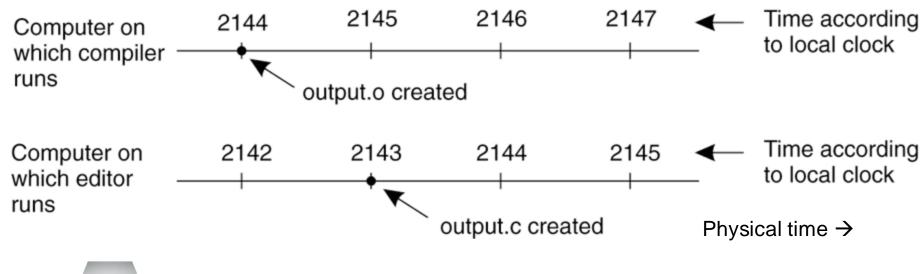


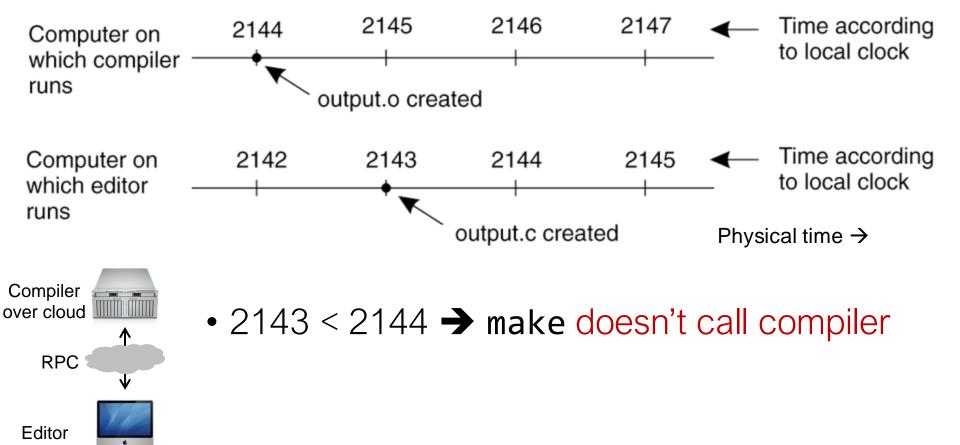
Outline

- The need for time synchronization
- "Wall clock time" synchronization
- Logical Time: Lamport Clocks
- Vector clocks

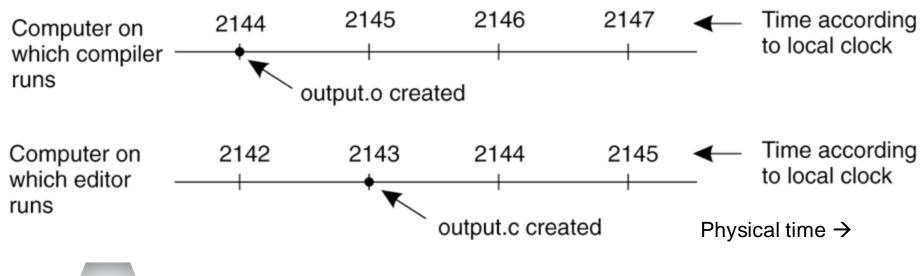
A cloud edit-compile workflow



A cloud edit-compile workflow



A cloud edit-compile workflow



Editor

• 2143 < 2144 → make doesn't call compiler

Lack of time synchronization – possible object file mismatch

What makes time synchronization hard?

- 1. Quartz oscillator sensitive to temperature, age, vibration, radiation
 - Accuracy ~one part per million
 - (one second of clock drift over 12 days)
- 2. The internet is:
 - Asynchronous: arbitrary message delays
 - Best-effort: messages don't always arrive

Outline

- The need for time synchronization
- "Wall clock time" synchronization
 - Cristian's algorithm
- Logical Time: Lamport Clocks

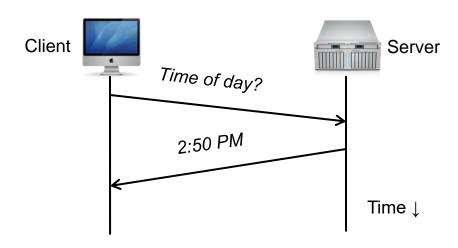
Vector clocks

Just use Coordinated Universal Time?

- UTC is broadcast from radio stations on land and satellite (e.g., the Global Positioning System)
 - Computers with receivers can synchronize their clocks with these timing signals
- Signals from land-based stations are accurate to about 0.1–10 milliseconds
- Signals from GPS are accurate to about one microsecond
 - Why can't we put GPS receivers on all our computers?

