' .5 4740: Cloud Computing
SN Fall 2024
N el ° Lecture-8g

Some material taken/derived from:

* Princeton COS-418 materials created by Michael Freedman and Wyatt Lloyd.
+ MIT 6.824 by Robert Morris, Frans Kaashoek, and Nickolai Zeldovich.

@ 2024 released for use under a CC BY-SA license.

https://creativecommons.org/licenses/by-sa/4.0/

Outline

 The need for time synchronization
» “Wall clock time” synchronization
 Logical Time: Lamport Clocks

* VVector clocks

A cloud edit-compile workflow

Computer on 2144 2145 2146 2147 <4— Time according
| | to local clock

which compiler ¢ I | |
runs \
output.o created

Computer on 2142 2143 2144 2145 <«— Time according
which editor | ® | ; to local clock
runs
output.c created Physical time >
Compiler e —
over cloud M
/T\
RPC
v

Editor -

Y. Cheng UVA CS4740 Fall '24 3

A cloud edit-compile workflow

Computer on 2144 2145 2146 2147 <4— Time according
which compiler ¢\ ; | : to local clock
runs output.o created
Computer on 2142 2143 2144 2145 <«— Time according
which editor | ® | ; to local clock
runs
output.c created Physical time >
Compller xﬂm” H—[ﬁ
erdend LT 2 2143 < 2144 <> make doesn’t call compiler
RPC
v
' o
Editor

Y. Cheng UVA CS4740 Fall '24 4

A cloud edit-compile workflow

Computer on 2144 2145 2146 2147 <4— Time according
which compiler ¢\ I | : to local clock
runs output.o created
Computer on 2142 2143 2144 2145 <«— Time according
which editor | ® | ; to local clock
runs

output.c created Physical time >

Compiler & e —w—

overcoud lEAE e 2143 < 2144 = make doesn't call compiler

RPC
W --- —

I
1

i :
Editor :
I

1

-

Y. Cheng UVA CS4740 Fall '24 5

What makes time synchronization hard?

1. Quartz oscillator sensitive to temperature, age,
vibration, radiation

« Accuracy ~one part per million
 (one second of clock drift over 12 days)

2. Theinternet is:
« Asynchronous: arbitrary message delays
 Best-effort: messages don't always arrive

Outline

* “Wall clock time” synchronization
» Cristian’s algorithm

 Logical Time: Lamport Clocks

* \Vector clocks

Just use Coordinated Universal Time?

« UTC is broadcast from radio stations on land and
satellite (e.g., the Global Positioning System)

« Computers with receivers can synchronize their
clocks with these timing signals

 Signals from land-based stations are accurate to
about 0.1—10 milliseconds

 Signals from GPS are accurate to about one
microsecond

 Why can’t we put GPS receivers on all our
computers?

Synchronization to a time server

* SUppose a server with an accurate clock (e.g.,
GPS-receiver)

« Could simply issue an RPC to obtain the time:

Client ﬁ omem— Server
= , AL CA
E__N 7-/me Ofday?
2:50 PM

e

Time |

Synchronization to a time server

* SUppose a server with an accurate clock (e.g.,
GPS-receiver)

« Could simply issue an RPC to obtain the time:

Client ﬁ omem— Server
= , AL CA
E__N 7-/me Ofday?
2:50 PM

e

Time |

 But this doesn’t account for network latency
* Message delays will have outdated server’s answer

Cristian’s algorithm: Qutline

, Client Server
1. Client sends a request packet,

timestamped with its local clock T, T

Time |

Y. Cheng UVACSHA740 Fall 24 11

Cristian’s algorithm: Qutline

Client Server

E : :

e HHHHHH

r
2. Server timestamps its receipt of T “Juest @
the request T, with its local clock \

Time |

Cristian’s algorithm: Qutline

Client Server

= [

T, eQUest.. @

/ﬁ
—
N

3. Server sends a response packet

with its local clock T3 and T, Ts

Time |

Cristian’s algorithm: Qutline

Client Server

E 2 5

= D
Tl rGQUest..@
T3
4. Client locally timestamps._its receipt T (espOnSe’
of the server’s response T,

Time |

Cristian’s algorithm: Qutline

Client Server
e -
T, d ®Ques;. @
\)
T3
4. Client locally timestamps._its receipt T4 (ospONSe”
of the server’s response T,

- How can the client use these timestamps to synchronize its
| i local clock to the server's local clock?

