deal with all of these clicnss sid
service may be degraded or lost,

Dynamo: Amazon’s Highly Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall
and Werner Vogels

Amazon.com

ABSTRACT

Reliability at massive scale is one of the biggest challenges we
face at Amazon.com, one of the largest e<commerce operations in
the world; even the slightest outage has significant financial
consequences and impacts customer trust. The Amazon.com
platform, which provides services for many web sites worldwide,
is implemented on top of an infrastructure of tens of thousands of
servers and network components located in many datacenters
around the world. At this scale, small and large components fail
continuously and the way persistent state is managed in the face
of these failures drives the reliability and scalability of the
software systems.

This paper presents the design and implementation of Dynamo, a
highly available key-value storage system that some of Amazon's
core services use to provide an “always-on” experience. To
achieve this level of availability, Dynamo sacrifices consistency
under certain failure scenarios. It makes extensive use of object
versioning and application-assisted conflict resolution in a manner
that provides a novel interface for developers to use.

Categories and Subject Descriptors
D.4.2 [Operating Systems): Storage Management; D.4.5

[Operating Systems]: Reliability; D.4.2 [Operating Systems):
Performance;

General Terms
Algorithms, Management, Measurement, Performance, Design,

One of the lessons our organization has leamed from operating
Amazon’s platform is that the reliability and scalability of a
system is dependent on how its application state is managed.
Amazon uses a highly decentralized, loosely coupled, service
oriented architecture consisting of hundreds of services. In this
environment there is a particular need for storage technologies
that are always available. For example, customers should be able
to view and add items to their shopping cart even if disks are
failing, network routes are flapping, or data centers are being
destroyed by tomados. Therefore, the service responsible for
managing shopping carts requires that it can always write to and
read from its data store, and that its data nceds to be available
across multiple data centers.

Dealing with failures in an infrastructure comprised of millions of
components is our standard mode of operation; there are always a
small but significant number of server and network components
that are failing at any given time. As such Amazon’s software
systems need to be constructed in a manner that treats failure
handling as the normal case without impacting availability or
performance.

To meet the reliability and scaling needs, Amazon has developed
a number of storage technologies, of which the Amazon Simple
Storage Service (also available outside of Amazon and known as
Amazon S3), is probably the best known. This paper presents the
design and implementation of Dynamo, another highly available
and scalable distributed data store built for Amazon’s platform.
Dynamo is used to manage the state of services that have very

Research results matter: Consensus

The Part-Time Parliament

Leslie Lamport

This article appeared in ACM Transactions on Computer Sys-
tems 16, 2 (May 1998), 133-169. Minor corrections were made
on 29 August 2000.

Y. Cheng GMU CS§475 Fall 2021

37

Research results matter: Consensus

Th

This articl

tems 16, 2

on 29 Aug

-
Y. Cheng

The Chubby lock service for loosely-coupled distributed systems

Mike Burrows, Google Inc.

Abstract

We describe our experiences with the Chubby lock ser-
vice, which is intended to provide coarse-grained lock-
ing as well as reliable (though low-volume) storage for
a loosely-coupled distributed system. Chubby provides
an interface much like a distributed file system with ad-
visory locks, but the design emphasis is on availability
and reliability, as opposed to high performance. Many
instances of the service have been used for over a year,
with several of them cach handling a few tens of thou-
sands of clients concurrently. The paper describes the
initial design and expected use, compares it with actual
use, and explains how the design had to be modified to
accommodate the differences.

1 Introduction
This paper describes a lock service called Chubby. It is

intended for use within 2 loosely-coupled distributed sys-
tem consisting of moderately large numbers of small ma-

cxample, the Google File System [7] uses a Chubby lock
to appoint a GFS master server, and Bigtable [3] uses
Chubby in scveral ways: to clect a master, to allow the
master to discover the servers it controls, and to permit
clients to find the master. In addition, both GFS and
Bigtable use Chubby as a well-known and available loca-
tion to store a small amount of meta-data; in effect they
use Chubby as the root of their distributed data struc-
tures. Some services use locks to partition work (at a
coarse grain) between several servers.

Before Chubby was deployed, most distributed sys-
tems at Google used ad hoc methods for primary elec-
tion (when work could be duplicated without harm), or
required operator intervention (when correctness was es-
sential). In the former case, Chubby allowed a small sav-
ing in computing effort. In the latter case, it achieved a
significant improvement in availability in systems that no
longer required human intervention on failure.

Readers familiar with distributed computing will rec-
ognize the election of 2 primary among peers as an in-
stance of the distributed consensus problem, and realize

Research results matter: Consensus

Th

The Chubby lock service for loosely-coupled distributed systems

In Search of an Understandable Consensus Algorithm
(Extended Version)

Diego Ongaro and John Ousterhout
Stanford University

Abstract

Raft is a consensus algorithm for managing a replicated
log. It produces a result equivalent to (multi-)Paxos, and
it is as efficient as Paxos, but its structure is different
from Paxos; this makes Raft more understandable than
Paxos and also provides a better foundation for build-
ing practical systems. In order to enhance understandabil-
ity, Raft separates the key elements of consensus, such as
leader election, log replication, and safety, and it enforces
a stronger degree of coherency to reduce the number of
states that must be considered. Results from a user study
demonstrate that Raft is easier for students to learn than
Paxos. Raft also includes a new mechanism for changing
the cluster membership, which uses overlapping majori-
ties to guarantee safety.

state space reduction (relative to Paxos, Raft reduces the
degree of nondeterminism and the ways servers can be in-
consistent with each other). A user study with 43 students
at two universities shows that Raft is significantly easier
to understand than Paxos: after learning both algorithms,
33 of these students were able to answer questions about
Raft better than questions about Paxos.

