
Remote Procedure Call
(RPC)

CS 4740: Cloud Computing

Fall 2024

Lecture 5

Yue Cheng

Some material taken/derived from:
• Princeton COS-418 materials created by Michael Freedman and Wyatt Lloyd.

• MIT 6.824 by Robert Morris, Frans Kaashoek, and Nickolai Zeldovich.

@ 2024 released for use under a CC BY-SA license.

https://creativecommons.org/licenses/by-sa/4.0/

Context

• Multiple computers

• Connected by a network

• Doing something together

• A distributed system is many cooperating computers
that appear to users as a single service

2Y. Cheng UVA CS4740 Fall '24

Today’s outline

• Today: How can processes on different
cooperating computers exchange information?

1. Network sockets

2. Remote procedure call

Y. Cheng UVA CS4740 Fall '24 3

The problem of communication

• Process on Host A wants to talk to process on
Host B

• A and B must agree on the meaning of the bits being
sent and received at many different levels, including:

• How many volts is a 0 bit, a 1 bits?

• How does receiver know which is the last bit?

• How many bits long is a number?

Y. Cheng UVA CS4740 Fall '24 4

The problem of communication

Y. Cheng UVA CS4740 Fall '24 5

Applications

Transmission

media

ZoomHTTP SSH FTP

Fiber optic Wi-FiEthernet cable

The problem of communication

Y. Cheng UVA CS4740 Fall '24 6

• Re-implement every application for every new
underlying transmission medium?

• Change every application on any change to an
underlying transmission medium?

Applications

Transmission

media

ZoomHTTP SSH FTP

Wi-FiFiber opticEthernet cable

The problem of communication

Y. Cheng UVA CS4740 Fall '24 7

• Re-implement every application for every new
underlying transmission medium?

• Change every application on any change to an
underlying transmission medium?

• No! But how does the Internet design avoid this?

Applications

Transmission

media

ZoomHTTP SSH FTP

Wi-FiFiber opticEthernet cable

Solution: Layering

Y. Cheng UVA CS4740 Fall '24 8

• Intermediate layers provide a set of abstractions for
applications and media

• New applications or media need only implement for
intermediate layer’s interface

Applications

Transmission

media

ZoomHTTP SSH FTP

Ethernet cable Fiber optic Wi-Fi

Intermediate layers

Layering in the Internet

Y. Cheng UVA CS4740 Fall '24 9

• Physical: Moves bits between two
hosts connected by a physical link

Physical layer

Host

Layering in the Internet

Y. Cheng UVA CS4740 Fall '24 10

• Link: Enables end hosts to
exchange atomic messages with
each other

• Physical: Moves bits between two
hosts connected by a physical link

Link layer

Physical layer

Host

Layering in the Internet

Y. Cheng UVA CS4740 Fall '24 11

• Network: Deliver packets to
destinations on other (heterogeneous)
networks

• Link: Enables end hosts to exchange
atomic messages with each other

• Physical: Moves bits between two
hosts connected by a physical link

Network layer

Link layer

Physical layer

Host

Layering in the Internet

Y. Cheng UVA CS4740 Fall '24 12

• Transport: Provide end-to-end
communication between processes on
different hosts

• Network: Deliver packets to
destinations on other (heterogeneous)
networks

• Link: Enables end hosts to exchange
atomic messages with each other

• Physical: Moves bits between two
hosts connected by a physical link

Transport layer

Network layer

Link layer

Physical layer

Host

Layering in the Internet

Y. Cheng UVA CS4740 Fall '24 13

• Transport: Provide end-to-end
communication between processes on
different hosts

• Network: Deliver packets to
destinations on other (heterogeneous)
networks

• Link: Enables end hosts to exchange
atomic messages with each other

• Physical: Moves bits between two
hosts connected by a physical link

Applications

Transport layer

Network layer

Link layer

Physical layer

Host

Logical communication between layers

Y. Cheng UVA CS4740 Fall '24 14

• How to forge agreement on the meaning of the bits
exchanged between two hosts?

