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Outline

 The need for time synchronization
» “Wall clock time” synchronization
 Logical Time: Lamport Clocks

* VVector clocks
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A cloud edit-compile workflow

Computer on 2144 2145 2146 2147 <4— Time according
which compiler ¢\ I | : to local clock
runs output.o created
Computer on 2142 2143 2144 2145 <«— Time according
which editor | ® | ; to local clock
runs

output.c created Physical time >

Compiler & e —w—

overcoud lEAE e 2143 < 2144 = make doesn't call compiler

RPC
W ----------------------------------------------------- —

I
1

i :
Editor :
I

1

-

Y. Cheng UVA CS4740 Fall '24 5



What makes time synchronization hard?

1. Quartz oscillator sensitive to temperature, age,
vibration, radiation

« Accuracy ~one part per million
 (one second of clock drift over 12 days)

2. Theinternet is:
« Asynchronous: arbitrary message delays
 Best-effort: messages don't always arrive



Outline

* “Wall clock time” synchronization
» Cristian’s algorithm

 Logical Time: Lamport Clocks

* \Vector clocks



Just use Coordinated Universal Time?

« UTC is broadcast from radio stations on land and
satellite (e.g., the Global Positioning System)

« Computers with receivers can synchronize their
clocks with these timing signals

 Signals from land-based stations are accurate to
about 0.1—10 milliseconds

 Signals from GPS are accurate to about one
microsecond

 Why can’t we put GPS receivers on all our
computers?



Synchronization to a time server

* SUppose a server with an accurate clock (e.g.,
GPS-receiver)

« Could simply issue an RPC to obtain the time:

Client ﬁ omem— Server
= , AL CA
E__N 7-/me Ofday?
2:50 PM

e

Time |



Synchronization to a time server

* SUppose a server with an accurate clock (e.g.,
GPS-receiver)

« Could simply issue an RPC to obtain the time:

Client ﬁ omem— Server
= , AL CA
E__N 7-/me Ofday?
2:50 PM

e

Time |

 But this doesn’t account for network latency
* Message delays will have outdated server’s answer



Cristian’s algorithm: Qutline

, Client Server
1. Client sends a request packet,

timestamped with its local clock T, T

Time |
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Cristian’s algorithm: Qutline

Client Server

E : :

e HHHHHH

r
2. Server timestamps its receipt of T “Juest @
the request T, with its local clock \

Time |



Cristian’s algorithm: Qutline

Client Server

= [

T, eQUest.. @
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—
N

3. Server sends a response packet

with its local clock T3 and T, Ts

Time |



Cristian’s algorithm: Qutline

Client Server
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Cristian’s algorithm: Qutline

Client Server
e -
T, d ®Ques;. @
\ )
T3
4. Client locally timestamps._its receipt T4 (ospONSe”
of the server’s response T,

- How can the client use these timestamps to synchronize its
| i local clock to the server's local clock?



Cristian’s algorithm: Offset sample
calculation

e Client samples round trip time 6 =
Sreq T 5resp (T4 T1) R (T3 o T2)

Time |



Cristian’s algorithm: Offset sample
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Cristian’s algorithm: Offset sample
calculation

Client Server

| Goal: Client sets clock € T + G,

- m

e Client samples round trip time 6 =
5req T 5resp (T4 T1) R (T3 o TZ)

» But client knows &, Not 8 e

Time |
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Cristian’s algorithm: Offset sample

calculation

] Goal: Client sets clock € T; + g,

e Client samples round trip time 6 =
Sreq T 5resp (T4 T1) R (T3 o T2)

* But client knows &, Not 4y

Client Server
ﬁ [l

Time |



Clock synchronization: Takeaway points

* Clocks on different systems will always behave
differently

« Disagreement between machines can result in undesirable
behavior
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Clock synchronization: Takeaway points

* Clocks on different systems will always behave
differently

« Disagreement between machines can result in undesirable
behavior

 Clock synchronization algorithms
* Rely on timestamps to estimate network delays
* 100s us—ms accuracy
» Clocks never exactly synchronized

« Often inadequate for distributed systems
« Often need to reason about the order of events
« Might need precision on the order of ns



Outline

* Logical Time: Lamport Clocks

* \Vector clocks



Motivation: Multi-site database replication

* A New York-based bank wants to make its transaction
ledger database resilient to whole-site failures
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Motivation: Multi-site database replication

* A New York-based bank wants to make its transaction
ledger database resilient to whole-site failures

 Replicate the database, keep one copy in SF, one in NYC
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The consequences of concurrent updates

