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Context

• Multiple computers

• Connected by a network

• Doing something together

• A distributed system is many cooperating computers 
that appear to users as a single service
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Today’s outline

• Today: How can processes on different 
cooperating computers exchange information?

1. Network sockets

2. Remote procedure call
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The problem of communication

• Process on Host A wants to talk to process on 
Host B

• A and B must agree on the meaning of the bits being 
sent and received at many different levels, including:

• How many volts is a 0 bit, a 1 bits?

• How does receiver know which is the last bit?

• How many bits long is a number?
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The problem of communication
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The problem of communication
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• Re-implement every application for every new 
underlying transmission medium?

• Change every application on any change to an 
underlying transmission medium?
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The problem of communication
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• Re-implement every application for every new 
underlying transmission medium?

• Change every application on any change to an 
underlying transmission medium?

• No! But how does the Internet design avoid this?
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Solution: Layering
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• Intermediate layers provide a set of abstractions for 
applications and media

• New applications or media need only implement for 
intermediate layer’s interface

Applications

Transmission

media
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Layering in the Internet
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• Physical: Moves bits between two 
hosts connected by a physical link

Physical layer

Host



Layering in the Internet
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• Link: Enables end hosts to 
exchange atomic messages with 
each other

• Physical: Moves bits between two 
hosts connected by a physical link

Link layer

Physical layer

Host



Layering in the Internet
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• Network: Deliver packets to 
destinations on other (heterogeneous) 
networks

• Link: Enables end hosts to exchange 
atomic messages with each other

• Physical: Moves bits between two 
hosts connected by a physical link

Network layer

Link layer

Physical layer

Host



Layering in the Internet
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• Transport: Provide end-to-end 
communication between processes on 
different hosts

• Network: Deliver packets to 
destinations on other (heterogeneous) 
networks

• Link: Enables end hosts to exchange 
atomic messages with each other

• Physical: Moves bits between two 
hosts connected by a physical link

Transport layer

Network layer

Link layer

Physical layer

Host



Layering in the Internet
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• Transport: Provide end-to-end 
communication between processes on 
different hosts

• Network: Deliver packets to 
destinations on other (heterogeneous) 
networks

• Link: Enables end hosts to exchange 
atomic messages with each other

• Physical: Moves bits between two 
hosts connected by a physical link

Applications

Transport layer

Network layer

Link layer

Physical layer

Host



Logical communication between layers
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• How to forge agreement on the meaning of the bits 
exchanged between two hosts?
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Logical communication between layers
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• How to forge agreement on the meaning of the bits 
exchanged between two hosts?

• Protocol: Rules that govern the format, contents, and 
meaning of messages
• Each layer on a host interacts with its peer host’s 

corresponding layer via the protocol interface
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Physical communication
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• Communication goes down to the physical network

• Then from network peer to peer

• Then up to the relevant application
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Physical communication
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• Communication goes down to the physical network

• Then from network peer to peer

• Then up to the relevant application
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Communication between layers
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• How do peer protocols coordinate with each other?

• Layer attaches its own header (H) to communicate 
with peer

• Higher layers’ headers, data encapsulated inside message 

• Lower layers don’t generally inspect higher layers’ headers

Application

Transport

Network

Application message



Communication between layers
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• How do peer protocols coordinate with each other?

• Layer attaches its own header (H) to communicate 
with peer

• Higher layers’ headers, data encapsulated inside message 

• Lower layers don’t generally inspect higher layers’ headers
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Communication between layers
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• How do peer protocols coordinate with each other?

• Layer attaches its own header (H) to communicate 
with peer

• Higher layers’ headers, data encapsulated inside message 

• Lower layers don’t generally inspect higher layers’ headers

Application

Transport

Network

Application message

H

H

Transport-layer message body

Network-layer datagram body



Network socket-based communication
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• Socket: The interface the OS provides to the network
• Provides inter-process explicit message exchange

• Can build distributed systems atop sockets: send(), 
recv()

• e.g.: put(key,value) → message

Application layer

Transport layer

Network layer

Link layer

Physical layer

Host A
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Application layer
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Physical layer
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Socket
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Network sockets: Summary

• Principle of transparency: Hide that resource is 
physically distributed across multiple computers
• Access resource same way as locally