Application

Transport

Network

Link

Physical

Network

Link

Physical

Application

Transport

Network

Link

Physical

Host A Host BRouter

Logical communication between layers

Y. Cheng UVA CS4740 Fall '24 15

• How to forge agreement on the meaning of the bits
exchanged between two hosts?

• Protocol: Rules that govern the format, contents, and
meaning of messages
• Each layer on a host interacts with its peer host’s

corresponding layer via the protocol interface

Application

Transport

Network

Link

Physical

Network

Link

Physical

Application

Transport

Network

Link

Physical

Host A Host BRouter

Physical communication

Y. Cheng UVA CS4740 Fall '24 16

• Communication goes down to the physical network

• Then from network peer to peer

• Then up to the relevant application

Application

Transport

Network

Link

Physical

Network

Link

Physical

Application

Transport

Network

Link

Physical

Host A Host BRouter

Physical communication

Y. Cheng UVA CS4740 Fall '24 17

• Communication goes down to the physical network

• Then from network peer to peer

• Then up to the relevant application

Application

Transport

Network

Link

Physical

Network

Link

Physical

Application

Transport

Network

Link

Physical

Host A Host BRouter

Communication between layers

Y. Cheng UVA CS4740 Fall '24 18

• How do peer protocols coordinate with each other?

• Layer attaches its own header (H) to communicate
with peer

• Higher layers’ headers, data encapsulated inside message

• Lower layers don’t generally inspect higher layers’ headers

Application

Transport

Network

Application message

Communication between layers

Y. Cheng UVA CS4740 Fall '24 19

• How do peer protocols coordinate with each other?

• Layer attaches its own header (H) to communicate
with peer

• Higher layers’ headers, data encapsulated inside message

• Lower layers don’t generally inspect higher layers’ headers

Application

Transport

Network

Application message

H

Transport-layer message body

Communication between layers

Y. Cheng UVA CS4740 Fall '24 20

• How do peer protocols coordinate with each other?

• Layer attaches its own header (H) to communicate
with peer

• Higher layers’ headers, data encapsulated inside message

• Lower layers don’t generally inspect higher layers’ headers

Application

Transport

Network

Application message

H

H

Transport-layer message body

Network-layer datagram body

Network socket-based communication

Y. Cheng UVA CS4740 Fall '24 21

• Socket: The interface the OS provides to the network
• Provides inter-process explicit message exchange

• Can build distributed systems atop sockets: send(),
recv()

• e.g.: put(key,value) → message

Application layer

Transport layer

Network layer

Link layer

Physical layer

Host A

Process

Application layer

Transport layer

Network layer

Link layer

Physical layer

Host B

Socket

Process

Socket

Network sockets: Summary

• Principle of transparency: Hide that resource is
physically distributed across multiple computers
• Access resource same way as locally

• Users can’t tell where resource is physically located

• put(key,value) → message with sockets?

Y. Cheng UVA CS4740 Fall '24 22

Network sockets provide apps with point-to-point

communication between processes

Y. Cheng UVA CS4740 Fall '24 23

// Create a socket for the client
if ((sockfd = socket (AF_INET, SOCK_STREAM, 0)) < 0) {
perror(”Socket creation");
exit(2);

}

// Set server address and port
memset(&servaddr, 0, sizeof(servaddr));
servaddr.sin_family = AF_INET;
servaddr.sin_addr.s_addr = inet_addr(argv[1]);
servaddr.sin_port = htons(SERV_PORT); // to big-endian

// Establish TCP connection
if (connect(sockfd, (struct sockaddr *) &servaddr,
 sizeof(servaddr)) < 0) {
perror(”Connect to server");
exit(3);

}

// Transmit the data over the TCP connection
send(sockfd, buf, strlen(buf), 0);

Y. Cheng UVA CS4740 Fall '24 24

// Create a socket for the client
if ((sockfd = socket (AF_INET, SOCK_STREAM, 0)) < 0) {
perror(”Socket creation");
exit(2);

}

// Set server address and port
memset(&servaddr, 0, sizeof(servaddr));
servaddr.sin_family = AF_INET;
servaddr.sin_addr.s_addr = inet_addr(argv[1]);
servaddr.sin_port = htons(SERV_PORT); // to big-endian

// Establish TCP connection
if (connect(sockfd, (struct sockaddr *) &servaddr,
 sizeof(servaddr)) < 0) {
perror(”Connect to server");
exit(3);

}

// Transmit the data over the TCP connection
send(sockfd, buf, strlen(buf), 0);

Sockets don’t provide transparency

Takeaway: Socket programming still
not ideal (great)
• Lots for the programmer to deal with every time

• How to separate different requests on the same
connection?

