
Time & Clocks
CS 4740: Cloud Computing

Fall 2024

Lecture 8

Yue Cheng

Some material taken/derived from:
• Princeton COS-418 materials created by Michael Freedman and Wyatt Lloyd.

• MIT 6.824 by Robert Morris, Frans Kaashoek, and Nickolai Zeldovich.

@ 2024 released for use under a CC BY-SA license.

https://creativecommons.org/licenses/by-sa/4.0/

Outline

• The need for time synchronization

• “Wall clock time” synchronization

• Logical Time: Lamport Clocks

• Vector clocks

Y. Cheng UVA CS4740 Fall '24 2

A cloud edit-compile workflow

Y. Cheng UVA CS4740 Fall '24 3

Physical time →

Editor

Compiler
over cloud

RPC

A cloud edit-compile workflow

Y. Cheng UVA CS4740 Fall '24 4

• 2143 < 2144 ➔ make doesn’t call compiler

Physical time →

Editor

Compiler
over cloud

RPC

A cloud edit-compile workflow

Y. Cheng UVA CS4740 Fall '24 5

Physical time →

Lack of time synchronization –

possible object file mismatch

• 2143 < 2144 ➔ make doesn’t call compiler

Editor

Compiler
over cloud

RPC

What makes time synchronization hard?

1. Quartz oscillator sensitive to temperature, age,
vibration, radiation
• Accuracy ~one part per million

• (one second of clock drift over 12 days)

2. The internet is:
• Asynchronous: arbitrary message delays

• Best-effort: messages don’t always arrive

Y. Cheng UVA CS4740 Fall '24 6

Outline

• The need for time synchronization

• “Wall clock time” synchronization
• Cristian’s algorithm

• Logical Time: Lamport Clocks

• Vector clocks

Y. Cheng UVA CS4740 Fall '24 7

Just use Coordinated Universal Time?

• UTC is broadcast from radio stations on land and
satellite (e.g., the Global Positioning System)

• Computers with receivers can synchronize their
clocks with these timing signals

• Signals from land-based stations are accurate to
about 0.1−10 milliseconds

• Signals from GPS are accurate to about one
microsecond

• Why can’t we put GPS receivers on all our
computers?

Y. Cheng UVA CS4740 Fall '24 8

Synchronization to a time server

• Suppose a server with an accurate clock (e.g.,
GPS-receiver)

• Could simply issue an RPC to obtain the time:

Y. C heng UVA C S 4740 F all '24 9

Client Server

Time ↓

Synchronization to a time server

• Suppose a server with an accurate clock (e.g.,
GPS-receiver)

• Could simply issue an RPC to obtain the time:

• But this doesn’t account for network latency
• Message delays will have outdated server’s answer

Y. Cheng UVA C S 4740 F all '24 10

Client

Time ↓

Server

Cristian’s algorithm: Outline

Y. Cheng UVA CS4740 Fall '24 11

1. Client sends a request packet,
timestamped with its local clock T1

Client Server

Time ↓

T1

Cristian’s algorithm: Outline

Y. Cheng UVA CS4740 Fall '24 12

1. Client sends a request packet,
timestamped with its local clock T1

2. Server timestamps its receipt of
the request T2 with its local clock

Client Server

Time ↓

T1

T2

Cristian’s algorithm: Outline

Y. Cheng UVA CS4740 Fall '24 13

1. Client sends a request packet,
timestamped with its local clock T1

2. Server timestamps its receipt of
the request T2 with its local clock

3. Server sends a response packet
with its local clock T3 and T2

Client Server

Time ↓

T1

T2

T3

Cristian’s algorithm: Outline

Y. Cheng UVA CS4740 Fall '24 14

1. Client sends a request packet,
timestamped with its local clock T1

2. Server timestamps its receipt of
the request T2 with its local clock

3. Server sends a response packet
with its local clock T3 and T2

4. Client locally timestamps its receipt
of the server’s response T4

Client Server

Time ↓

T1

T2

T4

T3

Cristian’s algorithm: Outline

Y. Cheng UVA CS4740 Fall '24 15

1. Client sends a request packet,
timestamped with its local clock T1

2. Server timestamps its receipt of
the request T2 with its local clock

3. Server sends a response packet
with its local clock T3 and T2

4. Client locally timestamps its receipt
of the server’s response T4

Client Server

Time ↓

T1

T2

T4

T3

How can the client use these timestamps to synchronize its

local clock to the server’s local clock?