 Replicate the database, keep one copy in SF, one in
NYC

» Client sends reads to the nearest copy
» Client sends update to both copies

i B S R R R R N R R N R N R N R A R S R

et Inconsistent replicas! ;
i Updates should have been performed in
$1,00§ the same order at each copy |

[ S

$1,100

$1,111




|ldea: Logical clocks

« Landmark 1978 paper by Leslie Lamport
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|ldea: Logical clocks

« Landmark 1978 paper by Leslie Lamport

* Insights: only the events themselves matter

ldea: Disregard the precise clock time

Instead, capture just a “happens before” relationship i
between a pair of events !
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Defining “happens-before” (—)

» Consider three processes: P1, P2, and P3

 Notation: Event a happens before event b (a = b)

P1 P2

P3

Physical time |
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Defining “happens-before” (—)

« Can observe event order at a single process

P1 P2

P3

Physical time |
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Defining “happens-before” (—)

1. If same process and a occurs before b, thena 2> b

Y. Cheng

P1

P2

P3
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Defining “happens-before” (—)

2. Can observe ordering when processes communicate

Y. Cheng

P1

P2

P3
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Defining “happens-before” (—)

2. Ifcis a message receipt of b, thenb > ¢

Y. Cheng

P1

P2

P3
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Defining “happens-before” (—)

3. Can observe ordering transitively

Y. Cheng

P1

P2

P3
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Defining “happens-before” (—)

3. lfa=>bandb=>c,thena—->c

Y. Cheng

P1
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P3
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Defining “happens-before” (—)

1. Not all events are related by -
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Defining “happens-before” (—)

1. Not all events are related by -

2. a, dnot related by = so concurrent, writtenas a || d

Y. Cheng
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P3
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Lamport clocks: Objective

* We seek a clock time C(a) for every event a

Plan: Tag events with clock times; use clock
times to make distributed system correct

 Clock condition: If a = b, then C(a) < C(b)



The Lamport Clock algorithm

» Each process P; maintains a local clock C;

1. Before executingan event, C, < C, + 1:

P1 P2

C,=0 C,=0 P3

C5=0
a 3

b

Physical time |
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The Lamport Clock algorithm

1. Before executinganeventa, C, €« C; + 1:

« Set event time C(a) € C;

Y. Cheng

P1

C1=1

a

b

Cla=1

P3

C,=0
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The Lamport Clock algorithm

1. Before executinganeventb, C; €< C; + 1:

« Set event time C(b) € C,

P1 P2
C,=2 C,=0 P3
(@) =1 C;=0

C(b) = 2]

Physical time |
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The Lamport Clock algorithm

1. Before executing an eventb, C; < C,; + 1

2. Send the local clock in the message m

P1 P2
C,=2 C,=0 P3
(a) =1 C,=0

Physical time |
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The Lamport Clock algorithm

3. On process P, receiving a message m:

 Set C; and receive event time C(c) <1 + max{ C;, C(m) }

P1 P2
C,=2 C,=3 P3
(@) =1 C;=0

C(b) = 2

Physical time |
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Lamport Timestamps: Ordering all events

» Break ties by appending the process number to
each event:

1. Process P, timestamps event e with Ci(e)./

2. C(a). < C(b),)when:
. C(a) <C(b), or C(a) = C(b) and i <

* Now, for any two events a and b, C(a) < C(b) or
C(b) < C(a)

 This is called a total ordering of events



Order all these events

P1

C,=0

Y. Cheng

P2 P3
C,=0 C,=0
d
J f
O €
g @
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Lamport Clocks: Takeaway points

 Can totally-order events in a distributed system:
that’s useful!

« \We saw an application of Lamport clocks for totally-
ordered multicast
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 But: while by construction,
a > b implies C(a) < C(b),

* The converse is not necessarily true:
* C(a) < C(b) does not imply a = b (possibly, a || b)



Lamport Clocks: Takeaway points

 Can totally-order events in a distributed system:
that’s useful!

« \We saw an application of Lamport clocks for totally-
ordered multicast

 But: while by construction,
a > b implies C(a) < C(b),

* The converse is not necessarily true:
* C(a) < C(b) does not imply a = b (possibly, a || b)

’Can t use Lamport timestamps to infer causal
'relatlonshlps between events



Outline

* \Vector clocks



Lamport Clocks and causality

» Lamport clock timestamps do not capture
causality

» Given two timestamps C(a) and C(z), want to
know whether there’s a chain of events linking
them:

a2>2b=2>.2y=2>7Z



Vector clock: Introduction

* One integer can’t order events in more than one
pProcess

» S0, a Vector Clock (VC) is a vector of integers,
one entry for each process in the entire
distributed system