• How to write bytes to the network / read bytes from the
network?
• What if Host A’s process is written in Go and Host B’s process

is in C++?

• What to do with those bytes?

• Still pretty painful… Have to worry a lot about the
network

Y. Cheng UVA CS4740 Fall '24 25

Solution: Another layer!

Y. Cheng UVA CS4740 Fall '24 26

Application layer

Transport layer

Network layer

Link layer

Physical layer

Host A

Process

Application layer

Transport layer

Network layer

Link layer

Physical layer

Host B

Socket

Process

Socket

RPC Layer RPC Layer

Today’s outline

1. Network sockets

2. Remote procedure call

Y. Cheng UVA CS4740 Fall '24 27

Motivation: Why RPC?

• The typical programmer is trained to write single-
threaded code that runs in one place

• Goal: Easy-to-program network communication
that makes client-server communication
transparent

• Retains the “feel” of writing centralized code
• Programmer needn’t think about the network

• Labs use Go RPC (inbuilt lib and simulated ones)

Y. Cheng UVA CS4740 Fall '24 28

What’s the goal of RPC?

• Within a single program, running in a single
process, recall the well-known notion of a
procedure call:
• Caller pushes arguments onto stack,

• jumps to address of callee function

• Callee reads arguments from stack,
• executes, puts return value in register,

• returns to next instruction in caller

Y. Cheng UVA CS4740 Fall '24 29

What’s the goal of RPC?

• Within a single program, running in a single
process, recall the well-known notion of a
procedure call:
• Caller pushes arguments onto stack,

• jumps to address of callee function

• Callee reads arguments from stack,
• executes, puts return value in register,

• returns to next instruction in caller

Y. Cheng UVA CS4740 Fall '24 30

RPC’s Goal: make communication appear like a local

procedure call: transparency for procedure calls – way

less painful than sockets…

RPC issues

1. Heterogeneity
• Data representations are heterogeneous

• Programming supports are heterogeneous

• Server might be different type of machine

Y. Cheng UVA CS4740 Fall '24 31

RPC issues

1. Heterogeneity
• Data representations are heterogeneous

• Programming supports are heterogeneous

• Server might be different type of machine

2. Failure
• What if messages get dropped?

• What if client, server, or network fails?

Y. Cheng UVA CS4740 Fall '24 32

RPC issues

1. Heterogeneity
• Data representations are heterogeneous

• Programming supports are heterogeneous

• Server might be different type of machine

2. Failure
• What if messages get dropped?

• What if client, server, or network fails?

3. Performance
• Procedure call takes takes ≈ 10 cycles ≈ 3 ns

• RPC in a data center takes ≈ 10 μs (103× slower)
• In the wide area, typically 106× slower

Y. Cheng UVA CS4740 Fall '24 33

Problem: Differences in data representation

• Not an issue for local procedure calls

• For a remote procedure call, a remote machine
may:
• Run process written in a different language

• Represent data types using different sizes

• Use a different byte ordering (endianness)

• Represent floating point numbers differently

• Have different data alignment requirements
• e.g., 4-byte type begins only on 4-byte memory boundary

Y. Cheng UVA CS4740 Fall '24 34

Problem: Differences in programming support

• Language support varies:

• Many programming languages have no inbuilt way of
extracting values from complex types
• C, C++

• Effectively need sockets glue code underneath

• Some languages have support that enables RPC

• Python, Go
• Exploit type system for some help

Y. Cheng UVA CS4740 Fall '24 35

Solution: Interface Description Language

• Mechanism to pass procedure parameters and return
values in a machine-independent way