• Users can’t tell where resource is physically located

• put(key,value) → message with sockets?
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Network sockets provide apps with point-to-point 

communication between processes
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// Create a socket for the client
if ((sockfd = socket (AF_INET, SOCK_STREAM, 0)) < 0) {
perror(”Socket creation");
exit(2);

}

// Set server address and port
memset(&servaddr, 0, sizeof(servaddr));
servaddr.sin_family = AF_INET;
servaddr.sin_addr.s_addr = inet_addr(argv[1]);
servaddr.sin_port = htons(SERV_PORT); // to big-endian

// Establish TCP connection
if (connect(sockfd, (struct sockaddr *) &servaddr,
       sizeof(servaddr)) < 0) {
perror(”Connect to server");
exit(3);

}

// Transmit the data over the TCP connection
send(sockfd, buf, strlen(buf), 0);
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// Create a socket for the client
if ((sockfd = socket (AF_INET, SOCK_STREAM, 0)) < 0) {
perror(”Socket creation");
exit(2);

}

// Set server address and port
memset(&servaddr, 0, sizeof(servaddr));
servaddr.sin_family = AF_INET;
servaddr.sin_addr.s_addr = inet_addr(argv[1]);
servaddr.sin_port = htons(SERV_PORT); // to big-endian

// Establish TCP connection
if (connect(sockfd, (struct sockaddr *) &servaddr,
       sizeof(servaddr)) < 0) {
perror(”Connect to server");
exit(3);

}

// Transmit the data over the TCP connection
send(sockfd, buf, strlen(buf), 0);

Sockets don’t provide transparency



Takeaway: Socket programming still 
not ideal (great)
• Lots for the programmer to deal with every time

• How to separate different requests on the same 
connection?

• How to write bytes to the network / read bytes from the 
network?
• What if Host A’s process is written in Go and Host B’s process 

is in C++?

• What to do with those bytes?

• Still pretty painful… Have to worry a lot about the 
network
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Solution: Another layer!
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Application layer

Transport layer

Network layer

Link layer

Physical layer

Host A

Process

Application layer

Transport layer

Network layer

Link layer

Physical layer

Host B

Socket

Process

Socket

RPC Layer RPC Layer



Today’s outline

1. Network sockets

2. Remote procedure call
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Motivation: Why RPC?

• The typical programmer is trained to write single-
threaded code that runs in one place

• Goal: Easy-to-program network communication 
that makes client-server communication 
transparent

• Retains the “feel” of writing centralized code
• Programmer needn’t think about the network

• Labs use Go RPC (inbuilt lib and simulated ones)
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What’s the goal of RPC?

• Within a single program, running in a single 
process, recall the well-known notion of a 
procedure call:
• Caller pushes arguments onto stack,

• jumps to address of callee function

• Callee reads arguments from stack,
• executes, puts return value in register,

• returns to next instruction in caller

Y. Cheng UVA CS4740 Fall '24 29



What’s the goal of RPC?

• Within a single program, running in a single 
process, recall the well-known notion of a 
procedure call:
• Caller pushes arguments onto stack,

• jumps to address of callee function

• Callee reads arguments from stack,
• executes, puts return value in register,

• returns to next instruction in caller
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RPC’s Goal: make communication appear like a local 

procedure call: transparency for procedure calls – way 

less painful than sockets…



RPC issues

1. Heterogeneity
• Data representations are heterogeneous

• Programming supports are heterogeneous

• Server might be different type of machine
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RPC issues

1. Heterogeneity
• Data representations are heterogeneous

• Programming supports are heterogeneous

• Server might be different type of machine

2. Failure
• What if messages get dropped?

• What if client, server, or network fails?
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RPC issues

1. Heterogeneity
• Data representations are heterogeneous

• Programming supports are heterogeneous

• Server might be different type of machine

2. Failure
• What if messages get dropped?

• What if client, server, or network fails?