 Label event e with VC(e) = [Cc4, Cs ..., C,]

« Each entry ¢, is a count of events in process k that causally
precede e



Vector clock: Update rules

* Initially, all vectors are [0, O, ..., O]

* Two update rules:

1. For each local event on process I, increment
local entry ¢



Vector clock: Update rules

* Initially, all vectors are [0, O, ..., O]

* Two update rules:

1. For each local event on process I, increment
local entry ¢

2. |f process | receives message with vector
[dy, ds, ..., d.]:
« Set each local entry ¢, = max{c,, d.}
* Increment local entry ¢,



Vector clock: Example

 All processes’ VCs start at [0, O, O]

P1| |P2| |[P3

a<l) eo
b
0\30
d¢
)\?(3
4 4  /

Physical time |
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Vector clock: Example

* All processes’ VCs start at [0, 0, 0] [p1] [ps] [pa

aJ) eo
* Applying local update rule b<>\0
C
d<>\(
B
f
v v v

Physical time |
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Vector clock: Example

* All processes’ VCs start at [0, 0, 0] [p1] [ps] [pa

aJ)[l,OO]
eo
* Applying local update rule b<>\0
C

d<>\(
B

f
v v v

Physical time |
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Vector clock: Example

* All processes’ VCs start at [0, 0, 0] [p1] [ps] [pa

aJ)[l,OO]
[2’0’0] e<>
* Applying local update rule b<>\0

C
d<>\(
B

f

v v v

Physical time |
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Vector clock: Example

* All processes’ VCs start at [0, 0, 0] [p1] [ps] [pa

aA[l,OO]
[2,0,0] eo
» Applying local update rule b<>\0
C
d«
| T~
* Applying message rule f
» Local vector clock piggybacks
on inter-process messages v v v

Physical time |
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Vector clock: Example

 All processes’ VCs start at [0, O, O]

* Applying local update rule

* Applying message rule
» Local vector clock piggybacks
on inter-process messages

Y. Cheng UVA CS4740 Fall '24

P1 P2

b¢
[2,Q0] y[2,1,0]
C

\ 4 \ 4

‘ 0\<5

P3

eo

f

v
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Vector clock: Example

 All processes’ VCs start at [0, O, O]

P1| |P2| |[P3

aA[l,0,0]
* Applying local update rule bo%()[z,l,o]
C
d [2,2,0]
(
| T~
* Applying message rule f
» Local vector clock piggybacks
on inter-process messages v v v

Physical time |
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Vector clock: Example

* All processes’ VCs start at [0, 0, 0] [p1] [ps] [pa

aA[l,0,0]
b 2.0,0] e <)[0,0,1]
' C
* Applying local update rule %0[2,1,01
[2,2,0]
d <>\(
: [2’2,0] ) [2.2.2]
* Applying message rule f
» Local vector clock piggybacks
on inter-process messages v v v

Physical time |
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Comparing vector timestamps

* Rule for comparing vector timestamps:
* V(a) = V(b) when a, = b, for all k

* V(a) < V(b) when a, < b, for all k and V(a) + V(b)

« Concurrency:

* V(a) || V(b) if &, < Ib,and a; > b;, some |, |



Vector clocks capture causality

* V(w) < V(z) then there is a chain of events linked by
Happens-Before (=) between a and z

Pl P2 P3
[1,0,0] w
[2,0,0] X
2,1,0]
VIt _
Z0[2,2,0]




Vector clocks capture causality

* V(w) < V(z) then there is a chain of events linked by
Happens-Before (=) between a and z

* V(a) || V(w) then there is no such chain of events between
aandw

P1 P2 P3
[1,0,0] w
2.00] 0[0,0,1]
b) b} X
2.1,0]
VI _
Z0[2,2,0]




Comparing vector timestamps

* Rule for comparing vector timestamps:

* V(a) = V(b) when a, = b, for all k

* They are the same event

* V(a) <V(b) when a, < b, for all k and V(a) # V(b)
ca=2>b

« Concurrency:

* V(a) || V(b) if &, < Ib,and a; > b, some |, |
- allb



Two events a, z

Lamport clocks: C(a) < C(z)
Conclusion: z-/-> a, I.e., eithera 2> zora || z

Vector clocks: V(a) < V(z)
Conclusion: a = z



Two events a, z

Lamport clocks: C(a) < C(z)

Conclusion: z-/-> a, I.e., eithera 2> zora || z

Vector clocks: V(a) < V(z)

Conclusion: a =2 z

’Vector clock timestamps precisely capture
-happens before relation (potential causality)
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