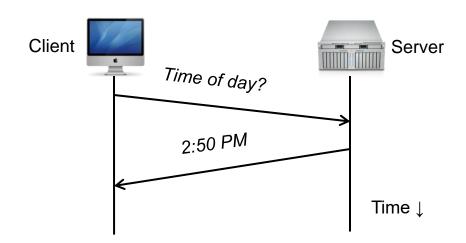
Synchronization to a time server

- Suppose a server with an accurate clock (e.g., GPS-receiver)
 - Could simply issue an RPC to obtain the time:



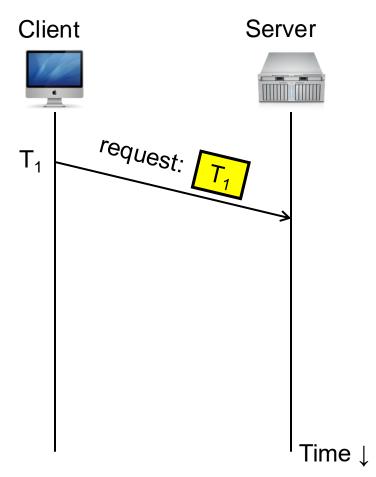
Synchronization to a time server

- Suppose a server with an accurate clock (e.g., GPS-receiver)
 - Could simply issue an RPC to obtain the time:

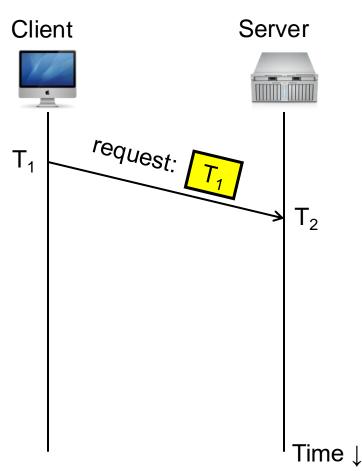


- But this doesn't account for network latency
 - Message delays will have outdated server's answer

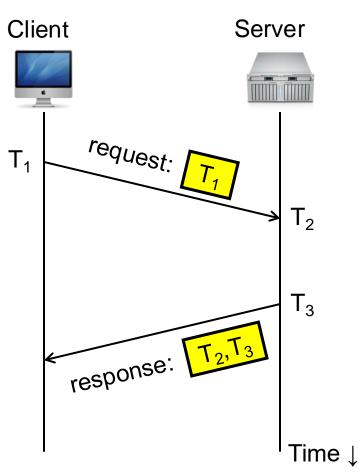
1. Client sends a request packet, timestamped with its local clock T₁



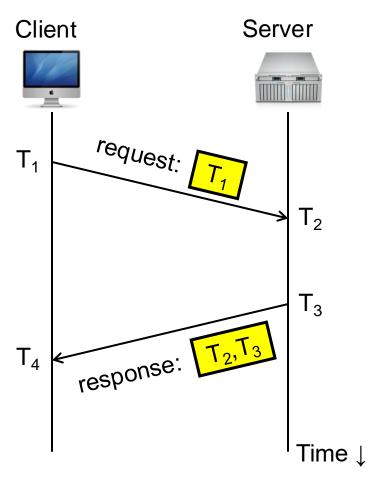
- Client sends a request packet, timestamped with its local clock T₁
- 2. Server timestamps its receipt of the request T₂ with its local clock



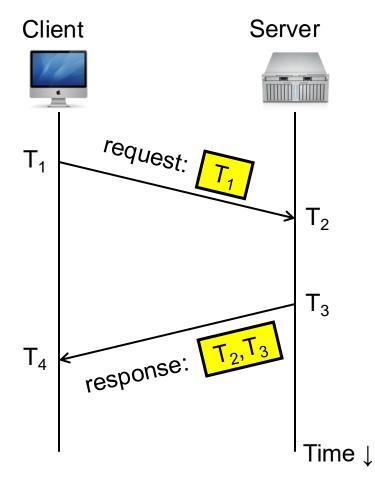
- Client sends a request packet, timestamped with its local clock T₁
- 2. Server timestamps its receipt of the request T₂ with its local clock
- 3. Server sends a response packet with its local clock T₃ and T₂



- 1. Client sends a request packet, timestamped with its local clock T₁
- 2. Server timestamps its receipt of the request T₂ with its local clock
- 3. Server sends a response packet with its local clock T₃ and T₂
- 4. Client locally timestamps its receipt of the server's response T₄



- 1. Client sends a request packet, timestamped with its local clock T₁
- 2. Server timestamps its receipt of the request T₂ with its local clock
- 3. Server sends a response packet with its local clock T₃ and T₂
- 4. Client locally timestamps its receipt of the server's response T₄

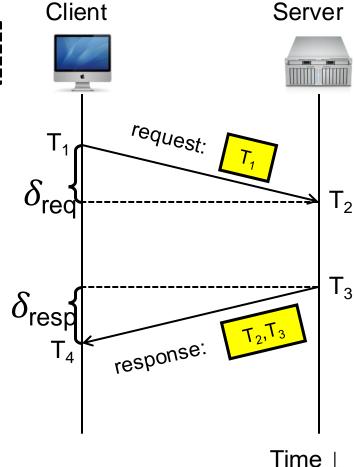


How can the client use these timestamps to synchronize its local clock to the server's local clock?

Cristian's algorithm: Offset sample calculation

Goal: Client sets clock \leftarrow T₃ + δ_{resp}

• Client samples round trip time δ = $\delta_{\text{reg}} + \delta_{\text{resp}} = (T_4 - T_1) - (T_3 - T_2)$

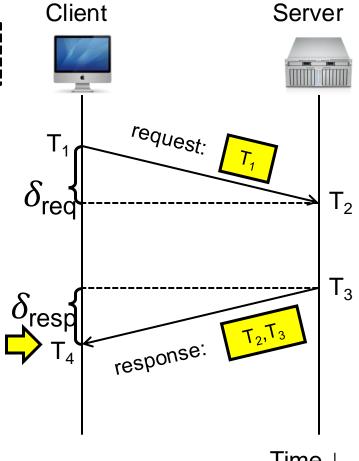


Time ↓

Cristian's algorithm: Offset sample calculation

Goal: Client sets clock \leftarrow T₃ + δ_{resp}

• Client samples round trip time $\delta = \delta_{req} + \delta_{resp} = (T_4 - T_1) - (T_3 - T_2)$