• Programmer may write an interface description in the IDL
• Defines API for procedure calls: names, parameter/return types

Y. Cheng UVA CS4740 Fall '24 36

Solution: Interface Description Language

• Mechanism to pass procedure parameters and return
values in a machine-independent way

• Programmer may write an interface description in the IDL
• Defines API for procedure calls: names, parameter/return types

• Then runs an IDL compiler which generates:
• Code to marshal (convert) native data types into machine-

independent byte streams
• And vice-versa, called unmarshaling

• Client stub: Forwards local procedure call as a request to server

• Server stub: Dispatches RPC to its implementation

Y. Cheng UVA CS4740 Fall '24 37

IDL example: Protobuf

• Google’s Protocol Buffer
• A simple language-neutral

and platform-neutral IDL for
serializing structured data
and defining programming
interfaces

• gRPC uses Protocol
Buffer

Y. Cheng UVA CS4740 Fall '24 38

Protobuf: https://cloud.google.com/apis/design/proto3

Protobuf documentation: https://protobuf.dev/

gRPC: https://grpc.io/docs/what-is-grpc/introduction/

// The greeter service definition
service Greeter {
 // Sends a greeting
 rpc SayHello (HelloRequest) returns (HelloReply)
{}
}

// The request message containing user name
message HelloRequest {
 string name = 1;
}

// The response message containing the greetings

message HelloReply {
 string message = 1;
}

https://cloud.google.com/apis/design/proto3
https://protobuf.dev/
https://grpc.io/docs/what-is-grpc/introduction/

A day in the life of an RPC

1. Client calls stub function (pushes parameters onto stack)

Y. Cheng UVA CS4740 Fall '24 39

Client machine

Client process

k = add(3, 5)

Client stub (RPC library)

A day in the life of an RPC

1. Client calls stub function (pushes parameters onto stack)

2. Stub marshals parameters to a network message

Y. Cheng UVA CS4740 Fall '24 40

Client machine

Client process

k = add(3, 5)

Client stub (RPC library)

Client OS

proc: add | int: 3 | int: 5

A day in the life of an RPC

Y. Cheng UVA CS4740 Fall '24 41

2. Stub marshals parameters to a network message

3. OS sends a network message to the server

Server machine

Server OS

Client machine

Client process

k = add(3, 5)

Client stub (RPC library)

Client OS

proc: add | int: 3 | int: 5

A day in the life of an RPC

Y. Cheng UVA CS4740 Fall '24 42

3. OS sends a network message to the server

4. Server OS receives message, sends it up to stub

Client machine

Client process

k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server stub (RPC library)

Server OS

proc: add | int: 3 | int: 5

A day in the life of an RPC

Y. Cheng UVA CS4740 Fall '24 43

4. Server OS receives message, sends it up to stub

5. Server stub unmarshals params, calls server function

Client machine

Client process

k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process

Implementation of add

Server stub (RPC library)

Server OS

proc: add | int: 3 | int: 5

A day in the life of an RPC

Y. Cheng UVA CS4740 Fall '24 44

5. Server stub unmarshals params, calls server function

6. Server function runs, returns a value

Client machine

Client process

k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process

8 add(3, 5)

Server stub (RPC library)

Server OS

A day in the life of an RPC

Y. Cheng UVA CS4740 Fall '24 45

6. Server function runs, returns a value

7. Server stub marshals the return value, sends message

Client machine

Client process

k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process

8 add(3, 5)

Server stub (RPC library)

Server OS

Result | int: 8

A day in the life of an RPC

Y. Cheng UVA CS4740 Fall '24 46

7. Server stub marshals the return value, sends message

8. Server OS sends the reply back across the network

Client machine

Client process

k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process

8 add(3, 5)

Server stub (RPC library)

Server OS

Result | int: 8

A day in the life of an RPC

Y. Cheng UVA CS4740 Fall '24 47

8. Server OS sends the reply back across the network

9. Client OS receives the reply and passes up to stub

Client machine

Client process

k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process

8 add(3, 5)

