
Time & Clocks
CS 4740: Cloud Computing 

Fall 2024

Lecture 8

Yue Cheng

Some material taken/derived from: 
• Princeton COS-418 materials created by Michael Freedman and Wyatt Lloyd.

• MIT 6.824 by Robert Morris, Frans Kaashoek, and Nickolai Zeldovich.

@ 2024 released for use under a CC BY-SA license.

https://creativecommons.org/licenses/by-sa/4.0/


Outline

• The need for time synchronization

• “Wall clock time” synchronization

• Logical Time: Lamport Clocks

• Vector clocks

Y. Cheng UVA CS4740 Fall '24 2



A cloud edit-compile workflow
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A cloud edit-compile workflow
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Physical time →

Lack of time synchronization – 

possible object file mismatch 

• 2143 < 2144 ➔ make doesn’t call compiler

Editor

Compiler 
over cloud

RPC



What makes time synchronization hard?

1. Quartz oscillator sensitive to temperature, age, 
vibration, radiation
• Accuracy ~one part per million

• (one second of clock drift over 12 days)

2. The internet is:
• Asynchronous: arbitrary message delays

• Best-effort: messages don’t always arrive
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Outline

• The need for time synchronization

• “Wall clock time” synchronization
• Cristian’s algorithm

• Logical Time: Lamport Clocks

• Vector clocks
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Just use Coordinated Universal Time?

• UTC is broadcast from radio stations on land and 
satellite (e.g., the Global Positioning System)

• Computers with receivers can synchronize their 
clocks with these timing signals

• Signals from land-based stations are accurate to 
about 0.1−10 milliseconds

• Signals from GPS are accurate to about one 
microsecond

• Why can’t we put GPS receivers on all our 
computers?
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Synchronization to a time server

• Suppose a server with an accurate clock (e.g., 
GPS-receiver)

• Could simply issue an RPC to obtain the time:
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Client Server

Time ↓



Synchronization to a time server

• Suppose a server with an accurate clock (e.g., 
GPS-receiver)

• Could simply issue an RPC to obtain the time:

• But this doesn’t account for network latency
• Message delays will have outdated server’s answer
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Client

Time ↓

Server



Cristian’s algorithm: Outline
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1. Client sends a request packet, 
timestamped with its local clock T1

Client Server

Time ↓

T1
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the request T2 with its local clock
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1. Client sends a request packet, 
timestamped with its local clock T1

2. Server timestamps its receipt of 
the request T2 with its local clock

3. Server sends a response packet 
with its local clock T3 and T2

Client Server

Time ↓

T1

T2
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timestamped with its local clock T1
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4. Client locally timestamps its receipt 
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Cristian’s algorithm: Outline
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1. Client sends a request packet, 
timestamped with its local clock T1

2. Server timestamps its receipt of 
the request T2 with its local clock

3. Server sends a response packet 
with its local clock T3 and T2

4. Client locally timestamps its receipt 
of the server’s response T4

Client Server

Time ↓

T1

T2

T4

T3

How can the client use these timestamps to synchronize its 

local clock to the server’s local clock?



Cristian’s algorithm: Offset sample 
calculation
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• Client samples round trip time 𝛿 = 
𝛿req + 𝛿resp = (T4 − T1) − (T3 − T2)

Client Server

Time ↓

T1

T2

T4

T3

𝛿req

𝛿resp

Goal: Client sets clock  T3 + 𝛿resp
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• Client samples round trip time 𝛿 = 
𝛿req + 𝛿resp = (T4 − T1) − (T3 − T2)

• But client knows 𝛿, not 𝛿resp

Client Server

Time ↓

T1

T2

T4

T3

𝛿req

𝛿resp

Assume: 𝛿req ≈ 𝛿resp

Goal: Client sets clock  T3 + 𝛿resp



Cristian’s algorithm: Offset sample 
calculation
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• Client samples round trip time 𝛿 = 
𝛿req + 𝛿resp = (T4 − T1) − (T3 − T2)