Time ↓

Cristian's algorithm: Offset sample calculation

Goal: Client sets clock \leftarrow T₃ + δ_{resp}

- Client samples round trip time $\delta = \delta_{req} + \delta_{resp} = (T_4 T_1) (T_3 T_2)$
- But client knows δ , not δ_{resp}



111116

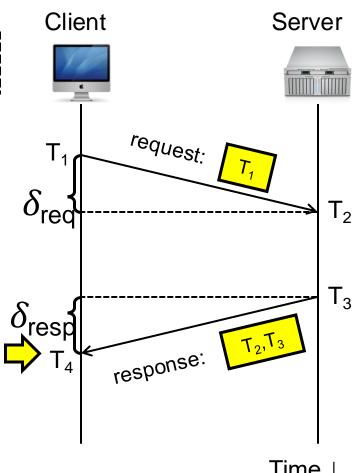
Cristian's algorithm: Offset sample calculation

Goal: Client sets clock \leftarrow T₃ + δ_{resp}

• Client samples round trip time δ = $\delta_{\text{reg}} + \delta_{\text{resp}} = (T_4 - T_1) - (T_3 - T_2)$

• But client knows δ , not $\delta_{\rm resp}$

Assume: $\delta_{\text{req}} \approx \delta_{\text{resp}}$



Time ↓

Cristian's algorithm: Offset sample calculation

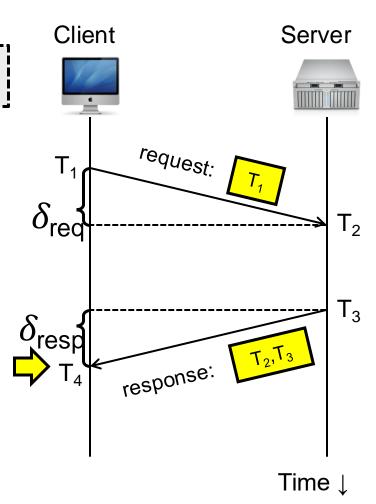
Goal: Client sets clock \leftarrow T₃ + δ_{resp}

• Client samples round trip time $\delta = \delta_{req} + \delta_{resp} = (T_4 - T_1) - (T_3 - T_2)$

• But client knows δ , not δ_{resp}

Assume: $\delta_{\text{req}} \approx \delta_{\text{resp}}$

Client sets clock \leftarrow T₃ + $\frac{1}{2}\delta$



Clock synchronization: Takeaway points

- Clocks on different systems will always behave differently
 - Disagreement between machines can result in undesirable behavior

Clock synchronization: Takeaway points

- Clocks on different systems will always behave differently
 - Disagreement between machines can result in undesirable behavior
- Clock synchronization algorithms
 - Rely on timestamps to estimate network delays
 - 100s μ s-ms accuracy
 - Clocks never exactly synchronized

Clock synchronization: Takeaway points

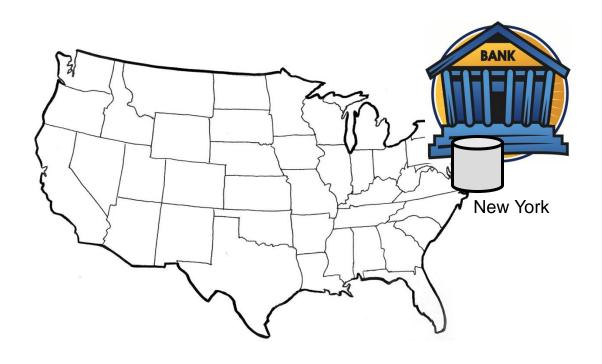
- Clocks on different systems will always behave differently
 - Disagreement between machines can result in undesirable behavior
- Clock synchronization algorithms
 - Rely on timestamps to estimate network delays
 - 100s μ s-ms accuracy
 - Clocks never exactly synchronized
- Often inadequate for distributed systems
 - Often need to reason about the order of events
 - Might need precision on the order of ns

Outline

- The need for time synchronization
- "Wall clock time" synchronization
 - Cristian's algorithm
- Logical Time: Lamport Clocks
- Vector clocks

Motivation: Multi-site database replication

 A New York-based bank wants to make its transaction ledger database resilient to whole-site failures

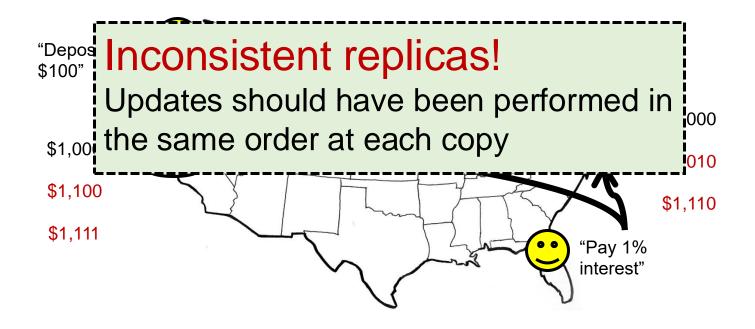


Motivation: Multi-site database replication

- A New York-based bank wants to make its transaction ledger database resilient to whole-site failures
- Replicate the database, keep one copy in SF, one in NYC