Cristian’s algorithm: Offset sample
calculation

Y. Cheng UVA CS4740 Fall '24 16

• Client samples round trip time 𝛿 =
𝛿req + 𝛿resp = (T4 − T1) − (T3 − T2)

Client Server

Time ↓

T1

T2

T4

T3

𝛿req

𝛿resp

Goal: Client sets clock  T3 + 𝛿resp

Cristian’s algorithm: Offset sample
calculation

Y. Cheng UVA CS4740 Fall '24 17

• Client samples round trip time 𝛿 =
𝛿req + 𝛿resp = (T4 − T1) − (T3 − T2)

Client Server

Time ↓

T1

T2

T4

T3

𝛿req

𝛿resp

Goal: Client sets clock  T3 + 𝛿resp

Cristian’s algorithm: Offset sample
calculation

Y. Cheng UVA CS4740 Fall '24 18

• Client samples round trip time 𝛿 =
𝛿req + 𝛿resp = (T4 − T1) − (T3 − T2)

• But client knows 𝛿, not 𝛿resp

Client Server

Time ↓

T1

T2

T4

T3

𝛿req

𝛿resp

Goal: Client sets clock  T3 + 𝛿resp

Cristian’s algorithm: Offset sample
calculation

Y. Cheng UVA CS4740 Fall '24 19

• Client samples round trip time 𝛿 =
𝛿req + 𝛿resp = (T4 − T1) − (T3 − T2)

• But client knows 𝛿, not 𝛿resp

Client Server

Time ↓

T1

T2

T4

T3

𝛿req

𝛿resp

Assume: 𝛿req ≈ 𝛿resp

Goal: Client sets clock  T3 + 𝛿resp

Cristian’s algorithm: Offset sample
calculation

Y. Cheng UVA CS4740 Fall '24 20

• Client samples round trip time 𝛿 =
𝛿req + 𝛿resp = (T4 − T1) − (T3 − T2)

• But client knows 𝛿, not 𝛿resp

Client Server

Time ↓

T1

T2

T4

T3

𝛿req

𝛿resp

Assume: 𝛿req ≈ 𝛿resp

Goal: Client sets clock  T3 + 𝛿resp

Client sets clock  T3 + ½𝛿

Clock synchronization: Takeaway points

• Clocks on different systems will always behave
differently

• Disagreement between machines can result in undesirable
behavior

Y. Cheng UVA CS4740 Fall '24 21

Clock synchronization: Takeaway points

• Clocks on different systems will always behave
differently

• Disagreement between machines can result in undesirable
behavior

• Clock synchronization algorithms
• Rely on timestamps to estimate network delays

• 100s 𝝁s−ms accuracy

• Clocks never exactly synchronized

Y. Cheng UVA CS4740 Fall '24 22

Clock synchronization: Takeaway points

• Clocks on different systems will always behave
differently

• Disagreement between machines can result in undesirable
behavior

• Clock synchronization algorithms
• Rely on timestamps to estimate network delays

• 100s 𝝁s−ms accuracy

• Clocks never exactly synchronized

• Often inadequate for distributed systems
• Often need to reason about the order of events

• Might need precision on the order of ns

Y. Cheng UVA CS4740 Fall '24 23

Outline

• The need for time synchronization

• “Wall clock time” synchronization
• Cristian’s algorithm

• Logical Time: Lamport Clocks

• Vector clocks

Y. Cheng UVA CS4740 Fall '24 24

Motivation: Multi-site database replication

Y. Cheng UVA CS4740 Fall '24 25

• A New York-based bank wants to make its transaction
ledger database resilient to whole-site failures