3. Performance
• Procedure call takes takes ≈ 10 cycles ≈ 3 ns

• RPC in a data center takes ≈ 10 μs (103× slower)
• In the wide area, typically 106× slower
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Problem: Differences in data representation

• Not an issue for local procedure calls

• For a remote procedure call, a remote machine 
may:
• Run process written in a different language 

• Represent data types using different sizes

• Use a different byte ordering (endianness)

• Represent floating point numbers differently

• Have different data alignment requirements
• e.g., 4-byte type begins only on 4-byte memory boundary
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Problem: Differences in programming support

• Language support varies:

• Many programming languages have no inbuilt way of 
extracting values from complex types
• C, C++

• Effectively need sockets glue code underneath

• Some languages have support that enables RPC

• Python, Go
• Exploit type system for some help
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Solution: Interface Description Language

• Mechanism to pass procedure parameters and return 
values in a machine-independent way

• Programmer may write an interface description in the IDL
• Defines API for procedure calls: names, parameter/return types
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Solution: Interface Description Language

• Mechanism to pass procedure parameters and return 
values in a machine-independent way

• Programmer may write an interface description in the IDL
• Defines API for procedure calls: names, parameter/return types

• Then runs an IDL compiler which generates:
• Code to marshal (convert) native data types into machine-

independent byte streams
• And vice-versa, called unmarshaling

• Client stub: Forwards local procedure call as a request to server

• Server stub: Dispatches RPC to its implementation
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IDL example: Protobuf

• Google’s Protocol Buffer
• A simple language-neutral 

and platform-neutral IDL for 
serializing structured data 
and defining programming 
interfaces  

• gRPC uses Protocol 
Buffer
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Protobuf: https://cloud.google.com/apis/design/proto3

Protobuf documentation: https://protobuf.dev/  

gRPC: https://grpc.io/docs/what-is-grpc/introduction/ 

// The greeter service definition 
service Greeter { 
    // Sends a greeting 
    rpc SayHello (HelloRequest) returns (HelloReply) 
{} 
} 

// The request message containing user name 
message HelloRequest { 
    string name = 1; 
} 

// The response message containing the greetings 

message HelloReply { 
    string message = 1; 
}

https://cloud.google.com/apis/design/proto3
https://protobuf.dev/
https://grpc.io/docs/what-is-grpc/introduction/


A day in the life of an RPC

1. Client calls stub function (pushes parameters onto stack)
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Client machine

Client process

k = add(3, 5)

Client stub (RPC library)



A day in the life of an RPC

1. Client calls stub function (pushes parameters onto stack)

2. Stub marshals parameters to a network message
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Client machine

Client process

k = add(3, 5)

Client stub (RPC library)

Client OS

proc: add | int: 3 | int: 5



A day in the life of an RPC
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2. Stub marshals parameters to a network message

3. OS sends a network message to the server

Server machine

Server OS

Client machine

Client process

k = add(3, 5)

Client stub (RPC library)

Client OS

proc: add | int: 3 | int: 5



A day in the life of an RPC

Y. Cheng UVA CS4740 Fall '24 42

3. OS sends a network message to the server

4. Server OS receives message, sends it up to stub

Client machine

Client process

k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server stub (RPC library)

Server OS

proc: add | int: 3 | int: 5



A day in the life of an RPC
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4. Server OS receives message, sends it up to stub

5. Server stub unmarshals params, calls server function

Client machine

Client process

k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process

Implementation of add

Server stub (RPC library)

Server OS

proc: add | int: 3 | int: 5



A day in the life of an RPC
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5. Server stub unmarshals params, calls server function

6. Server function runs, returns a value

Client machine

Client process

k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process

8  add(3, 5)

Server stub (RPC library)

Server OS



A day in the life of an RPC
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6. Server function runs, returns a value

7. Server stub marshals the return value, sends message

Client machine

Client process

k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process

8  add(3, 5)

Server stub (RPC library)

Server OS

Result | int: 8



A day in the life of an RPC
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7. Server stub marshals the return value, sends message

8. Server OS sends the reply back across the network

Client machine

Client process

k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process

8  add(3, 5)

Server stub (RPC library)

Server OS

Result | int: 8



A day in the life of an RPC
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8. Server OS sends the reply back across the network

9. Client OS receives the reply and passes up to stub

Client machine

Client process

k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process

8  add(3, 5)

Server stub (RPC library)

Server OS
Result | int: 8



A day in the life of an RPC
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9. Client OS receives the reply and passes up to stub

10. Client stub unmarshals return value, returns to client

Client machine

Client process

k  8

Client stub (RPC library)

Client OS

Server machine

Server process

8  add(3, 5)

Server stub (RPC library)

Server OS

Result | int: 8



Today’s outline

1. Network sockets

2. Remote procedure call
• Heterogeneity – use IDL w/ compiler

• Failure
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What could possibly go wrong?