Server stub (RPC library)

Server OS
Result | int: 8

A day in the life of an RPC

Y. Cheng UVA CS4740 Fall '24 48

9. Client OS receives the reply and passes up to stub

10. Client stub unmarshals return value, returns to client

Client machine

Client process

k 8

Client stub (RPC library)

Client OS

Server machine

Server process

8 add(3, 5)

Server stub (RPC library)

Server OS

Result | int: 8

Today’s outline

1. Network sockets

2. Remote procedure call
• Heterogeneity – use IDL w/ compiler

• Failure

Y. Cheng UVA CS4740 Fall '24 49

What could possibly go wrong?

1. Client may crash and reboot

Y. Cheng UVA CS4740 Fall '24 50

What could possibly go wrong?

1. Client may crash and reboot

2. Packets may be dropped
• Some individual packet loss in the Internet

• Broken routing results in many lost packets

Y. Cheng UVA CS4740 Fall '24 51

What could possibly go wrong?

1. Client may crash and reboot

2. Packets may be dropped
• Some individual packet loss in the Internet

• Broken routing results in many lost packets

3. Server may crash and reboot

Y. Cheng UVA CS4740 Fall '24 52

What could possibly go wrong?

1. Client may crash and reboot

2. Packets may be dropped
• Some individual packet loss in the Internet

• Broken routing results in many lost packets

3. Server may crash and reboot

4. Network or server might just be very slow

Y. Cheng UVA CS4740 Fall '24 53

What could possibly go wrong?

1. Client may crash and reboot

2. Packets may be dropped
• Some individual packet loss in the Internet

• Broken routing results in many lost packets

3. Server may crash and reboot

4. Network or server might just be very slow

Y. Cheng UVA CS4740 Fall '24 54

All of these may look the same to the client…

Failures, from client’s perspective

Y. C heng UVA C S 4740 F all '24 55

Server

Time ↓

✘

Client

Failures, from client’s perspective

Y. Cheng UVA CS4740 Fall '24 56

Client

Time ↓

✘

Server

Failures, from client’s perspective

Y. Cheng UVA C S 4740 F all '24 57

Client

Time ↓

✘

The cause of the failure is hidden from the client!

Server

At-Least-Once scheme

• Simplest scheme for handling failures

1. Client stub waits for a response, for a while
• Response is an acknowledgement message from the

server stub

Y. Cheng UVA CS4740 Fall '24 58

At-Least-Once scheme

• Simplest scheme for handling failures

1. Client stub waits for a response, for a while
• Response is an acknowledgement message from the

server stub

2. If no response arrives after a fixed timeout time
period, then client stub re-sends the request

Y. Cheng UVA CS4740 Fall '24 59

At-Least-Once scheme

• Simplest scheme for handling failures

1. Client stub waits for a response, for a while
• Response is an acknowledgement message from the

server stub

2. If no response arrives after a fixed timeout time
period, then client stub re-sends the request

• Repeat the above a few times
• Still no response? Return an error to the application

Y. Cheng UVA CS4740 Fall '24 60

At-Least-Once and side effects

• Client sends a “debit $10 from bank account” RPC

Y. C heng UVA C S 4740 F all '24 61

Client

Time ↓

Server

At-Least-Once and side effects

• Client sends a “debit $10 from bank account” RPC

Y. Cheng UVA CS4740 Fall '24 62

Client

✘

(debit $10)

Time ↓

Server

At-Least-Once and side effects

• Client sends a “debit $10 from bank account” RPC

Y. C heng UVA C S 4740 F all '24 63

Client

✘

(debit $10)

Time ↓

Server

At-Least-Once and side effects

• Client sends a “debit $10 from bank account” RPC

Y. C heng UVA C S 4740 F all '24 64

Client

✘

(debit $10)

(debit $10)

Time ↓

Server

At-Least-Once and writes

Y. C heng UVA C S 4740 F all '24 65

• put(x, value), then get(x): expect answer to be value

Client

Time ↓

Server

At-Least-Once and writes

Y. Cheng UVA CS4740 Fall '24 66

• put(x, value), then get(x): expect answer to be value

Client

put(x,10)
put(x,20)