• But client knows 𝛿, not 𝛿resp

Client Server

Time ↓

T1

T2

T4

T3

𝛿req

𝛿resp

Assume: 𝛿req ≈ 𝛿resp

Goal: Client sets clock  T3 + 𝛿resp

Client sets clock  T3 + ½𝛿



Clock synchronization: Takeaway points

• Clocks on different systems will always behave 
differently

• Disagreement between machines can result in undesirable 
behavior
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Clock synchronization: Takeaway points

• Clocks on different systems will always behave 
differently

• Disagreement between machines can result in undesirable 
behavior

• Clock synchronization algorithms
• Rely on timestamps to estimate network delays

• 100s 𝝁s−ms accuracy

• Clocks never exactly synchronized
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Clock synchronization: Takeaway points

• Clocks on different systems will always behave 
differently

• Disagreement between machines can result in undesirable 
behavior

• Clock synchronization algorithms
• Rely on timestamps to estimate network delays

• 100s 𝝁s−ms accuracy

• Clocks never exactly synchronized

• Often inadequate for distributed systems
• Often need to reason about the order of events

• Might need precision on the order of ns
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Outline

• The need for time synchronization

• “Wall clock time” synchronization
• Cristian’s algorithm

• Logical Time: Lamport Clocks

• Vector clocks
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Motivation: Multi-site database replication
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• A New York-based bank wants to make its transaction 
ledger database resilient to whole-site failures

New York



Motivation: Multi-site database replication
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• A New York-based bank wants to make its transaction 
ledger database resilient to whole-site failures

• Replicate the database, keep one copy in SF, one in NYC

New York
San 
Francisco



The consequences of concurrent updates
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• Replicate the database, keep one copy in SF, one in 
NYC

• Client sends reads to the nearest copy

• Client sends update to both copies

“Deposit
$100”

“Pay 1%
interest”

$1,000

$1,000

$1,100

$1,111

$1,010

$1,110

Inconsistent replicas!
Updates should have been performed in 

the same order at each copy



Idea: Logical clocks

Y. Cheng UVA CS4740 Fall '24 28

• Landmark 1978 paper by Leslie Lamport



Idea: Logical clocks
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• Landmark 1978 paper by Leslie Lamport

• Insights: only the events themselves matter

Idea: Disregard the precise clock time
Instead, capture just a “happens before” relationship 
between a pair of events



Defining “happens-before” (→) 
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• Consider three processes: P1, P2, and P3

• Notation: Event a happens before event b (a → b)

Physical time ↓

P1 P2
P3



Defining “happens-before” (→) 
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• Can observe event order at a single process

Physical time ↓

P1 P2
P3

a

b



Defining “happens-before” (→) 
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1. If same process and a occurs before b, then a → b

Physical time ↓

P1 P2
P3

a

b



Defining “happens-before” (→) 
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1. If same process and a occurs before b, then a → b

2. Can observe ordering when processes communicate

Physical time ↓

P1 P2
P3

a

b
c



Defining “happens-before” (→) 
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1. If same process and a occurs before b, then a → b

2. If c is a message receipt of b, then b → c

Physical time ↓

P1 P2
P3

a

b
c



Defining “happens-before” (→) 
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1. If same process and a occurs before b, then a → b

2. If c is a message receipt of b, then b → c

3. Can observe ordering transitively

Physical time ↓

P1 P2
P3

a

b
c



Defining “happens-before” (→) 
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1. If same process and a occurs before b, then a → b

2. If c is a message receipt of b, then b → c

3. If a → b and b → c, then a → c

Physical time ↓

P1 P2
P3

a

b
c



Defining “happens-before” (→) 
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Physical time ↓

P1 P2
P3

a

b
c

1. Not all events are related by → 

d



Defining “happens-before” (→) 
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Physical time ↓