Cristian’s algorithm: Offset sample
calculation

e Client samples round trip time 6 =
Sreq T 5resp (T4 T1) R (T3 o T2)

Time |

Cristian’s algorithm: Offset sample
calculation

e Client samples round trip time 6 =
Sreq T 5resp (T4 T1) R (T3 o T2)

Time |

Cristian’s algorithm: Offset sample
calculation

Client Server

| Goal: Client sets clock € T + G,

- m

e Client samples round trip time 6 =
5req T 5resp (T4 T1) R (T3 o TZ)

» But client knows &, Not 8 e

Time |

Y. Cheng UVA CS4740 Fall '24 18

Cristian’s algorithm: Offset sample
calculation

= mmmm e . Client Server
: Goal: Client sets clock € T + 8o, | » ce

e Client samples round trip time 6 =
Sreq T 5resp (T4 T1) R (T3 o TZ)

Time |

Cristian’s algorithm: Offset sample

calculation

] Goal: Client sets clock € T; + g,

e Client samples round trip time 6 =
Sreq T 5resp (T4 T1) R (T3 o T2)

* But client knows &, Not 4y

Client Server
ﬁ [l

Time |

Clock synchronization: Takeaway points

* Clocks on different systems will always behave
differently

« Disagreement between machines can result in undesirable
behavior

Clock synchronization: Takeaway points

* Clocks on different systems will always behave
differently

« Disagreement between machines can result in undesirable
behavior

 Clock synchronization algorithms
* Rely on timestamps to estimate network delays
* 100s us—ms accuracy
» Clocks never exactly synchronized

Clock synchronization: Takeaway points

* Clocks on different systems will always behave
differently

« Disagreement between machines can result in undesirable
behavior

 Clock synchronization algorithms
* Rely on timestamps to estimate network delays
* 100s us—ms accuracy
» Clocks never exactly synchronized

« Often inadequate for distributed systems
« Often need to reason about the order of events
« Might need precision on the order of ns

Outline

* Logical Time: Lamport Clocks

* \Vector clocks

Motivation: Multi-site database replication

* A New York-based bank wants to make its transaction
ledger database resilient to whole-site failures

Y. Cheng UVA CS4740 Fall '24 25

Motivation: Multi-site database replication

* A New York-based bank wants to make its transaction
ledger database resilient to whole-site failures

 Replicate the database, keep one copy in SF, one in NYC

Y. Cheng UVA CS4740 Fall '24 26

The consequences of concurrent updates

 Replicate the database, keep one copy in SF, one in
NYC

» Client sends reads to the nearest copy
» Client sends update to both copies

i B S R R R R N R R N R N R N R A R S R

et Inconsistent replicas! ;
i Updates should have been performed in
$1,00§ the same order at each copy |

[S

$1,100

$1,111

|ldea: Logical clocks

« Landmark 1978 paper by Leslie Lamport

Y. Cheng UVA CS4740 Fall '24 28

|ldea: Logical clocks

« Landmark 1978 paper by Leslie Lamport

* Insights: only the events themselves matter

ldea: Disregard the precise clock time

Instead, capture just a “happens before” relationship i
between a pair of events !

Y. Cheng UVA CS4740 Fall '24 29

Defining “happens-before” (—)

» Consider three processes: P1, P2, and P3

 Notation: Event a happens before event b (a = b)

P1 P2

P3

Physical time |

Y. Cheng UVA CS4740 Fall '24 30

Defining “happens-before” (—)

« Can observe event order at a single process

P1 P2

P3

Physical time |

Y. Cheng UVA CS4740 Fall '24 31

Defining “happens-before” (—)

1. If same process and a occurs before b, thena 2> b

Y. Cheng

P1

P2

P3

UVA CS4740 Fall '24

Physical time |

32

Defining “happens-before” (—)

2. Can observe ordering when processes communicate

Y. Cheng

P1

P2

P3

UVA CS4740 Fall '24

Physical time |

33

Defining “happens-before” (—)