1. Client may crash and reboot
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What could possibly go wrong?

1. Client may crash and reboot

2. Packets may be dropped
• Some individual packet loss in the Internet

• Broken routing results in many lost packets
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What could possibly go wrong?
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What could possibly go wrong?

1. Client may crash and reboot

2. Packets may be dropped
• Some individual packet loss in the Internet

• Broken routing results in many lost packets

3. Server may crash and reboot

4. Network or server might just be very slow
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All of these may look the same to the client…



Failures, from client’s perspective
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Server

Time ↓

✘

Client



Failures, from client’s perspective
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Client

Time ↓
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Server



Failures, from client’s perspective
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Client

Time ↓

✘

The cause of the failure is hidden from the client!

Server



At-Least-Once scheme

• Simplest scheme for handling failures

1. Client stub waits for a response, for a while
• Response is an acknowledgement message from the 

server stub
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At-Least-Once scheme

• Simplest scheme for handling failures

1. Client stub waits for a response, for a while
• Response is an acknowledgement message from the 

server stub

2. If no response arrives after a fixed timeout time 
period, then client stub re-sends the request
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At-Least-Once scheme

• Simplest scheme for handling failures

1. Client stub waits for a response, for a while
• Response is an acknowledgement message from the 

server stub

2. If no response arrives after a fixed timeout time 
period, then client stub re-sends the request

• Repeat the above a few times
• Still no response?  Return an error to the application
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At-Least-Once and side effects

• Client sends a “debit $10 from bank account” RPC
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Client

Time ↓

Server



At-Least-Once and side effects

• Client sends a “debit $10 from bank account” RPC
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At-Least-Once and side effects

• Client sends a “debit $10 from bank account” RPC
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At-Least-Once and side effects

• Client sends a “debit $10 from bank account” RPC
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(debit $10)
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Server



At-Least-Once and writes
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• put(x, value), then get(x): expect answer to be value

Client

Time ↓

Server



At-Least-Once and writes
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• put(x, value), then get(x): expect answer to be value

Client

put(x,10)
put(x,20)

Time ↓

Server



At-Least-Once and writes
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• put(x, value), then get(x): expect answer to be value
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Time ↓
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At-Least-Once and writes
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• put(x, value), then get(x): expect answer to be value

Client

put(x,10)
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Time ↓
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At-Least-Once and writes
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• put(x, value), then get(x): expect answer to be value
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At-Least-Once and writes
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• put(x, value), then get(x): expect answer to be value

Client

x=20

put(x,10)
put(x,20)

x10

x20

Time ↓

Server



At-Least-Once and writes
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• Consider a client storing key-value pairs in a database
• put(x, value), then get(x): expect answer to be value

Time ↓

x=20

put(x,10)
put(x,20)

x10

x10

x20

Client Server



So, is At-Least-Once ever okay?

• Yes: If they are read-only operations with no side 
effects
• e.g., read a key’s value in a database 

• Yes: If the application has its own functionality to 
cope with duplication and reordering
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At-Most-Once scheme

• Idea: server RPC code detects duplicate 
requests 
• Returns previous reply instead of re-running handler 
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At-Most-Once scheme

• Idea: server RPC code detects duplicate 
requests 
• Returns previous reply instead of re-running handler 

• How to detect a duplicate request?
• Test: Server sees same function, same arguments 

twice
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At-Most-Once scheme

• Idea: server RPC code detects duplicate 
requests 
• Returns previous reply instead of re-running handler 

• How to detect a duplicate request?
• Test: Server sees same function, same arguments 

twice
• Not a correct solution!  Sometimes applications legitimately 

submit the same function with same augments, twice in a 
row
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At-Most-Once scheme

• How to detect a duplicate request?

• Client includes unique transaction ID (xid) with each RPC 
requests

• Client uses same xid for retransmitted requests
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At-Most-Once scheme

• How to detect a duplicate request?

