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Recap: Parallelism vs. concurrency
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“Concurrency is about dealing with lots of things at once. 

Parallelism is about doing lots of things at once.”



Recap: Shared memory
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• Shared memory: multiple 

processes to share data via 

memory

• Applications must locate and 

and map shared memory 

regions to exchange data

Process

send(msg)

Process

recv(msg)

Shared

Memory



Recap: Shared memory vs. Message passing

Y. Cheng UVA CS4740 Fall '24 4

• Message passing: exchange 

data explicitly via message 

passing

• Application developers define 

protocol and exchanging 

format, number of participants, 

and each exchange  

Process

send(msg)

MSG

Process

recv(msg)

MSG

MSG Msg passing

• Shared memory: multiple 

processes to share data via 

memory

• Applications must locate and 

and map shared memory 

regions to exchange data

Process

send(msg)

Process

recv(msg)
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Memory



Recap: Shared memory vs. Message passing

• Easy to program; just 
like a single multi-
threaded machines

• Hard to write high-
performance apps:

• Cannot control which 
data is local or remote 
(remote mem. access 
much slower)

• Hard to mask failures
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• Message passing: can 
write very high-
performance apps

• Hard to write apps:
• Need to manually 

decompose the app, 
and move data

• Need to manually 
handle failures



Shared memory: Pthread

• A POSIX standard (IEEE 1003.1c) API for thread 
creation and synchronization

• API specifies behavior of the thread library, 
implementation is up to development of the 
library

• Common in UNIX (e.g., Linux) OSes

Y. Cheng UVA CS4740 Fall '24 7



Shared memory: Pthread
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void *myThreadFun(void *vargp) {
 sleep(1);
 printf(“Hello world\n”);
 return NULL;
}

int main() {
 pthread_t thread_id_1, thread_id_2;
 pthread_create(&thread_id_1, NULL, myThreadFun, NULL);
 pthread_create(&thread_id_2, NULL, myThreadFun, NULL);
 pthread_join(thread_id_1, NULL);
 pthread_join(thread_id_2, NULL);
 exit(0);
}



Message passing: MPI

• MPI – Message Passing Interface
• Library standard defined by a committee of vendors, 

implementers, and parallel programmers 

• Used to create parallel programs based on message 
passing

• Portable: one standard, many implementations
• Available on almost all parallel machines in C and 

Fortran

• De facto standard platform for the HPC community
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Message passing: MPI
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int main(int argc, char **argv) {
 MPI_Init(NULL, NULL);

 // Get the number of processes
 int world_size;
 MPI_Comm_size(MPI_COMM_WORLD, &world_size);

 // Get the rank of the process
 int world_rank;
 MPI_Comm_rank(MPI_COMM_WORLD, *world_rank);

 // Print off a hello world message
 printf(“Hello world from rank %d out of %d processors\n”,
  world_rank, world_size);

 // Finalize the MPI environment
 MPI_Finalize();
}



Message passing: MPI
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int main(int argc, char **argv) {
 MPI_Init(NULL, NULL);

 // Get the number of processes
 int world_size;
 MPI_Comm_size(MPI_COMM_WORLD, &world_size);

 // Get the rank of the process
 int world_rank;
 MPI_Comm_rank(MPI_COMM_WORLD, *world_rank);

 // Print off a hello world message
 printf(“Hello world from rank %d out of %d processors\n”,
  world_rank, world_size);

 // Finalize the MPI environment
 MPI_Finalize();
}

mpirun –n 4 –f host_file ./mpi_hello_world



MapReduce
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The big picture (motivation)

• Datasets are too big to process using a single 
computer
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The big picture (motivation)

• Datasets are too big to process using a single 
computer

• Good parallel processing engines are rare (back 
then in the late 90s)
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The big picture (motivation)

• Datasets are too big to process using a single 
computer

• Good parallel processing engines are rare (back 
then in the late 90s)

• Want a parallel processing framework that:
• is general (works for many problems)

• is easy to use (no locks, no need to explicitly handle 
communication, no race conditions)

• can automatically parallelize tasks
• can automatically handle machine failures

Y. Cheng UVA CS4740 Fall '24 15



Context (Google circa 2000)

• Starting to deal with massive datasets

• But also addicted to cheap, commodity hardware
• Young company, expensive hardware not practical

• Only a few expert programmers can write 
distributed programs to process them

• Scale so large jobs can complete despite failures
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Context (Google circa 2000)

• Starting to deal with massive datasets

• But also addicted to cheap, commodity hardware
• Young company, expensive hardware not practical

• Only a few expert programmers can write distributed 
programs to process them

• Scale so large jobs can complete despite failures

• Key question: how can every Google engineer be 
imbued with the ability to write parallel, scalable, 
distributed, fault-tolerant code?

• Solution: abstract out the redundant parts

• Restriction: relies on job semantics, so restricts 
which problems it works for
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Application: Word Count
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cat data.txt
 | tr –s ‘[[:punct:][:space:]]’ ‘\n’
 | sort | uniq -c

SELECT count(word), word FROM data
 GROUP BY word



Deal with multiple files?