Time ↓

Server

At-Least-Once and writes

Y. Cheng UVA CS4740 Fall '24 67

• put(x, value), then get(x): expect answer to be value

Client

put(x,10)
put(x,20)

Time ↓

Server

At-Least-Once and writes

Y. Cheng UVA C S 4740 F all '24 68

• put(x, value), then get(x): expect answer to be value

Client

put(x,10)
put(x,20)

x10

Time ↓

Server

At-Least-Once and writes

Y. C heng UVA C S 4740 F all '24 69

• put(x, value), then get(x): expect answer to be value

Client

put(x,10)
put(x,20)

x10

x20

Time ↓

Server

At-Least-Once and writes

Y. C heng UVA C S 4740 F all '24 70

• put(x, value), then get(x): expect answer to be value

Client

x=20

put(x,10)
put(x,20)

x10

x20

Time ↓

Server

At-Least-Once and writes

Y. C heng UVA C S 4740 F all '24 71

• Consider a client storing key-value pairs in a database
• put(x, value), then get(x): expect answer to be value

Time ↓

x=20

put(x,10)
put(x,20)

x10

x10

x20

Client Server

So, is At-Least-Once ever okay?

• Yes: If they are read-only operations with no side
effects
• e.g., read a key’s value in a database

• Yes: If the application has its own functionality to
cope with duplication and reordering

Y. Cheng UVA CS4740 Fall '24 72

At-Most-Once scheme

• Idea: server RPC code detects duplicate
requests
• Returns previous reply instead of re-running handler

Y. Cheng UVA CS4740 Fall '24 73

At-Most-Once scheme

• Idea: server RPC code detects duplicate
requests
• Returns previous reply instead of re-running handler

• How to detect a duplicate request?
• Test: Server sees same function, same arguments

twice

Y. Cheng UVA CS4740 Fall '24 74

At-Most-Once scheme

• Idea: server RPC code detects duplicate
requests
• Returns previous reply instead of re-running handler

• How to detect a duplicate request?
• Test: Server sees same function, same arguments

twice
• Not a correct solution! Sometimes applications legitimately

submit the same function with same augments, twice in a
row

Y. Cheng UVA CS4740 Fall '24 75

At-Most-Once scheme

• How to detect a duplicate request?

• Client includes unique transaction ID (xid) with each RPC
requests

• Client uses same xid for retransmitted requests

Y. Cheng UVA CS4740 Fall '24 76

At-Most-Once scheme

• How to detect a duplicate request?

• Client includes unique transaction ID (xid) with each RPC
requests

• Client uses same xid for retransmitted requests

Y. Cheng UVA CS4740 Fall '24 77

At-Most-Once Server
if seen[xid]:
 retval = old[xid]
else:
 retval = handler()
 old[xid] = retval
 seen[xid] = true
return retval

At-Most-Once: Providing unique XIDs

1. Combine a unique client ID (e.g., IP address)
with the current time of day

Y. Cheng UVA CS4740 Fall '24 78

At-Most-Once: Providing unique XIDs

1. Combine a unique client ID (e.g., IP address)
with the current time of day

2. Combine unique client ID with a sequence
number

Y. Cheng UVA CS4740 Fall '24 79

At-Most-Once: Providing unique XIDs

1. Combine a unique client ID (e.g., IP address)
with the current time of day

2. Combine unique client ID with a sequence
number

3. Big random number (probabilistic, no
guarantee)

Y. Cheng UVA CS4740 Fall '24 80

At-Most-Once: Discarding server state

• Problem: seen and old arrays will grow without
bound

Y. Cheng UVA CS4740 Fall '24 81

At-Most-Once: Discarding server state

• Problem: seen and old arrays will grow without
bound

• Observation: By construction, when the client gets a
response to a particular xid, it will never re-send it

Y. Cheng UVA CS4740 Fall '24 82

At-Most-Once: Discarding server state

• Problem: seen and old arrays will grow without
bound

• Observation: By construction, when the client gets a
response to a particular xid, it will never re-send it