The consequences of concurrent updates

- Replicate the database, keep one copy in SF, one in NYC
 - Client sends reads to the nearest copy
 - Client sends update to both copies

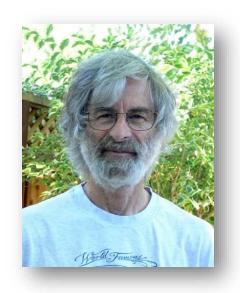


Idea: Logical clocks

• Landmark 1978 paper by Leslie Lamport

Idea: Logical clocks

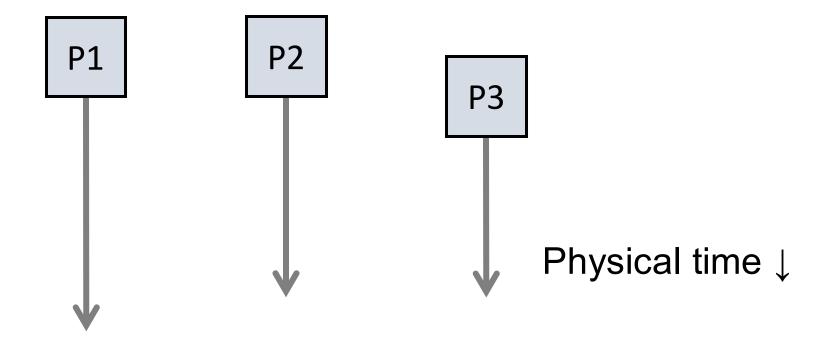
- Landmark 1978 paper by Leslie Lamport
- Insights: only the events themselves matter



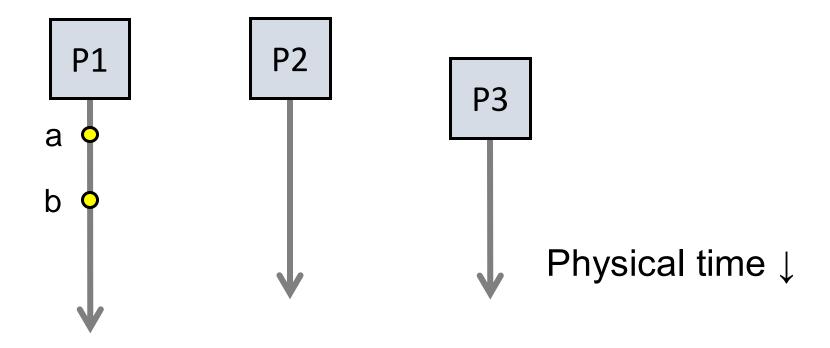
Idea: Disregard the precise clock time Instead, capture just a "happens before" relationship between a pair of events

Consider three processes: P1, P2, and P3

Notation: Event a happens before event b (a → b)



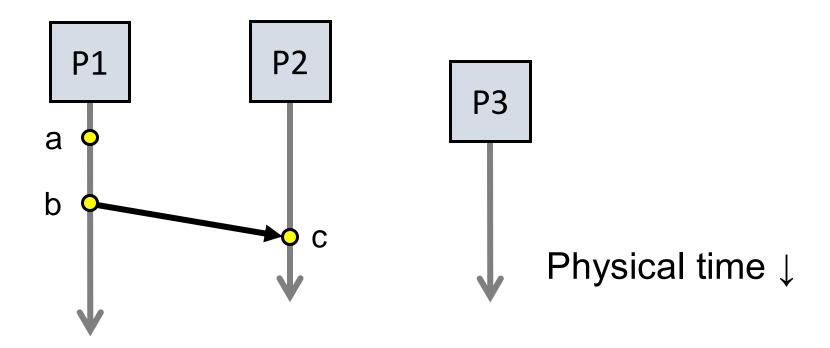
Can observe event order at a single process



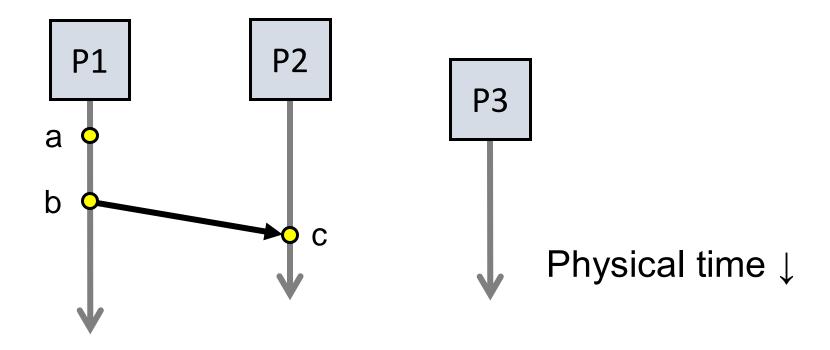
1. If same process and a occurs before b, then $a \rightarrow b$