1. Compute word counts from individual files
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Deal with multiple files?

1. Compute word counts from individual files

2. Then merge intermediate output
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Deal with multiple files?

1. Compute word counts from individual files

2. Then merge intermediate output

3. Compute word count on merged outputs
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What if the data is too big to fit in one 
computer?

1. In parallel, send to worker:
• Compute word counts from individual files

• Collect results, wait until all finished
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What if the data is too big to fit in one 
computer?

1. In parallel, send to worker:
• Compute word counts from individual files

• Collect results, wait until all finished

2. Then merge intermediate output

3. Compute word count on merged intermediates
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MapReduce: Programming interface

• map(k1, v1) → list(k2, v2)
• Apply function to (k1, v1) pair and produce set of 

intermediate pairs (k2, v2)

• reduce(k2, list(v2)) → list(k3, v3)
• Apply aggregation (reduce) function to values

• Output results
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MapReduce data flows
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MapReduce visualization
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input.csv (in GFS)
color, shape,    size
red,   circle,   3
red,   square,   5
blue,  oval,     1
green, square,   3

How to count the number 

of occurrences for each 

unique color? 



Map
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input.csv (in GFS)
color, shape,    size
red,   circle,   3
red,   square,   5
blue,  oval,     1
green, square,   3

def map(key, value):
  emit(value.color, value)

Map will be called 4 times (once for 

each line of the input file). 

How to count the number 

of occurrences for each 

unique color? 



Map
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input.csv (in GFS)
color, shape,    size
red,   circle,   3
red,   square,   5
blue,  oval,     1
green, square,   3

How to count the number 

of occurrences for each 

unique color? 

def map(key, value):
  emit(value.color, value)

key    value    
red    red,   circle, 3

red       red, circle, 3

key2      value2

1     red, circle, 3

key1  value1



Map
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input.csv (in GFS)
color, shape,    size
red,   circle,   3
red,   square,   5
blue,  oval,     1
green, square,   3

How to count the number 

of occurrences for each 

unique color? 

def map(key, value):
  emit(value.color, value)

key    value    
red    red,   circle, 3
red    red,   square, 5

red       red, square, 5

key2      value2

2     red, square, 5

key1  value1



Map
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input.csv (in GFS)
color, shape,    size
red,   circle,   3
red,   square,   5
blue,  oval,     1
green, square,   3

How to count the number 

of occurrences for each 

unique color? 

def map(key, value):
  emit(value.color, value)

key    value    
red    red,   circle, 3
red    red,   square, 5
blue   blue,  oval,   1

blue      blue, oval, 1

key2      value2

3     blue, oval, 1

key1  value1



Map
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input.csv (in GFS)
color, shape,    size
red,   circle,   3
red,   square,   5
blue,  oval,     1
green, square,   3

How to count the number 

of occurrences for each 

unique color? 

def map(key, value):
  emit(value.color, value)

key    value    
red    red,   circle, 3
red    red,   square, 5
blue   blue,  oval,   1
green  green, square, 3

green     green, square, 3

key2      value2

4     green, square, 3

key1  value1



Reduce
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input.csv (in GFS)
color, shape,    size
red,   circle,   3
red,   square,   5
blue,  oval,     1
green, square,   3

def map(key, value):
  emit(value.color, value)

key    value    
blue   blue,  oval,   1
green  green, square, 3
red    red,   circle, 3
red    red,   square, 5

Intermediate data is grouped 

and sorted by key.

How to count the number 

of occurrences for each 

unique color? 



Reduce
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input.csv (in GFS)
color, shape,    size
red,   circle,   3
red,   square,   5
blue,  oval,     1
green, square,   3

def map(key, value):
  emit(value.color, value)

def reduce(key, values):
  count = 0
  for row in values:
    count = count + 1
  emit(key, count)

key    value    
blue   blue,  oval,   1
green  green, square, 3
red    red,   circle, 3
red    red,   square, 5

Intermediate data is grouped 

and sorted by key.

Reduce will be called 3 times (once 

for each group). The call could 

happen in one reduce task (or be 

split over many).

How to count the number 

of occurrences for each 

unique color? 



Reduce
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input.csv (in GFS)
color, shape,    size
red,   circle,   3
red,   square,   5
blue,  oval,     1
green, square,   3

def reduce(key, values):
  count = 0
  for row in values:
    count = count + 1
  emit(key, count)

key2   value2    
blue   blue,  oval,   1
green  green, square, 3
red    red,   circle, 3
red    red,   square, 5

key3   value3
blue   1

def map(key, value):
  emit(value.color, value)

Intermediate data is grouped 

and sorted by key.

How to count the number 

of occurrences for each 

unique color? 



Reduce
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input.csv (in GFS)
color, shape,    size
red,   circle,   3
red,   square,   5
blue,  oval,     1
green, square,   3

def reduce(key, values):
  count = 0
  for row in values:
    count = count + 1
  emit(key, count)

key2   value2    
blue   blue,  oval,   1
green  green, square, 3
red    red,   circle, 3
red    red,   square, 5

key3   value3
blue   1
green  1

def map(key, value):
  emit(value.color, value)

Intermediate data is grouped 

and sorted by key.