• Client could tell server “I’m done with xid x – delete
it”
• Have to tell the server about each and every retired xid

• Could piggyback on subsequent requests

Y. Cheng UVA CS4740 Fall '24 83

At-Most-Once: Discarding server state

• Problem: seen and old arrays will grow without
bound

• Observation: By construction, when the client gets a
response to a particular xid, it will never re-send it

• Client could tell server “I’m done with xid x – delete
it”
• Have to tell the server about each and every retired xid

• Could piggyback on subsequent requests

Y. Cheng UVA CS4740 Fall '24 84

Significant overhead if many RPCs are in flight, in parallel

At-Most-Once: Discarding server state

• Problem: seen and old arrays will grow without
bound

Y. Cheng UVA CS4740 Fall '24 85

At-Most-Once: Discarding server state

• Problem: seen and old arrays will grow without
bound

• Suppose xid = ⟨unique client id, sequence no.⟩
• e.g., ⟨42, 1000⟩, ⟨42, 1001⟩, ⟨42, 1002⟩

Y. Cheng UVA CS4740 Fall '24 86

At-Most-Once: Discarding server state

• Problem: seen and old arrays will grow without
bound

• Suppose xid = ⟨unique client id, sequence no.⟩
• e.g., ⟨42, 1000⟩, ⟨42, 1001⟩, ⟨42, 1002⟩

• Client includes “seen all replies ≤ X” with every RPC
• Much like TCP sequence numbers, acks

Y. Cheng UVA CS4740 Fall '24 87

At-Most-Once: Discarding server state

• Problem: seen and old arrays will grow without
bound

• Suppose xid = ⟨unique client id, sequence no.⟩
• e.g., ⟨42, 1000⟩, ⟨42, 1001⟩, ⟨42, 1002⟩

• Client includes “seen all replies ≤ X” with every RPC
• Much like TCP sequence numbers, acks

• How does the client know that the server received
the information about retired RPCs?
• Each one of these is cumulative: later seen messages

subsume earlier ones

Y. Cheng UVA CS4740 Fall '24 88

At-Most-Once: Concurrent requests

• Problem: How to handle a duplicate request
while the original is still executing?

• Server doesn’t know reply yet. Also, we don’t want to
run the procedure twice

• Idea: Add a pending flag per executing RPC

• Server waits for the procedure to finish, or ignores

Y. Cheng UVA CS4740 Fall '24 89

At-Most-Once: Server crash and restart

• Problem: Server may crash and restart

• Does server need to write its tables to disk?

Y. Cheng UVA CS4740 Fall '24 90

At-Most-Once: Server crash and restart

• Problem: Server may crash and restart

• Does server need to write its tables to disk?

• Yes! On server crash and restart:
• If old[], seen[] tables are only in memory:

• Server will forget, accept duplicate requests

Y. Cheng UVA CS4740 Fall '24 91

Go’s net/rpc is at-most-once

• Opens a TCP connection and writes the request
• TCP may retransmit but server's TCP receiver will

filter out duplicates internally, with sequence numbers

• No retry in Go RPC code (i.e., will not create a second
TCP connection)

Y. Cheng UVA CS4740 Fall '24 92

Go’s net/rpc is at-most-once

• Opens a TCP connection and writes the request
• TCP may retransmit but server's TCP receiver will

filter out duplicates internally, with sequence numbers

• No retry in Go RPC code (i.e., will not create a second
TCP connection)

• However: Go RPC returns an error if it doesn't
get a reply
• Perhaps after a TCP timeout
• Perhaps server didn’t see the request

• Perhaps server processed the request but server/net
failed before reply came back