Raft is similar in many ways to existing consensus al-
gorithms (most notably, Oki and Liskov’s Viewstamped
Replication [29, 22]), but it has several novel features:

e Strong leader: Raft uses a stronger form of leader-
ship than other consensus algorithms. For example,
log entries only flow from the leader to other servers.
This simplifies the management of the replicated log
and makes Raft easier to understand.

Research results matter: MapReduce

MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat

Jelf@google.com, sanjay @ google.com

Google, Inc.

Abstract

MapReduce is a programming model and an associ-
ated implementation for processing and generating large
data sets. Users specify a map function that processes a
key/value pair to generate a set of intermediate key/value
pairs, and a reduce function that merges all intermediate
values associated with the same intermediate key. Many
real world tasks are expressible in this model, as shown
in the paper.

Programs written in this functional style are automati-
cally parallelized and executed on & large cluster of com-
modity machines. The run-time system takes care of the
details of partitioning the input data, scheduling the pro-
gram's execution across a set of machines, handling ma-
chine failures, and managing the required inter-machine
communication. This allows programmers without any
experience with parallel and distributed systems to cas-
ily utilize the resources of a large distributed system.

Our implementation of MapReduce runs on a large
cluster of commodity machines and is highly scalable:
a typical MapReduce computation processes many ter-
abytes of data on thousands of machines. Programmers

Y. Cheng

given day, etc. Most such computations are conceptu-
ally straightforward. However, the input data is usually
large and the computations have to be distributed across
hundreds or thousands of machines in order to finish in
a reasonable amount of time. The issues of how to par-
allelize the computation, distribute the data, and handle
failures conspire to obscure the original simple compu-
tation with large amounts of complex code to deal with
these issues.

As a reaction to this complexity, we designed a new
abstraction that allows us to express the simple computa-
tions we were trying to perform but hides the messy de-
tails of parallelization, fault-tolerance, data distribution
and load balancing in a library. Our abstraction is in-
spired by the map and reduce primitives present in Lisp
and many other functional languages. We realized that
most of our computations involved applying a map op-
eration to each logical “record™ in our input in order to
compute a set of intermediate key/value pairs, and then
applying a reduce operation to all the values that shared
the same key, in order to combine the derived data ap-
propriately. Our use of a functional model with user-
specified map and reduce operations allows us to paral-

GMU CS475 Fall 2021

40

Research results matter: MapReduce

MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat

Jelf@google.com, sanjay @ google.com

Google, Inc.

Abstract

MapReduce is a programming model and an associ-
ated implementation for processing and generating large
data sets. Users specify a map function that processes a
key/value pair to generate a set of intermediate key/value
pairs, and a reduce function that merges all intermediate
values associated with the same intermediate key. Many
real world tasks are expressible in this model, as shown
in the paper.

Programs written in this functional style are automati-
cally parallelized and executed on a large cluster of com-
modity machines. The run-time system takes care of the
details of partitioning the input data, scheduling the pro-
gram's execution across a set of machines, handling ma-
chine failures, and managing the required inter-machine
communication. This allows programmers without any
experience with parallel and distributed systems to cas-
ily utilize the resources of a large distributed system.

Our implementation of MapReduce runs on a large
cluster of commodity machines and is highly scalable:
a typical MapReduce computation processes many ter-
abytes of data on thousands of machines. Programmers

Y. Cheng

given day, etc. Most such computations are conceptu-
ally straightforward. However, the input data is usually
large and the computations have to be distributed across
hundreds or thousands of machines in order to finish in
a reasonable amount of time. The issues of how to par-
allelize the computation, distribute the data, and handle
failures conspire to obscure the original simple compu-
tation with large amounts of complex code to deal with
these issues.

As a reaction to this complexity, we designed a new
abstraction that allows us to express the simple computa-
tions we were trying to perform but hides the messy de-
tails of parallelization, fault-tolerance, data distribution
and load balancing in a library. Our abstraction is in-
spired by the map and reduce primitives present in Lisp
and many other functional languages. We realized that
most of our computations involved applying a map op-
eration to each logical “record™ in our input in order to
compute a set of intermediate key/value pairs, and then
applying a reduce operation to all the values that shared
the same key, in order to combine the derived data ap-
propriately. Our use of a functional model with user-
specified map and reduce operations allows us to paral-

GMU CS475 Fall 2021

éFIink

S distributed stream
computing platform

5 STORM

41

Assignment 0

* Assignment O (0%):
* Please sign-up for Autolab
* Please sign-up for Ed

« Next class: Go systems programming tutorial