2. Ifcis a message receipt of b, thenb > ¢

Y. Cheng

P1

P2

P3

UVA CS4740 Fall '24

Physical time |

34

Defining “happens-before” (—)

3. Can observe ordering transitively

Y. Cheng

P1

P2

P3

UVA CS4740 Fall '24

Physical time |

35

Defining “happens-before” (—)

3. lfa=>bandb=>c,thena—->c

Y. Cheng

P1

P2

P3

UVA CS4740 Fall '24

Physical time |

36

Defining “happens-before” (—)

1. Not all events are related by -

Y. Cheng

P1

P2

P3

UVA CS4740 Fall '24

Physical time |

37

Defining “happens-before” (—)

1. Not all events are related by -

2. a, dnot related by = so concurrent, writtenas a || d

Y. Cheng

P1

P2

P3

UVA CS4740 Fall '24

Physical time |

38

Lamport clocks: Objective

* We seek a clock time C(a) for every event a

Plan: Tag events with clock times; use clock
times to make distributed system correct

 Clock condition: If a = b, then C(a) < C(b)

The Lamport Clock algorithm

» Each process P; maintains a local clock C;

1. Before executingan event, C, < C, + 1:

P1 P2

C,=0 C,=0 P3

C5=0
a 3

b

Physical time |

Y. Cheng UVA CS4740 Fall '24 40

The Lamport Clock algorithm

1. Before executinganeventa, C, €« C; + 1:

« Set event time C(a) € C;

Y. Cheng

P1

C1=1

a

b

Cla=1

P3

C,=0

UVA CS4740 Fall '24

Physical time |

41

The Lamport Clock algorithm

1. Before executinganeventb, C; €< C; + 1:

« Set event time C(b) € C,

P1 P2
C,=2 C,=0 P3
(@) =1 C;=0

C(b) = 2]

Physical time |

Y. Cheng UVA CS4740 Fall '24 42

The Lamport Clock algorithm

1. Before executing an eventb, C; < C,; + 1

2. Send the local clock in the message m

P1 P2
C,=2 C,=0 P3
(a) =1 C,=0

Physical time |

Y. Cheng UVA CS4740 Fall '24 43

The Lamport Clock algorithm

3. On process P, receiving a message m:

 Set C; and receive event time C(c) <1 + max{ C;, C(m) }

P1 P2
C,=2 C,=3 P3
(@) =1 C;=0

C(b) = 2

Physical time |

Y. Cheng UVA CS4740 Fall '24 44

Lamport Timestamps: Ordering all events

» Break ties by appending the process number to
each event:

1. Process P, timestamps event e with Ci(e)./

2. C(a). < C(b),)when:
. C(a) <C(b), or C(a) = C(b) and i <

* Now, for any two events a and b, C(a) < C(b) or
C(b) < C(a)

 This is called a total ordering of events

Order all these events

P1

C,=0

Y. Cheng

P2 P3
C,=0 C,=0
d
J f
O €
g @

UVA CS4740 Fall '24

P4

C,=0

Physical time |

46

Lamport Clocks: Takeaway points

 Can totally-order events in a distributed system:
that’s useful!

« \We saw an application of Lamport clocks for totally-
ordered multicast

Lamport Clocks: Takeaway points

 Can totally-order events in a distributed system:
that’s useful!

« \We saw an application of Lamport clocks for totally-
ordered multicast

 But: while by construction,
a > b implies C(a) < C(b),

* The converse is not necessarily true:
* C(a) < C(b) does not imply a = b (possibly, a || b)

Lamport Clocks: Takeaway points

 Can totally-order events in a distributed system:
that’s useful!