P1 P2
P3

a

b
c

1. Not all events are related by → 

2. a, d not related by → so concurrent, written as a || d

d



Lamport clocks: Objective

• We seek a clock time C(a) for every event a

• Clock condition: If a → b, then C(a) < C(b)
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Plan: Tag events with clock times; use clock 

times to make distributed system correct



The Lamport Clock algorithm
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Physical time ↓

P1
C1=0

P2
C2=0 P3

C3=0
a

b
c

• Each process Pi maintains a local clock Ci

1. Before executing an event, Ci  Ci + 1:



The Lamport Clock algorithm
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Physical time ↓

P1
C1=1

P2
C2=0 P3

C3=0
a

b
c

1. Before executing an event a, Ci  Ci + 1:

• Set event time C(a)  Ci

C(a) = 1



The Lamport Clock algorithm
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Physical time ↓

P1
C1=2

P2
C2=0 P3

C3=0
a

b
c

1. Before executing an event b, Ci  Ci + 1:

• Set event time C(b)  Ci

C(b) = 2

C(a) = 1



The Lamport Clock algorithm
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Physical time ↓

P1
C1=2

P2
C2=0 P3

C3=0
a

b
c

1. Before executing an event b, Ci  Ci + 1

2. Send the local clock in the message m

C(b) = 2

C(a) = 1

C(m) = 2



The Lamport Clock algorithm
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Physical time ↓

P1
C1=2

P2
C2=3 P3

C3=0
a

b
c

3. On process Pj receiving a message m:

• Set Cj and receive event time C(c) 1 + max{ Cj, C(m) }

C(b) = 2

C(a) = 1

C(m) = 2

C(c) = 3



Lamport Timestamps: Ordering all events

• Break ties by appending the process number to 
each event:

1. Process Pi timestamps event e with Ci(e).i

2. C(a).i < C(b).j when:
• C(a) < C(b), or C(a) = C(b) and i < j

• Now, for any two events a and b, C(a) < C(b) or 
C(b) < C(a)

• This is called a total ordering of events
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Order all these events
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P1
C1=0

a

b

c

P2
C2=0

P3
C3=0

Physical time ↓

P4
C4=0

d

e

f

g

h

i



Lamport Clocks: Takeaway points

• Can totally-order events in a distributed system: 
that’s useful!

• We saw an application of Lamport clocks for totally-
ordered multicast
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Lamport Clocks: Takeaway points

• Can totally-order events in a distributed system: 
that’s useful!

• We saw an application of Lamport clocks for totally-
ordered multicast

• But: while by construction, 

  a → b implies C(a) < C(b),
• The converse is not necessarily true:

• C(a) < C(b) does not imply a → b (possibly, a || b)
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Lamport Clocks: Takeaway points

• Can totally-order events in a distributed system: 
that’s useful!

• We saw an application of Lamport clocks for totally-
ordered multicast

• But: while by construction, 

  a → b implies C(a) < C(b),
• The converse is not necessarily true:

• C(a) < C(b) does not imply a → b (possibly, a || b)

Y. Cheng UVA CS4740 Fall '24 59

Can’t use Lamport timestamps to infer causal 

relationships between events



Outline

• The need for time synchronization

• “Wall clock time” synchronization
• Cristian’s algorithm

• Logical Time: Lamport Clocks

• Vector clocks
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Lamport Clocks and causality

• Lamport clock timestamps do not capture 
causality

• Given two timestamps C(a) and C(z), want to 
know whether there’s a chain of events linking 
them:

a → b → ... → y → z
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Vector clock: Introduction

• One integer can’t order events in more than one 
process

• So, a Vector Clock (VC) is a vector of integers, 
one entry for each process in the entire 
distributed system

• Label event e with VC(e) = [c1, c2 …, cn]
• Each entry ck is a count of events in process k that causally 

precede e

Y. Cheng UVA CS4740 Fall '24 62



Vector clock: Update rules

• Initially, all vectors are [0, 0, …, 0]

• Two update rules:

1. For each local event on process i, increment 
local entry ci
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Vector clock: Update rules

• Initially, all vectors are [0, 0, …, 0]