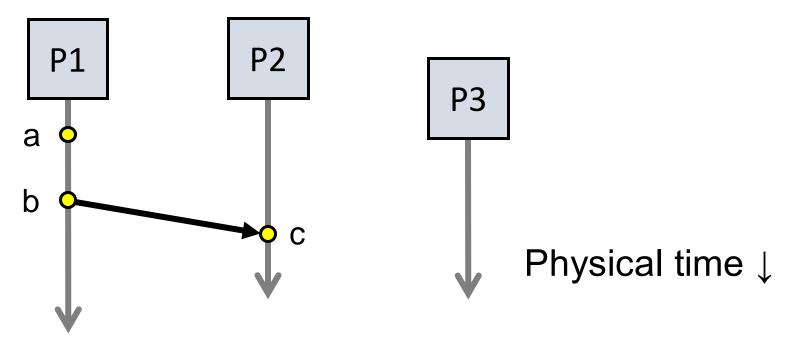
- 1. If same process and a occurs before b, then $a \rightarrow b$
- 2. Can observe ordering when processes communicate



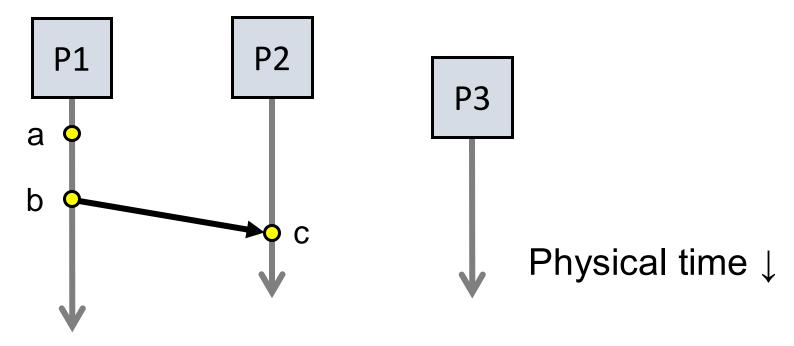
- 1. If same process and a occurs before b, then $a \rightarrow b$
- 2. If c is a message receipt of b, then $b \rightarrow c$



- 1. If same process and a occurs before b, then $a \rightarrow b$
- 2. If c is a message receipt of b, then $b \rightarrow c$
- 3. Can observe ordering transitively

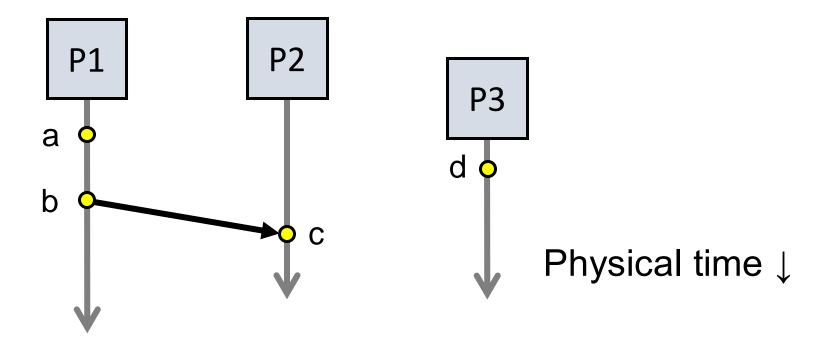


- 1. If same process and a occurs before b, then $a \rightarrow b$
- 2. If c is a message receipt of b, then $b \rightarrow c$
- 3. If $a \rightarrow b$ and $b \rightarrow c$, then $a \rightarrow c$



Defining "happens-before" (\rightarrow)

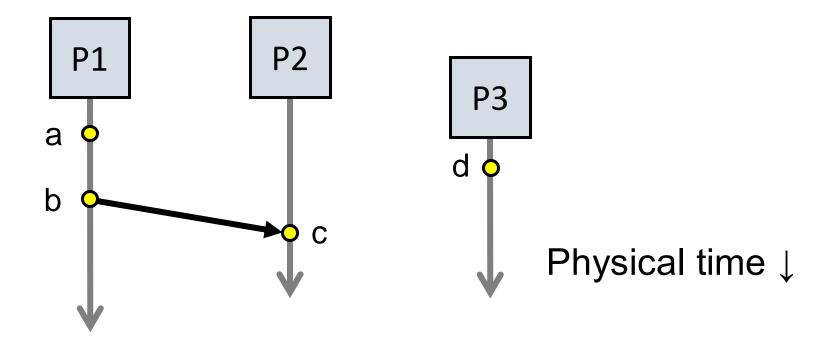
Not all events are related by →



Defining "happens-before" (\rightarrow)

Not all events are related by →

2. a, d not related by \rightarrow so concurrent, written as $\mathbf{a} \parallel \mathbf{d}$



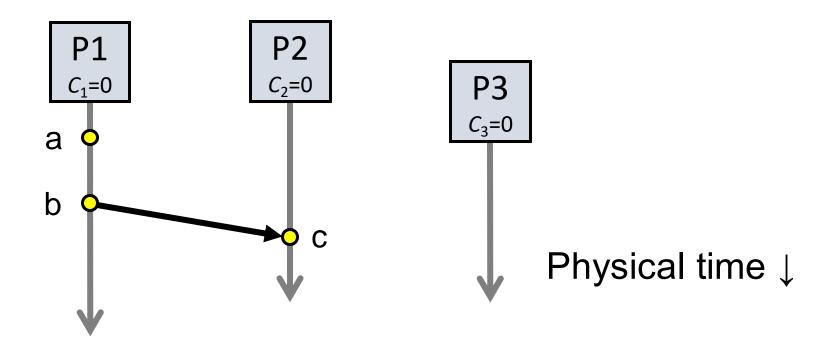
Lamport clocks: Objective

We seek a clock time C(a) for every event a

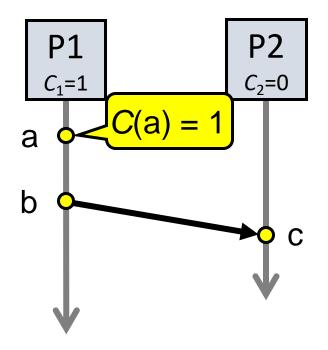
Plan: Tag events with clock times; use clock times to make distributed system correct