« \We saw an application of Lamport clocks for totally-
ordered multicast

 But: while by construction,
a > b implies C(a) < C(b),

* The converse is not necessarily true:
* C(a) < C(b) does not imply a = b (possibly, a || b)

’Can t use Lamport timestamps to infer causal
'relatlonshlps between events

Outline

* \Vector clocks

Lamport Clocks and causality

» Lamport clock timestamps do not capture
causality

» Given two timestamps C(a) and C(z), want to
know whether there’s a chain of events linking
them:

a2>2b=2>.2y=2>7Z

Vector clock: Introduction

* One integer can’t order events in more than one
pProcess

» S0, a Vector Clock (VC) is a vector of integers,
one entry for each process in the entire
distributed system

 Label event e with VC(e) = [Cc4, Cs ..., C,]

« Each entry ¢, is a count of events in process k that causally
precede e

Vector clock: Update rules

* Initially, all vectors are [0, O, ..., O]

* Two update rules:

1. For each local event on process I, increment
local entry ¢

Vector clock: Update rules

* Initially, all vectors are [0, O, ..., O]

* Two update rules:

1. For each local event on process I, increment
local entry ¢

2. |f process | receives message with vector
[dy, ds, ..., d.]:
« Set each local entry ¢, = max{c,, d.}
* Increment local entry ¢,

Vector clock: Example

 All processes’ VCs start at [0, O, O]

P1| |P2| |[P3

a<l) eo
b
0\30
d¢
)\?(3
4 4 /

Physical time |

Y. Cheng UVA CS4740 Fall '24 65

Vector clock: Example

* All processes’ VCs start at [0, 0, 0] [p1] [ps] [pa

aJ) eo
* Applying local update rule b<>\0
C
d<>\(
B
f
v v v

Physical time |

Y. Cheng UVA CS4740 Fall '24 66

Vector clock: Example

* All processes’ VCs start at [0, 0, 0] [p1] [ps] [pa

aJ)[l,OO]
eo
* Applying local update rule b<>\0
C

d<>\(
B

f
v v v

Physical time |

Y. Cheng UVA CS4740 Fall '24 67

Vector clock: Example

* All processes’ VCs start at [0, 0, 0] [p1] [ps] [pa

aJ)[l,OO]
[2’0’0] e<>
* Applying local update rule b<>\0

C
d<>\(
B

f

v v v

Physical time |

Y. Cheng UVA CS4740 Fall '24 68

Vector clock: Example

* All processes’ VCs start at [0, 0, 0] [p1] [ps] [pa

aA[l,OO]
[2,0,0] eo
» Applying local update rule b<>\0
C
d«
| T~
* Applying message rule f
» Local vector clock piggybacks
on inter-process messages v v v

Physical time |

Y. Cheng UVA CS4740 Fall '24 69

Vector clock: Example

 All processes’ VCs start at [0, O, O]

* Applying local update rule

* Applying message rule
» Local vector clock piggybacks
on inter-process messages

Y. Cheng UVA CS4740 Fall '24

P1 P2

b¢
[2,Q0] y[2,1,0]
C

\ 4 \ 4

‘ 0\<5

P3

eo

f

v

Physical time |

70

Vector clock: Example

 All processes’ VCs start at [0, O, O]

P1| |P2| |[P3

aA[l,0,0]
* Applying local update rule bo%()[z,l,o]
C
d [2,2,0]
(
| T~
* Applying message rule f
» Local vector clock piggybacks
on inter-process messages v v v

Physical time |

Y. Cheng UVA CS4740 Fall '24 71

Vector clock: Example

* All processes’ VCs start at [0, 0, 0] [p1] [ps] [pa

aA[l,0,0]
b 2.0,0] e <)[0,0,1]
' C
* Applying local update rule %0[2,1,01
[2,2,0]
d <>\(
: [2’2,0]) [2.2.2]
* Applying message rule f
» Local vector clock piggybacks
on inter-process messages v v v

Physical time |

Y. Cheng UVA CS4740 Fall '24 72

Comparing vector timestamps

* Rule for comparing vector timestamps:
* V(a) = V(b) when a, = b, for all k

* V(a) < V(b) when a, < b, for all k and V(a) + V(b)

« Concurrency:

* V(a) || V(b) if &, < Ib,and a; > b;, some |, |

Vector clocks capture causality

* V(w) < V(z) then there is a chain of events linked by
Happens-Before (=) between a and z

Pl P2 P3
[1,0,0] w
[2,0,0] X
2,1,0]
VIt _
Z0[2,2,0]

Vector clocks capture causality

* V(w) < V(z) then there is a chain of events linked by
Happens-Before (=) between a and z