How to count the number 

of occurrences for each 

unique color? 



Reduce
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input.csv (in GFS)
color, shape,    size
red,   circle,   3
red,   square,   5
blue,  oval,     1
green, square,   3

def reduce(key, values):
  count = 0
  for row in values:
    count = count + 1
  emit(key, count)

key2   value2    
blue   blue,  oval,   1
green  green, square, 3
red    red,   circle, 3
red    red,   square, 5

key3   value3
blue   1
green  1
red    2

def map(key, value):
  emit(value.color, value)

Intermediate data is grouped 

and sorted by key.

How to count the number 

of occurrences for each 

unique color? 



Multiple reducers (for big intermediate data)
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input.csv (in GFS)
color, shape,    size
red,   circle,   3
red,   square,   5
green, square,   4
blue,  oval,     1
green, square,   3
red,   oval,     8

Mapper

Mapper

Reducer

Each reduce task produces one output file. 

A reduce task might take multiple keys. 

All intermediate rows with the same key go to the 

same reducer.

intermediate file

Reducer

Cluster of machines

Blk1

Blk2

red

blue

green

intermediate file

map phase

green

red

Map emits intermediate files by 

groups.

Blk1

Blk2



Multiple reducers (for big intermediate data)
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input.csv (in GFS)
color, shape,    size
red,   circle,   3
red,   square,   5
green, square,   4
blue,  oval,     1
green, square,   3
red,   oval,     8

Mapper

Mapper

Reducer

Each reduce task produces one output file. 

A reduce task might take multiple keys. 

All intermediate rows with the same key go to the 

same reducer.

intermediate file

Reducer

Cluster of machines

Blk1

Blk2

red

blue

green

intermediate file

green

red

shuffle phase

Reducer collects all intermediate 

files of its assigned keys (groups).

blue

green

green

red

red



Multiple reducers (for big intermediate data)
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input.csv (in GFS)
color, shape,    size
red,   circle,   3
red,   square,   5
green, square,   4
blue,  oval,     1
green, square,   3
red,   oval,     8

Mapper

Mapper

Reducer

Each reduce task produces one output file. 

A reduce task might take multiple keys. 

All intermediate rows with the same key go to the 

same reducer.

intermediate file

Reducer

Cluster of machines

Blk1

Blk2

red

blue

green

intermediate file

green

red

output file 1

output file 2

reduce phase

Reducer dumps final results to GFS.

green

red

blue



MapReduce: Word Count
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map(key, value):
 for each word w in value:
  EmitIntermediate(w, “1”);

reduce(key, values):
 int result = 0;
 for each v in values:
  results += ParseInt(v);
 Emit(AsString(result));



Word Count execution
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the quick 

brown fox

the fox 

ate the 

mouse

how now 

brown 

cow

Input Map

Map

Map

Map

Reduce

Reduce

OutputReduce



Word Count execution
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the quick 

brown fox

the fox 

ate the 

mouse

how now 

brown 

cow

Input Map

Map

Map

Map

Reduce

Reduce

OutputReduce
Shuffle 

& Sort

quick, 1

ate, 1

mouse, 1

cow, 1

the, 1

brown, 1

fox, 1

how, 1

now, 1

brown, 1
fox, 1

the, 1

the, 1



Word Count execution
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the quick 

brown fox

the fox 

ate the 

mouse

how now 

brown 

cow

Input Map

Map

Map

Map

Reduce

Reduce

OutputReduce
Shuffle 

& Sort

the, 1

brown, 1

fox, 1

how, 1

now, 1

brown, 1

the, 1 fox, 1

the, 1

quick, 1

ate, 1

mouse, 1

cow, 1

brown, 2

fox, 2

how, 1

now, 1

the, 3

ate, 1

cow, 1

mouse, 1

quick, 1



Stragglers
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Map task completion time distribution

#
 t

a
s
k
s



Stragglers

Y. Cheng UVA CS4740 Fall '24 46

Map task completion time distribution

#
 t

a
s
k
s

• Tail execution time means some executors 
(always) finish late (tail latency)

Q: How can MapReduce work around this?
• Hint: its approach to fault-tolerance provides the 

right tool



Resilience against stragglers?

• If a task is going slowly (i.e., straggler):
• Launch second copy of task (backup task) on 

another node

• Take the output of whichever finishes first
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Resilience against stragglers
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Mapper

Mapper

Cluster of machines

Mapper

DataNode

DataNode

DataNode

Job tracker

Input file

Input file

Input file

… ?
(still hasn’t finished)

> 2X avg running time

?



Resilience against stragglers
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Mapper

Mapper

Cluster of machines

Mapper

DataNode

DataNode

DataNode

Job tracker

> 2X avg running time

… ?

< ~avg running time

Reducer takes the 

intermediate result 

from this map task.

Launch a 

second copy of 

the same task

Input file

Input file

Input file

(completes)

(still hasn’t finished)



Would backup tasks cause correctness 
issue in MapReduce jobs?
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Discussion: MapReduce eval (paper)
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