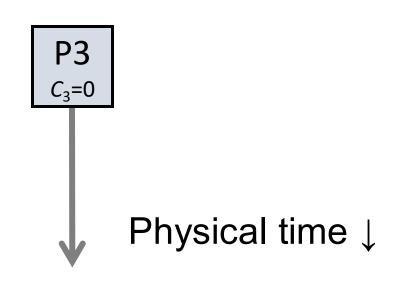
Clock condition: If a → b, then C(a) < C(b)

- Each process P_i maintains a local clock C_i
- 1. Before executing an event, $C_i \leftarrow C_i + 1$:

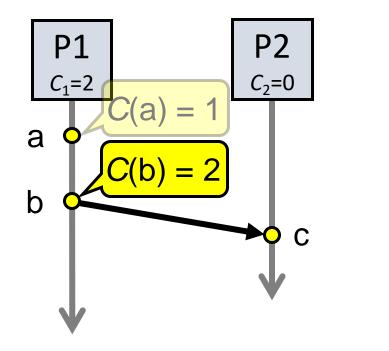


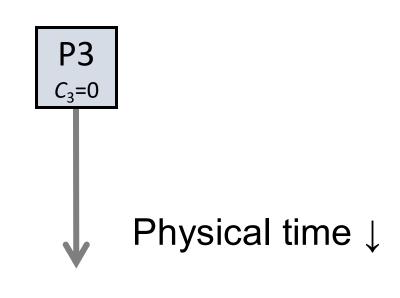
- 1. Before executing an event a, $C_i \leftarrow C_i + 1$:
 - Set event time $C(a) \leftarrow C_i$



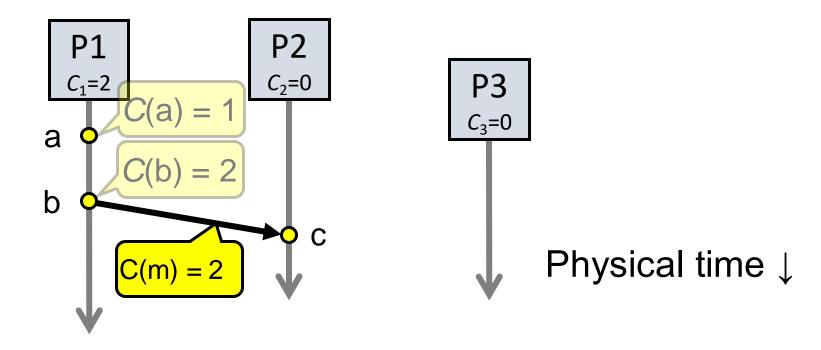


- 1. Before executing an event b, $C_i \leftarrow C_i + 1$:
 - Set event time $C(b) \leftarrow C_i$

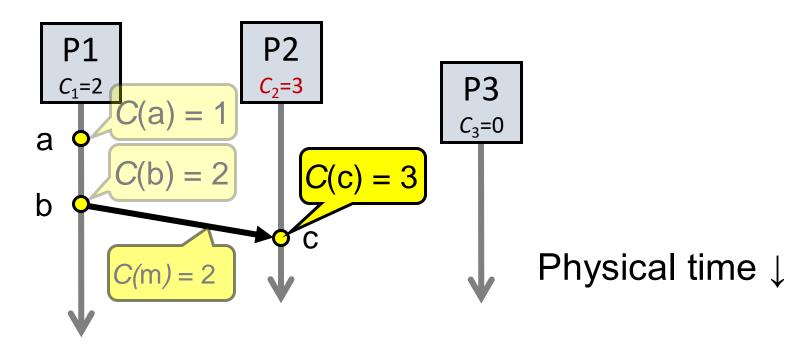




- 1. Before executing an event b, $C_i \leftarrow C_i + 1$
- 2. Send the local clock in the message m



- 3. On process P_i receiving a message m:
 - Set C_j and receive event time C(c) ←1 + max{ C_j, C(m) }

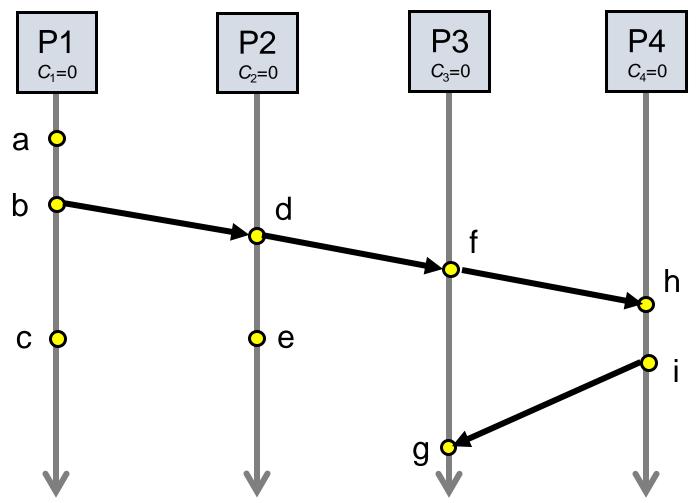


Lamport Timestamps: Ordering all events

- Break ties by appending the process number to each event:
 - 1. Process P_i timestamps event e with $C_i(e)$.i
 - 2. C(a).i < C(b).j when:
 - C(a) < C(b), or C(a) = C(b) and i < j

