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Back in Lec-1… 
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Distributed systems: What?

• Multiple cooperating computers
• Connected by a network
• Doing something together

• Lots of critical infrastructure are distributed
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Distributed systems: Why?

• Or, why not 1 computer to rule them all?

• Failure

• Limited computation/storage

• Physical location
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ØFault tolerance

ØScalability

ØAvailability, low latency



Goals of “distributed systems”

• Service with higher-level abstractions/interface
• E.g., key-value store, programming model, … 

• High complexity
• Scalable (scale-out)
• Reliable (fault-tolerant)
• Well-defined semantics (consistent)

• Do “heavy lifting” so app developers don’t need to 
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Theme

• Fundamental building blocks

• Abstractions and programming models

• Production system designs
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Fundamental building blocks

• Remote procedure calls (RPCs)
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Fundamental building blocks

• Remote procedure calls (RPCs)

• Time & clocks
• Vector clocks

• Consensus algorithms
• Raft

• Replication, sharding, transactions
• Serializability
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Theme

• Fundamental building blocks
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Programming models

• MapReduce

• Spark
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• MapReduce

• Spark

Y. Cheng GMU CS475 Fall 2021 16



Resilient Distributed Datasets & Spark

• Transformations and actions

• persist() 
• Not an action nor a transformation – tell which RDDs 

should materialize 

• PageRank example 
• How iterative PR algorithm works
• Where to place persist() in iterative PR
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Production system designs

• Amazon Dynamo

• Facebook memcache
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Facebook memcache

• Memcache as a demand-filled, look-aside cache
• Read() and write()

• Interesting problems solved in FB’s production-
scale memcache deployments

1. Stale set: a single region vs. geographically distributed
2. Thundering herds
3. Incast congestion
4. Incorporating McSqueal for what?
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Final exam

• Thursday, Dec 09th, 7:30 – 10:00am 
• 150 minutes
• Open-book, open-notes (you may use class notes, 

papers, and lab materials; you may read them on 
your laptop, but you are not allowed to use any 
network)

• Let me know if you need testing center accommodation ASAP 
(no guarantee if you send me the form one day before the 
final exam)

• Covering (selected) topics from lec-1 to lec-17
• High-level design questions
• 30% before midterm  70% after midterm
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Topics

1. Vector clocks

2. Raft

3. Transactions

4. Spark

5. Facebook memcache
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Don’t forget to fill out the course 
evaluation form
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Good luck!  J