Y. Cheng UVA CS4740 Fall '24 93

Announcement

• Lab 1 is out and due in two weeks

• Next Monday: Go RPC and Lab 1 tutorial

Y. Cheng UVA CS4740 Fall '24 94

	Slide 1: Remote Procedure Call (RPC)
	Slide 2: Context
	Slide 3: Today’s outline
	Slide 4: The problem of communication
	Slide 5: The problem of communication
	Slide 6: The problem of communication
	Slide 7: The problem of communication
	Slide 8: Solution: Layering
	Slide 9: Layering in the Internet
	Slide 10: Layering in the Internet
	Slide 11: Layering in the Internet
	Slide 12: Layering in the Internet
	Slide 13: Layering in the Internet
	Slide 14: Logical communication between layers
	Slide 15: Logical communication between layers
	Slide 16: Physical communication
	Slide 17: Physical communication
	Slide 18: Communication between layers
	Slide 19: Communication between layers
	Slide 20: Communication between layers
	Slide 21: Network socket-based communication
	Slide 22: Network sockets: Summary
	Slide 23
	Slide 24
	Slide 25: Takeaway: Socket programming still not ideal (great)
	Slide 26: Solution: Another layer!
	Slide 27: Today’s outline
	Slide 28: Motivation: Why RPC?
	Slide 29: What’s the goal of RPC?
	Slide 30: What’s the goal of RPC?
	Slide 31: RPC issues
	Slide 32: RPC issues
	Slide 33: RPC issues
	Slide 34: Problem: Differences in data representation
	Slide 35: Problem: Differences in programming support
	Slide 36: Solution: Interface Description Language
	Slide 37: Solution: Interface Description Language
	Slide 38: IDL example: Protobuf
	Slide 39: A day in the life of an RPC
	Slide 40: A day in the life of an RPC
	Slide 41: A day in the life of an RPC
	Slide 42: A day in the life of an RPC
	Slide 43: A day in the life of an RPC
	Slide 44: A day in the life of an RPC
	Slide 45: A day in the life of an RPC
	Slide 46: A day in the life of an RPC
	Slide 47: A day in the life of an RPC
	Slide 48: A day in the life of an RPC
	Slide 49: Today’s outline
	Slide 50: What could possibly go wrong?
	Slide 51: What could possibly go wrong?
	Slide 52: What could possibly go wrong?
	Slide 53: What could possibly go wrong?
	Slide 54: What could possibly go wrong?
	Slide 55: Failures, from client’s perspective
	Slide 56: Failures, from client’s perspective
	Slide 57: Failures, from client’s perspective
	Slide 58: At-Least-Once scheme
	Slide 59: At-Least-Once scheme
	Slide 60: At-Least-Once scheme
	Slide 61: At-Least-Once and side effects
	Slide 62: At-Least-Once and side effects
	Slide 63: At-Least-Once and side effects
	Slide 64: At-Least-Once and side effects
	Slide 65: At-Least-Once and writes
	Slide 66: At-Least-Once and writes
	Slide 67: At-Least-Once and writes
	Slide 68: At-Least-Once and writes
	Slide 69: At-Least-Once and writes
	Slide 70: At-Least-Once and writes
	Slide 71: At-Least-Once and writes
	Slide 72: So, is At-Least-Once ever okay?
	Slide 73: At-Most-Once scheme
	Slide 74: At-Most-Once scheme
	Slide 75: At-Most-Once scheme
	Slide 76: At-Most-Once scheme
	Slide 77: At-Most-Once scheme
	Slide 78: At-Most-Once: Providing unique XIDs
	Slide 79: At-Most-Once: Providing unique XIDs
	Slide 80: At-Most-Once: Providing unique XIDs
	Slide 81: At-Most-Once: Discarding server state
	Slide 82: At-Most-Once: Discarding server state
	Slide 83: At-Most-Once: Discarding server state
	Slide 84: At-Most-Once: Discarding server state
	Slide 85: At-Most-Once: Discarding server state
	Slide 86: At-Most-Once: Discarding server state
	Slide 87: At-Most-Once: Discarding server state
	Slide 88: At-Most-Once: Discarding server state
	Slide 89: At-Most-Once: Concurrent requests
	Slide 90: At-Most-Once: Server crash and restart
	Slide 91: At-Most-Once: Server crash and restart
	Slide 92: Go’s net/rpc is at-most-once
	Slide 93: Go’s net/rpc is at-most-once
	Slide 94: Announcement