• Two update rules:

1. For each local event on process i, increment 
local entry ci

2. If process j receives message with vector     
[d1, d2, …, dn]:
• Set each local entry ck = max{ck, dk}
• Increment local entry cj
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Vector clock: Example
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• All processes’ VCs start at [0, 0, 0]
P1

a

b

c

P2 P3

Physical time ↓

d

e

f



Vector clock: Example
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• All processes’ VCs start at [0, 0, 0]

• Applying local update rule

P1

a

b

c

P2 P3

Physical time ↓

d

e

f



Vector clock: Example
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• All processes’ VCs start at [0, 0, 0]

• Applying local update rule

P1

a

b

c

P2 P3

Physical time ↓

d

e

f

[1,0,0]



Vector clock: Example
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• All processes’ VCs start at [0, 0, 0]

• Applying local update rule

P1

a

b

c

P2 P3

Physical time ↓

d

e

f

[1,0,0]

[2,0,0]



Vector clock: Example
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• All processes’ VCs start at [0, 0, 0]

• Applying local update rule

• Applying message rule

• Local vector clock piggybacks 
on inter-process messages

P1

a

b

c

P2 P3

Physical time ↓

d

e

f

[1,0,0]

[2,0,0]



Vector clock: Example
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• All processes’ VCs start at [0, 0, 0]

• Applying local update rule

• Applying message rule

• Local vector clock piggybacks 
on inter-process messages

P1

a

b

c

P2 P3

Physical time ↓

d

e

f

[1,0,0]

[2,0,0]

[2,1,0]



Vector clock: Example
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• All processes’ VCs start at [0, 0, 0]

• Applying local update rule

• Applying message rule

• Local vector clock piggybacks 
on inter-process messages

P1

a

b

c

P2 P3

Physical time ↓

d

e

f

[1,0,0]

[2,0,0]

[2,1,0]

[2,2,0]



Vector clock: Example
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• All processes’ VCs start at [0, 0, 0]

• Applying local update rule

• Applying message rule

• Local vector clock piggybacks 
on inter-process messages

P1

a

b

c

P2 P3

Physical time ↓

d

e

f

[1,0,0]

[2,0,0]

[2,1,0]

[2,2,0]

[2,2,2]

[0,0,1]



Comparing vector timestamps

• Rule for comparing vector timestamps:

• V(a) = V(b) when ak = bk for all k

• V(a) < V(b) when ak ≤ bk for all k and V(a) ≠ V(b)

• Concurrency: 

• V(a) || V(b) if ai < bi and aj > bj, some i, j
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Vector clocks capture causality
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• V(w) < V(z) then there is a chain of events linked by 
                  Happens-Before (→) between a and z

x

y

[2,0,0]

[2,1,0]

[2,2,0]

w

z

P1 P2 P3

[1,0,0]



Vector clocks capture causality
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• V(w) < V(z) then there is a chain of events linked by 
                  Happens-Before (→) between a and z

• V(a) || V(w) then there is no such chain of events between 
a and w

x

y

[1,0,0]

[2,0,0]

[2,1,0]

[2,2,0]

w

z

P1 P2 P3

[0,0,1]a



Comparing vector timestamps

• Rule for comparing vector timestamps:

• V(a) = V(b) when ak = bk for all k
• They are the same event

• V(a) < V(b) when ak ≤ bk for all k and V(a) ≠ V(b)
• a → b

• Concurrency: 

• V(a) || V(b) if ai < bi and aj > bj, some i, j
• a || b
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Two events a, z

Lamport clocks: C(a) < C(z)
     Conclusion: z -/-> a, i.e., either a → z or a || z

Vector clocks: V(a) < V(z)

 Conclusion: a → z
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Two events a, z

Lamport clocks: C(a) < C(z)
     Conclusion: z -/-> a, i.e., either a → z or a || z

Vector clocks: V(a) < V(z)

 Conclusion: a → z

Vector clock timestamps precisely capture 

happens-before relation (potential causality)
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