New York

Motivation: Multi-site database replication

Y. Cheng UVA CS4740 Fall '24 26

• A New York-based bank wants to make its transaction
ledger database resilient to whole-site failures

• Replicate the database, keep one copy in SF, one in NYC

New York
San
Francisco

The consequences of concurrent updates

Y. Cheng UVA CS4740 Fall '24 27

• Replicate the database, keep one copy in SF, one in
NYC

• Client sends reads to the nearest copy

• Client sends update to both copies

“Deposit
$100”

“Pay 1%
interest”

$1,000

$1,000

$1,100

$1,111

$1,010

$1,110

Inconsistent replicas!
Updates should have been performed in

the same order at each copy

Idea: Logical clocks

Y. Cheng UVA CS4740 Fall '24 28

• Landmark 1978 paper by Leslie Lamport

Idea: Logical clocks

Y. Cheng UVA CS4740 Fall '24 29

• Landmark 1978 paper by Leslie Lamport

• Insights: only the events themselves matter

Idea: Disregard the precise clock time
Instead, capture just a “happens before” relationship
between a pair of events

Defining “happens-before” (→)

Y. Cheng UVA CS4740 Fall '24 30

• Consider three processes: P1, P2, and P3

• Notation: Event a happens before event b (a → b)

Physical time ↓

P1 P2
P3

Defining “happens-before” (→)

Y. Cheng UVA CS4740 Fall '24 31

• Can observe event order at a single process

Physical time ↓

P1 P2
P3

a

b

Defining “happens-before” (→)

Y. Cheng UVA CS4740 Fall '24 32

1. If same process and a occurs before b, then a → b

Physical time ↓

P1 P2
P3

a

b

Defining “happens-before” (→)

Y. Cheng UVA CS4740 Fall '24 33

1. If same process and a occurs before b, then a → b

2. Can observe ordering when processes communicate

Physical time ↓

P1 P2
P3

a

b
c

Defining “happens-before” (→)

Y. Cheng UVA CS4740 Fall '24 34

1. If same process and a occurs before b, then a → b

2. If c is a message receipt of b, then b → c

Physical time ↓

P1 P2
P3

a

b
c

Defining “happens-before” (→)

Y. Cheng UVA CS4740 Fall '24 35

1. If same process and a occurs before b, then a → b

2. If c is a message receipt of b, then b → c

3. Can observe ordering transitively

Physical time ↓

P1 P2
P3

a

b
c

Defining “happens-before” (→)

Y. Cheng UVA CS4740 Fall '24 36

1. If same process and a occurs before b, then a → b

2. If c is a message receipt of b, then b → c

3. If a → b and b → c, then a → c

Physical time ↓

P1 P2
P3

a

b
c

Defining “happens-before” (→)

Y. Cheng UVA CS4740 Fall '24 37

Physical time ↓

P1 P2
P3

a

b
c

1. Not all events are related by →

d

Defining “happens-before” (→)

Y. Cheng UVA CS4740 Fall '24 38

Physical time ↓

P1 P2
P3

a

b
c

1. Not all events are related by →

2. a, d not related by → so concurrent, written as a || d

d

Lamport clocks: Objective

• We seek a clock time C(a) for every event a

• Clock condition: If a → b, then C(a) < C(b)