• Client includes unique transaction ID (xid) with each RPC 
requests

• Client uses same xid for retransmitted requests
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At-Most-Once Server
if seen[xid]: 
 retval = old[xid] 
else: 
 retval = handler() 
 old[xid] = retval 
 seen[xid] = true
return retval



At-Most-Once: Providing unique XIDs

1. Combine a unique client ID (e.g., IP address) 
with the current time of day
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At-Most-Once: Providing unique XIDs

1. Combine a unique client ID (e.g., IP address) 
with the current time of day

2. Combine unique client ID with a sequence 
number
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At-Most-Once: Providing unique XIDs

1. Combine a unique client ID (e.g., IP address) 
with the current time of day

2. Combine unique client ID with a sequence 
number

3. Big random number (probabilistic, no 
guarantee)
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At-Most-Once: Discarding server state

• Problem: seen and old arrays will grow without 
bound
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At-Most-Once: Discarding server state

• Problem: seen and old arrays will grow without 
bound

• Observation: By construction, when the client gets a 
response to a particular xid, it will never re-send it
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At-Most-Once: Discarding server state

• Problem: seen and old arrays will grow without 
bound

• Observation: By construction, when the client gets a 
response to a particular xid, it will never re-send it

• Client could tell server “I’m done with xid x – delete 
it”
• Have to tell the server about each and every retired xid

• Could piggyback on subsequent requests
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At-Most-Once: Discarding server state

• Problem: seen and old arrays will grow without 
bound

• Observation: By construction, when the client gets a 
response to a particular xid, it will never re-send it

• Client could tell server “I’m done with xid x – delete 
it”
• Have to tell the server about each and every retired xid

• Could piggyback on subsequent requests
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Significant overhead if many RPCs are in flight, in parallel



At-Most-Once: Discarding server state

• Problem: seen and old arrays will grow without 
bound
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At-Most-Once: Discarding server state

• Problem: seen and old arrays will grow without 
bound

• Suppose xid = ⟨unique client id, sequence no.⟩
• e.g., ⟨42, 1000⟩, ⟨42, 1001⟩, ⟨42, 1002⟩
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• Problem: seen and old arrays will grow without 
bound
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• Client includes “seen all replies ≤ X” with every RPC 
• Much like TCP sequence numbers, acks 
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At-Most-Once: Discarding server state

• Problem: seen and old arrays will grow without 
bound

• Suppose xid = ⟨unique client id, sequence no.⟩
• e.g., ⟨42, 1000⟩, ⟨42, 1001⟩, ⟨42, 1002⟩

• Client includes “seen all replies ≤ X” with every RPC 
• Much like TCP sequence numbers, acks 

• How does the client know that the server received 
the information about retired RPCs?
• Each one of these is cumulative: later seen messages 

subsume earlier ones
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At-Most-Once: Concurrent requests

• Problem: How to handle a duplicate request 
while the original is still executing?

• Server doesn’t know reply yet.  Also, we don’t want to 
run the procedure twice 

• Idea: Add a pending flag per executing RPC

• Server waits for the procedure to finish, or ignores
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At-Most-Once: Server crash and restart

• Problem: Server may crash and restart

• Does server need to write its tables to disk?
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At-Most-Once: Server crash and restart

• Problem: Server may crash and restart

• Does server need to write its tables to disk?

• Yes!  On server crash and restart:
• If old[], seen[] tables are only in memory:

• Server will forget, accept duplicate requests
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Go’s net/rpc is at-most-once

• Opens a TCP connection and writes the request
• TCP may retransmit but server's TCP receiver will 

filter out duplicates internally, with sequence numbers

• No retry in Go RPC code (i.e., will not create a second 
TCP connection)
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Go’s net/rpc is at-most-once

• Opens a TCP connection and writes the request
• TCP may retransmit but server's TCP receiver will 

filter out duplicates internally, with sequence numbers

• No retry in Go RPC code (i.e., will not create a second 
TCP connection)

• However: Go RPC returns an error if it doesn't 
get a reply
• Perhaps after a TCP timeout
• Perhaps server didn’t see the request

• Perhaps server processed the request but server/net 
failed before reply came back
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Announcement

• Lab 1 is out and due in two weeks

• Next Monday: Go RPC and Lab 1 tutorial
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