
Putting it all together –
Final Review

CS 475: Concurrent & Distributed Systems (Fall 2021)

Yue Cheng

Back in Lec-1…

Y. Cheng GMU CS475 Fall 2021 2

Distributed systems: What?

• Multiple cooperating computers
• Connected by a network
• Doing something together

• Lots of critical infrastructure are distributed

3Y. Cheng GMU CS475 Fall 2021

Distributed systems: Why?

• Or, why not 1 computer to rule them all?

• Failure

• Limited computation/storage

• Physical location

Y. Cheng GMU CS475 Fall 2021 4

Distributed systems: Why?

• Or, why not 1 computer to rule them all?

• Failure

• Limited computation/storage

• Physical location

Y. Cheng GMU CS475 Fall 2021 5

ØFault tolerance

ØScalability

ØAvailability, low latency

Goals of “distributed systems”

• Service with higher-level abstractions/interface
• E.g., key-value store, programming model, …

• High complexity
• Scalable (scale-out)
• Reliable (fault-tolerant)
• Well-defined semantics (consistent)

• Do “heavy lifting” so app developers don’t need to

Y. Cheng GMU CS475 Fall 2021 6

Theme

• Fundamental building blocks

• Abstractions and programming models

• Production system designs

Y. Cheng GMU CS475 Fall 2021 7

Theme

• Fundamental building blocks

• Abstractions and programming models

• Production system designs

Y. Cheng GMU CS475 Fall 2021 8

Fundamental building blocks

• Remote procedure calls (RPCs)

Y. Cheng GMU CS475 Fall 2021 9

Fundamental building blocks
• Remote procedure calls (RPCs)

• Time & clocks

Y. Cheng GMU CS475 Fall 2021 10

Fundamental building blocks
• Remote procedure calls (RPCs)

• Time & clocks

• Consensus algorithms

Y. Cheng GMU CS475 Fall 2021 11

Fundamental building blocks
• Remote procedure calls (RPCs)

• Time & clocks

• Consensus algorithms

• Replication, sharding, transactions

Y. Cheng GMU CS475 Fall 2021 12

Fundamental building blocks

• Remote procedure calls (RPCs)

• Time & clocks
• Vector clocks

• Consensus algorithms
• Raft

• Replication, sharding, transactions
• Serializability

Y. Cheng GMU CS475 Fall 2021 13

Theme

• Fundamental building blocks

• Abstractions and programming models

• Production system designs

Y. Cheng GMU CS475 Fall 2021 14

Programming models

• MapReduce

• Spark

Y. Cheng GMU CS475 Fall 2021 15

Programming models
• MapReduce

• Spark

Y. Cheng GMU CS475 Fall 2021 16

Resilient Distributed Datasets & Spark

• Transformations and actions

• persist()
• Not an action nor a transformation – tell which RDDs

should materialize

• PageRank example
• How iterative PR algorithm works
• Where to place persist() in iterative PR

Y. Cheng GMU CS475 Fall 2021 17

Theme

• Fundamental building blocks

• Abstractions and programming models

• Production system designs

Y. Cheng GMU CS475 Fall 2021 18

Production system designs

• Amazon Dynamo

• Facebook memcache

Y. Cheng GMU CS475 Fall 2021 19

Production system designs
• Amazon Dynamo

• Facebook memcache

Y. Cheng GMU CS475 Fall 2021 20

Facebook memcache

• Memcache as a demand-filled, look-aside cache
• Read() and write()

• Interesting problems solved in FB’s production-
scale memcache deployments

1. Stale set: a single region vs. geographically distributed
2. Thundering herds
3. Incast congestion
4. Incorporating McSqueal for what?

Y. Cheng GMU CS475 Fall 2021 21

Final exam

• Thursday, Dec 09th, 7:30 – 10:00am
• 150 minutes
• Open-book, open-notes (you may use class notes,

papers, and lab materials; you may read them on
your laptop, but you are not allowed to use any
network)

• Let me know if you need testing center accommodation ASAP
(no guarantee if you send me the form one day before the
final exam)

• Covering (selected) topics from lec-1 to lec-17
• High-level design questions
• 30% before midterm 70% after midterm

Y. Cheng GMU CS475 Fall 2021 22

Topics

1. Vector clocks

2. Raft

3. Transactions

4. Spark

5. Facebook memcache

Y. Cheng GMU CS475 Fall 2021 23

Don’t forget to fill out the course
evaluation form

Y. Cheng GMU CS475 Fall 2021 24

Good luck! J