Y. Cheng UVA CS4740 Fall '24 39

Plan: Tag events with clock times; use clock

times to make distributed system correct

The Lamport Clock algorithm

Y. Cheng UVA CS4740 Fall '24 40

Physical time ↓

P1
C1=0

P2
C2=0 P3

C3=0
a

b
c

• Each process Pi maintains a local clock Ci

1. Before executing an event, Ci  Ci + 1:

The Lamport Clock algorithm

Y. Cheng UVA CS4740 Fall '24 41

Physical time ↓

P1
C1=1

P2
C2=0 P3

C3=0
a

b
c

1. Before executing an event a, Ci  Ci + 1:

• Set event time C(a)  Ci

C(a) = 1

The Lamport Clock algorithm

Y. Cheng UVA CS4740 Fall '24 42

Physical time ↓

P1
C1=2

P2
C2=0 P3

C3=0
a

b
c

1. Before executing an event b, Ci  Ci + 1:

• Set event time C(b)  Ci

C(b) = 2

C(a) = 1

The Lamport Clock algorithm

Y. Cheng UVA CS4740 Fall '24 43

Physical time ↓

P1
C1=2

P2
C2=0 P3

C3=0
a

b
c

1. Before executing an event b, Ci  Ci + 1

2. Send the local clock in the message m

C(b) = 2

C(a) = 1

C(m) = 2

The Lamport Clock algorithm

Y. Cheng UVA CS4740 Fall '24 44

Physical time ↓

P1
C1=2

P2
C2=3 P3

C3=0
a

b
c

3. On process Pj receiving a message m:

• Set Cj and receive event time C(c) 1 + max{ Cj, C(m) }

C(b) = 2

C(a) = 1

C(m) = 2

C(c) = 3

Lamport Timestamps: Ordering all events

• Break ties by appending the process number to
each event:

1. Process Pi timestamps event e with Ci(e).i

2. C(a).i < C(b).j when:
• C(a) < C(b), or C(a) = C(b) and i < j

• Now, for any two events a and b, C(a) < C(b) or
C(b) < C(a)

• This is called a total ordering of events

Y. Cheng UVA CS4740 Fall '24 45

Order all these events

Y. Cheng UVA CS4740 Fall '24 46

P1
C1=0

a

b

c

P2
C2=0

P3
C3=0

Physical time ↓

P4
C4=0

d

e

f

g

h

i

Lamport Clocks: Takeaway points

• Can totally-order events in a distributed system:
that’s useful!

• We saw an application of Lamport clocks for totally-
ordered multicast

Y. Cheng UVA CS4740 Fall '24 57

Lamport Clocks: Takeaway points

• Can totally-order events in a distributed system:
that’s useful!

• We saw an application of Lamport clocks for totally-
ordered multicast

• But: while by construction,

 a → b implies C(a) < C(b),
• The converse is not necessarily true:

• C(a) < C(b) does not imply a → b (possibly, a || b)

Y. Cheng UVA CS4740 Fall '24 58

Lamport Clocks: Takeaway points

• Can totally-order events in a distributed system:
that’s useful!

• We saw an application of Lamport clocks for totally-
ordered multicast

• But: while by construction,

 a → b implies C(a) < C(b),
• The converse is not necessarily true:

• C(a) < C(b) does not imply a → b (possibly, a || b)

Y. Cheng UVA CS4740 Fall '24 59

Can’t use Lamport timestamps to infer causal

relationships between events

Outline

• The need for time synchronization

• “Wall clock time” synchronization
• Cristian’s algorithm

• Logical Time: Lamport Clocks

• Vector clocks

Y. Cheng UVA CS4740 Fall '24 60

Lamport Clocks and causality

• Lamport clock timestamps do not capture
causality

• Given two timestamps C(a) and C(z), want to
know whether there’s a chain of events linking
them:

a → b → ... → y → z

Y. Cheng UVA CS4740 Fall '24 61

Vector clock: Introduction

• One integer can’t order events in more than one
process

• So, a Vector Clock (VC) is a vector of integers,
one entry for each process in the entire
distributed system

• Label event e with VC(e) = [c1, c2 …, cn]
• Each entry ck is a count of events in process k that causally

precede e

Y. Cheng UVA CS4740 Fall '24 62

Vector clock: Update rules

• Initially, all vectors are [0, 0, …, 0]

• Two update rules:

1. For each local event on process i, increment
local entry ci

Y. Cheng UVA CS4740 Fall '24 63

Vector clock: Update rules

• Initially, all vectors are [0, 0, …, 0]

• Two update rules:

1. For each local event on process i, increment
local entry ci

2. If process j receives message with vector
[d1, d2, …, dn]:
• Set each local entry ck = max{ck, dk}
• Increment local entry cj

Y. Cheng UVA CS4740 Fall '24 64

Vector clock: Example

Y. Cheng UVA CS4740 Fall '24 65

• All processes’ VCs start at [0, 0, 0]
P1

a

b

c

P2 P3

Physical time ↓

d

e

f

Vector clock: Example

Y. Cheng UVA CS4740 Fall '24 66

• All processes’ VCs start at [0, 0, 0]

• Applying local update rule

P1

a

b

c

P2 P3

Physical time ↓

d

e

f

Vector clock: Example

Y. Cheng UVA CS4740 Fall '24 67

• All processes’ VCs start at [0, 0, 0]

• Applying local update rule

P1

a

b

c

P2 P3

Physical time ↓

d

e

f

[1,0,0]

Vector clock: Example

Y. Cheng UVA CS4740 Fall '24 68

• All processes’ VCs start at [0, 0, 0]

• Applying local update rule

P1

a

b

c

P2 P3

Physical time ↓

d

e

f

[1,0,0]

[2,0,0]

Vector clock: Example

Y. Cheng UVA CS4740 Fall '24 69

• All processes’ VCs start at [0, 0, 0]

• Applying local update rule

• Applying message rule

• Local vector clock piggybacks
on inter-process messages

P1

a

b

c

P2 P3

Physical time ↓

d

e

f

[1,0,0]

[2,0,0]

Vector clock: Example

Y. Cheng UVA CS4740 Fall '24 70

• All processes’ VCs start at [0, 0, 0]

• Applying local update rule

• Applying message rule

• Local vector clock piggybacks
on inter-process messages

P1

a

b

c

P2 P3

Physical time ↓

d

e

f

[1,0,0]

[2,0,0]

[2,1,0]

Vector clock: Example

Y. Cheng UVA CS4740 Fall '24 71

• All processes’ VCs start at [0, 0, 0]

• Applying local update rule

• Applying message rule

• Local vector clock piggybacks
on inter-process messages

P1

a

b

c

P2 P3

Physical time ↓

d

e

f

[1,0,0]

[2,0,0]

[2,1,0]

[2,2,0]

Vector clock: Example

Y. Cheng UVA CS4740 Fall '24 72

• All processes’ VCs start at [0, 0, 0]

• Applying local update rule

• Applying message rule

• Local vector clock piggybacks
on inter-process messages

P1

a

b

c

P2 P3

Physical time ↓

d

e

f

[1,0,0]

[2,0,0]

[2,1,0]

[2,2,0]

[2,2,2]

[0,0,1]

Comparing vector timestamps

• Rule for comparing vector timestamps:

• V(a) = V(b) when ak = bk for all k

• V(a) < V(b) when ak ≤ bk for all k and V(a) ≠ V(b)

• Concurrency:

• V(a) || V(b) if ai < bi and aj > bj, some i, j

Y. Cheng UVA CS4740 Fall '24 73

Vector clocks capture causality

Y. Cheng UVA CS4740 Fall '24 74

• V(w) < V(z) then there is a chain of events linked by
 Happens-Before (→) between a and z

x

y

[2,0,0]

[2,1,0]

[2,2,0]

w

z

P1 P2 P3

[1,0,0]

Vector clocks capture causality

Y. Cheng UVA CS4740 Fall '24 75

• V(w) < V(z) then there is a chain of events linked by
 Happens-Before (→) between a and z

• V(a) || V(w) then there is no such chain of events between
a and w

x

y

[1,0,0]

[2,0,0]

[2,1,0]

[2,2,0]

w

z

P1 P2 P3

[0,0,1]a

Comparing vector timestamps

• Rule for comparing vector timestamps:

• V(a) = V(b) when ak = bk for all k
• They are the same event

• V(a) < V(b) when ak ≤ bk for all k and V(a) ≠ V(b)
• a → b

• Concurrency:

• V(a) || V(b) if ai < bi and aj > bj, some i, j
• a || b

Y. Cheng UVA CS4740 Fall '24 76

Y. Cheng UVA CS4740 Fall '24 77

Two events a, z

Lamport clocks: C(a) < C(z)
 Conclusion: z -/-> a, i.e., either a → z or a || z

Vector clocks: V(a) < V(z)

 Conclusion: a → z

Y. Cheng UVA CS4740 Fall '24 78

Two events a, z

Lamport clocks: C(a) < C(z)
 Conclusion: z -/-> a, i.e., either a → z or a || z

Vector clocks: V(a) < V(z)

 Conclusion: a → z

Vector clock timestamps precisely capture

happens-before relation (potential causality)

	Slide 1: Time & Clocks
	Slide 2: Outline
	Slide 3: A cloud edit-compile workflow
	Slide 4: A cloud edit-compile workflow
	Slide 5: A cloud edit-compile workflow
	Slide 6: What makes time synchronization hard?
	Slide 7: Outline
	Slide 8: Just use Coordinated Universal Time?
	Slide 9: Synchronization to a time server
	Slide 10: Synchronization to a time server
	Slide 11: Cristian’s algorithm: Outline
	Slide 12: Cristian’s algorithm: Outline
	Slide 13: Cristian’s algorithm: Outline
	Slide 14: Cristian’s algorithm: Outline
	Slide 15: Cristian’s algorithm: Outline
	Slide 16: Cristian’s algorithm: Offset sample calculation
	Slide 17: Cristian’s algorithm: Offset sample calculation
	Slide 18: Cristian’s algorithm: Offset sample calculation
	Slide 19: Cristian’s algorithm: Offset sample calculation
	Slide 20: Cristian’s algorithm: Offset sample calculation
	Slide 21: Clock synchronization: Takeaway points
	Slide 22: Clock synchronization: Takeaway points
	Slide 23: Clock synchronization: Takeaway points
	Slide 24: Outline
	Slide 25: Motivation: Multi-site database replication
	Slide 26: Motivation: Multi-site database replication
	Slide 27: The consequences of concurrent updates
	Slide 28: Idea: Logical clocks
	Slide 29: Idea: Logical clocks
	Slide 30: Defining “happens-before” ()
	Slide 31: Defining “happens-before” ()
	Slide 32: Defining “happens-before” ()
	Slide 33: Defining “happens-before” ()
	Slide 34: Defining “happens-before” ()
	Slide 35: Defining “happens-before” ()
	Slide 36: Defining “happens-before” ()
	Slide 37: Defining “happens-before” ()
	Slide 38: Defining “happens-before” ()
	Slide 39: Lamport clocks: Objective
	Slide 40: The Lamport Clock algorithm
	Slide 41: The Lamport Clock algorithm
	Slide 42: The Lamport Clock algorithm
	Slide 43: The Lamport Clock algorithm
	Slide 44: The Lamport Clock algorithm
	Slide 45: Lamport Timestamps: Ordering all events
	Slide 46: Order all these events
	Slide 57: Lamport Clocks: Takeaway points
	Slide 58: Lamport Clocks: Takeaway points
	Slide 59: Lamport Clocks: Takeaway points
	Slide 60: Outline
	Slide 61: Lamport Clocks and causality
	Slide 62: Vector clock: Introduction
	Slide 63: Vector clock: Update rules
	Slide 64: Vector clock: Update rules
	Slide 65: Vector clock: Example
	Slide 66: Vector clock: Example
	Slide 67: Vector clock: Example
	Slide 68: Vector clock: Example
	Slide 69: Vector clock: Example
	Slide 70: Vector clock: Example
	Slide 71: Vector clock: Example
	Slide 72: Vector clock: Example
	Slide 73: Comparing vector timestamps
	Slide 74: Vector clocks capture causality
	Slide 75: Vector clocks capture causality
	Slide 76: Comparing vector timestamps
	Slide 77
	Slide 78