- Now, for any two events a and b, C(a) < C(b) or C(b) < C(a)
 - This is called a total ordering of events

Order all these events



Physical time ↓

Lamport Clocks: Takeaway points

- Can totally-order events in a distributed system: that's useful!
 - We saw an application of Lamport clocks for totallyordered multicast

Lamport Clocks: Takeaway points

- Can totally-order events in a distributed system: that's useful!
 - We saw an application of Lamport clocks for totallyordered multicast
- But: while by construction,
 - a \rightarrow b implies C(a) < C(b),
 - The converse is not necessarily true:
 - C(a) < C(b) does not imply a \rightarrow b (possibly, a || b)

Lamport Clocks: Takeaway points

- Can totally-order events in a distributed system: that's useful!
 - We saw an application of Lamport clocks for totallyordered multicast
- But: while by construction,
 - a \rightarrow b implies C(a) < C(b),
 - The converse is not necessarily true:
 - C(a) < C(b) does not imply a \rightarrow b (possibly, a || b)

Can't use Lamport timestamps to infer causal relationships between events

Outline

- The need for time synchronization
- "Wall clock time" synchronization
 - Cristian's algorithm
- Logical Time: Lamport Clocks
- Vector clocks

Lamport Clocks and causality

Lamport clock timestamps do not capture causality

 Given two timestamps C(a) and C(z), want to know whether there's a chain of events linking them:

$$a \rightarrow b \rightarrow ... \rightarrow y \rightarrow z$$

Vector clock: Introduction

One integer can't order events in more than one process

 So, a Vector Clock (VC) is a vector of integers, one entry for each process in the entire distributed system

- Label event e with $VC(e) = [c_1, c_2, ..., c_n]$
 - Each entry c_k is a count of events in process k that causally precede e

Vector clock: Update rules

• Initially, all vectors are [0, 0, ..., 0]

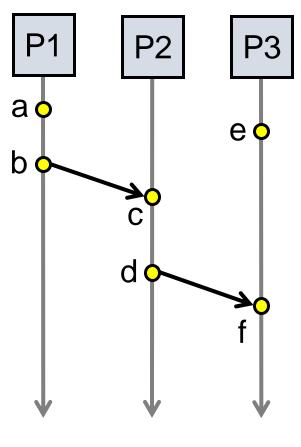
Two update rules:

1. For each local event on process i, increment local entry c_i

Vector clock: Update rules

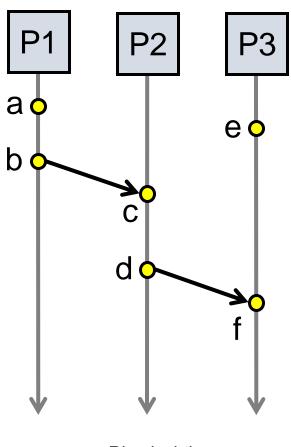
- Initially, all vectors are [0, 0, ..., 0]
- Two update rules:
- 1. For each local event on process i, increment local entry c_i
- 2. If process j receives message with vector [d₁, d₂, ..., d_n]:
 - Set each local entry $c_k = \max\{c_k, d_k\}$
 - Increment local entry c_i

• All processes' VCs start at [0, 0, 0]



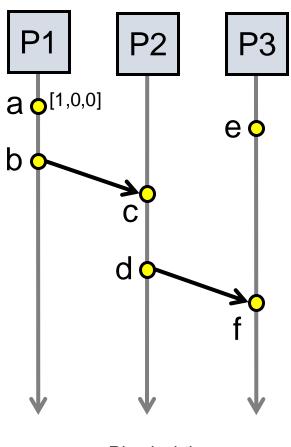
Physical time ↓

All processes' VCs start at [0, 0, 0]



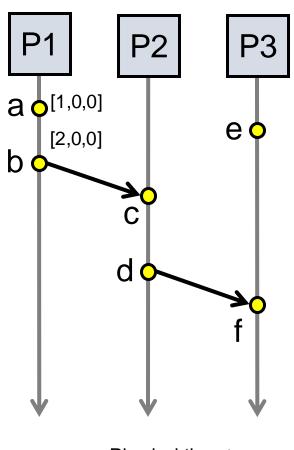
Physical time ↓

All processes' VCs start at [0, 0, 0]



Physical time ↓

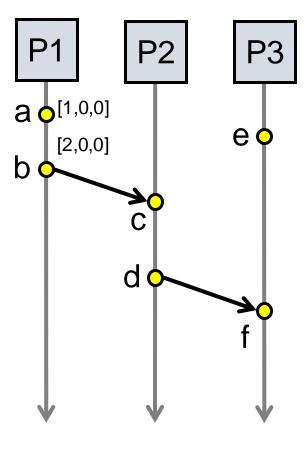
All processes' VCs start at [0, 0, 0]



Physical time ↓

All processes' VCs start at [0, 0, 0]