* V(a) || V(w) then there is no such chain of events between
aandw

P1 P2 P3
[1,0,0] w
2.00] 0[0,0,1]
b) b} X
2.1,0]
VI _
Z0[2,2,0]

Comparing vector timestamps

* Rule for comparing vector timestamps:

* V(a) = V(b) when a, = b, for all k

* They are the same event

* V(a) <V(b) when a, < b, for all k and V(a) # V(b)
ca=2>b

« Concurrency:

* V(a) || V(b) if &, < Ib,and a; > b, some |, |
- allb

Two events a, z

Lamport clocks: C(a) < C(z)
Conclusion: z-/-> a, I.e., eithera 2> zora || z

Vector clocks: V(a) < V(z)
Conclusion: a = z

Two events a, z

Lamport clocks: C(a) < C(z)

Conclusion: z-/-> a, I.e., eithera 2> zora || z

Vector clocks: V(a) < V(z)

Conclusion: a =2 z

’Vector clock timestamps precisely capture
-happens before relation (potential causality)

	Slide 1: Time & Clocks
	Slide 2: Outline
	Slide 3: A cloud edit-compile workflow
	Slide 4: A cloud edit-compile workflow
	Slide 5: A cloud edit-compile workflow
	Slide 6: What makes time synchronization hard?
	Slide 7: Outline
	Slide 8: Just use Coordinated Universal Time?
	Slide 9: Synchronization to a time server
	Slide 10: Synchronization to a time server
	Slide 11: Cristian’s algorithm: Outline
	Slide 12: Cristian’s algorithm: Outline
	Slide 13: Cristian’s algorithm: Outline
	Slide 14: Cristian’s algorithm: Outline
	Slide 15: Cristian’s algorithm: Outline
	Slide 16: Cristian’s algorithm: Offset sample calculation
	Slide 17: Cristian’s algorithm: Offset sample calculation
	Slide 18: Cristian’s algorithm: Offset sample calculation
	Slide 19: Cristian’s algorithm: Offset sample calculation
	Slide 20: Cristian’s algorithm: Offset sample calculation
	Slide 21: Clock synchronization: Takeaway points
	Slide 22: Clock synchronization: Takeaway points
	Slide 23: Clock synchronization: Takeaway points
	Slide 24: Outline
	Slide 25: Motivation: Multi-site database replication
	Slide 26: Motivation: Multi-site database replication
	Slide 27: The consequences of concurrent updates
	Slide 28: Idea: Logical clocks
	Slide 29: Idea: Logical clocks
	Slide 30: Defining “happens-before” ()
	Slide 31: Defining “happens-before” ()
	Slide 32: Defining “happens-before” ()
	Slide 33: Defining “happens-before” ()
	Slide 34: Defining “happens-before” ()
	Slide 35: Defining “happens-before” ()
	Slide 36: Defining “happens-before” ()
	Slide 37: Defining “happens-before” ()
	Slide 38: Defining “happens-before” ()
	Slide 39: Lamport clocks: Objective
	Slide 40: The Lamport Clock algorithm
	Slide 41: The Lamport Clock algorithm
	Slide 42: The Lamport Clock algorithm
	Slide 43: The Lamport Clock algorithm
	Slide 44: The Lamport Clock algorithm
	Slide 45: Lamport Timestamps: Ordering all events
	Slide 46: Order all these events
	Slide 57: Lamport Clocks: Takeaway points
	Slide 58: Lamport Clocks: Takeaway points
	Slide 59: Lamport Clocks: Takeaway points
	Slide 60: Outline
	Slide 61: Lamport Clocks and causality
	Slide 62: Vector clock: Introduction
	Slide 63: Vector clock: Update rules
	Slide 64: Vector clock: Update rules
	Slide 65: Vector clock: Example
	Slide 66: Vector clock: Example
	Slide 67: Vector clock: Example
	Slide 68: Vector clock: Example
	Slide 69: Vector clock: Example
	Slide 70: Vector clock: Example
	Slide 71: Vector clock: Example
	Slide 72: Vector clock: Example
	Slide 73: Comparing vector timestamps
	Slide 74: Vector clocks capture causality
	Slide 75: Vector clocks capture causality
	Slide 76: Comparing vector timestamps
	Slide 77
	Slide 78