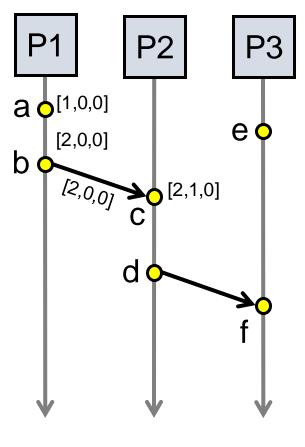
- Applying message rule
 - Local vector clock piggybacks on inter-process messages



Physical time ↓

All processes' VCs start at [0, 0, 0]

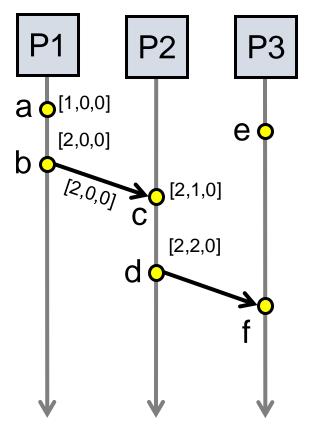
- Applying message rule
 - Local vector clock piggybacks on inter-process messages



Physical time ↓

All processes' VCs start at [0, 0, 0]

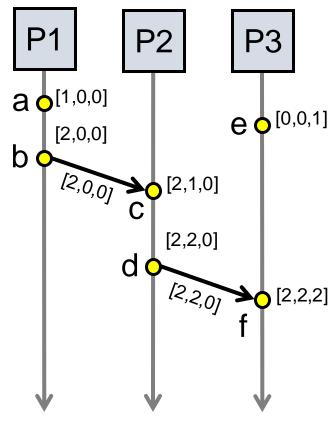
- Applying message rule
 - Local vector clock piggybacks on inter-process messages



Physical time ↓

All processes' VCs start at [0, 0, 0]

- Applying message rule
 - Local vector clock piggybacks on inter-process messages



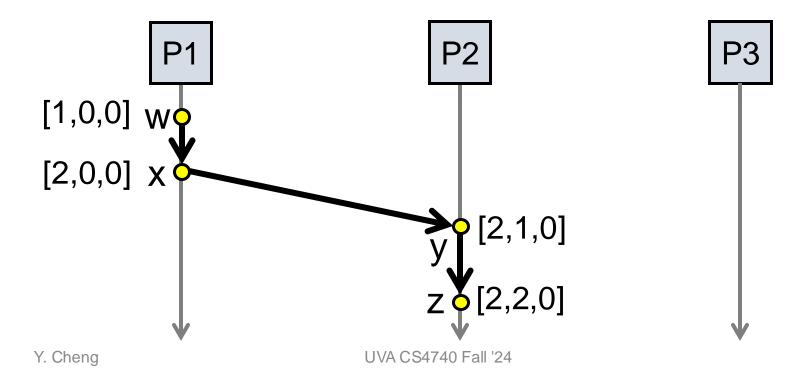
Physical time ↓

Comparing vector timestamps

- Rule for comparing vector timestamps:
 - V(a) = V(b) when $a_k = b_k$ for all k
 - V(a) < V(b) when $a_k \le b_k$ for all k and $V(a) \ne V(b)$
- Concurrency:
 - V(a) || V(b) if a_i < b_i and a_j > b_j, some i, j

Vector clocks capture causality

 V(w) < V(z) then there is a chain of events linked by Happens-Before (→) between a and z

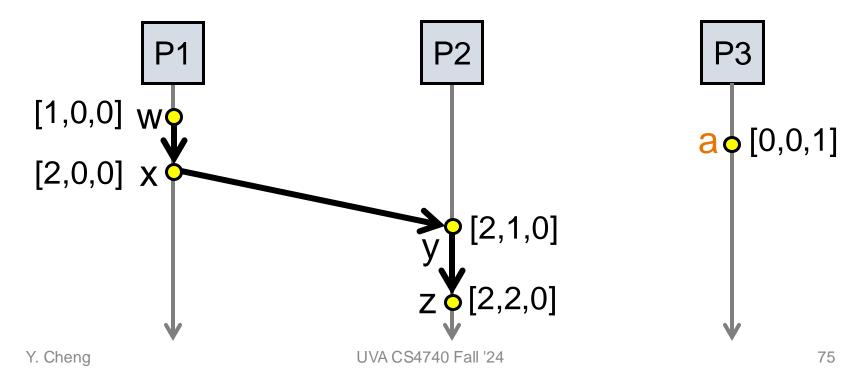


74

Vector clocks capture causality

 V(w) < V(z) then there is a chain of events linked by Happens-Before (→) between a and z

 V(a) || V(w) then there is no such chain of events between a and w



Comparing vector timestamps

- Rule for comparing vector timestamps:
 - V(a) = V(b) when $a_k = b_k$ for all k
 - They are the same event
 - V(a) < V(b) when $a_k \le b_k$ for all k and $V(a) \ne V(b)$
 - a \rightarrow b

- Concurrency:
 - V(a) || V(b) if a_i < b_i and a_i > b_i, some i, j
 - a || b

Two events a, z

Lamport clocks: C(a) < C(z)Conclusion: z -/-> a, i.e., either $a \rightarrow z$ or $a \parallel z$

Vector clocks: V(a) < V(z)Conclusion: $a \rightarrow z$

Two events a, z

Lamport clocks: C(a) < C(z)Conclusion: z -/-> a, i.e., either $a \rightarrow z$ or $a \parallel z$

Vector clocks: V(a) < V(z)

Conclusion: a → z

Vector clock timestamps precisely capture happens-before relation (potential causality)