
MapReduce
CS 4740: Cloud Computing

Fall 2024

Lecture 4

Yue Cheng

Some material taken/derived from:
• Princeton COS-418 materials created by Michael Freedman and Wyatt Lloyd.

• MIT 6.824 by Robert Morris, Frans Kaashoek, and Nickolai Zeldovich.

@ 2024 released for use under a CC BY-SA license.

https://creativecommons.org/licenses/by-sa/4.0/

Recap: Parallelism vs. concurrency

Y. Cheng UVA CS4740 Fall '24 2

“Concurrency is about dealing with lots of things at once.

Parallelism is about doing lots of things at once.”

Recap: Shared memory

Y. Cheng UVA CS4740 Fall '24 3

• Shared memory: multiple

processes to share data via

memory

• Applications must locate and

and map shared memory

regions to exchange data

Process

send(msg)

Process

recv(msg)

Shared

Memory

Recap: Shared memory vs. Message passing

Y. Cheng UVA CS4740 Fall '24 4

• Message passing: exchange

data explicitly via message

passing

• Application developers define

protocol and exchanging

format, number of participants,

and each exchange

Process

send(msg)

MSG

Process

recv(msg)

MSG

MSG Msg passing

• Shared memory: multiple

processes to share data via

memory

• Applications must locate and

and map shared memory

regions to exchange data

Process

send(msg)

Process

recv(msg)

Shared

Memory

Recap: Shared memory vs. Message passing

• Easy to program; just
like a single multi-
threaded machines

• Hard to write high-
performance apps:

• Cannot control which
data is local or remote
(remote mem. access
much slower)

• Hard to mask failures

Y. Cheng UVA CS4740 Fall '24 5

Recap: Shared memory vs. Message passing

• Easy to program; just
like a single multi-
threaded machines

• Hard to write high-
performance apps:

• Cannot control which
data is local or remote
(remote mem. access
much slower)

• Hard to mask failures

Y. Cheng UVA CS4740 Fall '24 6

• Message passing: can
write very high-
performance apps

• Hard to write apps:
• Need to manually

decompose the app,
and move data

• Need to manually
handle failures

Shared memory: Pthread

• A POSIX standard (IEEE 1003.1c) API for thread
creation and synchronization

• API specifies behavior of the thread library,
implementation is up to development of the
library

• Common in UNIX (e.g., Linux) OSes

Y. Cheng UVA CS4740 Fall '24 7

Shared memory: Pthread

Y. Cheng UVA CS4740 Fall '24 8

void *myThreadFun(void *vargp) {
 sleep(1);
 printf(“Hello world\n”);
 return NULL;
}

int main() {
 pthread_t thread_id_1, thread_id_2;
 pthread_create(&thread_id_1, NULL, myThreadFun, NULL);
 pthread_create(&thread_id_2, NULL, myThreadFun, NULL);
 pthread_join(thread_id_1, NULL);
 pthread_join(thread_id_2, NULL);
 exit(0);
}

Message passing: MPI

• MPI – Message Passing Interface
• Library standard defined by a committee of vendors,

implementers, and parallel programmers

• Used to create parallel programs based on message
passing

• Portable: one standard, many implementations
• Available on almost all parallel machines in C and

Fortran

• De facto standard platform for the HPC community

Y. Cheng UVA CS4740 Fall '24 9

Message passing: MPI

Y. Cheng UVA CS4740 Fall '24 10

int main(int argc, char **argv) {
 MPI_Init(NULL, NULL);

 // Get the number of processes
 int world_size;
 MPI_Comm_size(MPI_COMM_WORLD, &world_size);

 // Get the rank of the process
 int world_rank;
 MPI_Comm_rank(MPI_COMM_WORLD, *world_rank);

 // Print off a hello world message
 printf(“Hello world from rank %d out of %d processors\n”,
 world_rank, world_size);

 // Finalize the MPI environment
 MPI_Finalize();
}

Message passing: MPI

Y. Cheng UVA CS4740 Fall '24 11

int main(int argc, char **argv) {
 MPI_Init(NULL, NULL);

 // Get the number of processes
 int world_size;
 MPI_Comm_size(MPI_COMM_WORLD, &world_size);

 // Get the rank of the process
 int world_rank;
 MPI_Comm_rank(MPI_COMM_WORLD, *world_rank);

 // Print off a hello world message
 printf(“Hello world from rank %d out of %d processors\n”,
 world_rank, world_size);

 // Finalize the MPI environment
 MPI_Finalize();
}

mpirun –n 4 –f host_file ./mpi_hello_world

MapReduce

12Y. Cheng UVA CS4740 Fall '24

The big picture (motivation)

• Datasets are too big to process using a single
computer

Y. Cheng UVA CS4740 Fall '24 13

The big picture (motivation)

• Datasets are too big to process using a single
computer

• Good parallel processing engines are rare (back
then in the late 90s)

Y. Cheng UVA CS4740 Fall '24 14

The big picture (motivation)

• Datasets are too big to process using a single
computer

• Good parallel processing engines are rare (back
then in the late 90s)

• Want a parallel processing framework that:
• is general (works for many problems)

• is easy to use (no locks, no need to explicitly handle
communication, no race conditions)

• can automatically parallelize tasks
• can automatically handle machine failures

Y. Cheng UVA CS4740 Fall '24 15

Context (Google circa 2000)

• Starting to deal with massive datasets

• But also addicted to cheap, commodity hardware
• Young company, expensive hardware not practical

• Only a few expert programmers can write
distributed programs to process them

• Scale so large jobs can complete despite failures

Y. Cheng UVA CS4740 Fall '24 16

Context (Google circa 2000)

• Starting to deal with massive datasets

• But also addicted to cheap, commodity hardware
• Young company, expensive hardware not practical

• Only a few expert programmers can write distributed
programs to process them

• Scale so large jobs can complete despite failures

• Key question: how can every Google engineer be
imbued with the ability to write parallel, scalable,
distributed, fault-tolerant code?

• Solution: abstract out the redundant parts

• Restriction: relies on job semantics, so restricts
which problems it works for

Y. Cheng UVA CS4740 Fall '24 17

Application: Word Count

Y. Cheng UVA CS4740 Fall '24 18

cat data.txt
 | tr –s ‘[[:punct:][:space:]]’ ‘\n’
 | sort | uniq -c

SELECT count(word), word FROM data
 GROUP BY word

Deal with multiple files?

1. Compute word counts from individual files

Y. Cheng UVA CS4740 Fall '24 19

Deal with multiple files?

1. Compute word counts from individual files

2. Then merge intermediate output

Y. Cheng UVA CS4740 Fall '24 20

Deal with multiple files?

1. Compute word counts from individual files

2. Then merge intermediate output

3. Compute word count on merged outputs

Y. Cheng UVA CS4740 Fall '24 21

What if the data is too big to fit in one
computer?

1. In parallel, send to worker:
• Compute word counts from individual files

• Collect results, wait until all finished

Y. Cheng UVA CS4740 Fall '24 22

What if the data is too big to fit in one
computer?

1. In parallel, send to worker:
• Compute word counts from individual files

• Collect results, wait until all finished

2. Then merge intermediate output

Y. Cheng UVA CS4740 Fall '24 23

What if the data is too big to fit in one
computer?

1. In parallel, send to worker:
• Compute word counts from individual files

• Collect results, wait until all finished

2. Then merge intermediate output

3. Compute word count on merged intermediates

Y. Cheng UVA CS4740 Fall '24 24

MapReduce: Programming interface

• map(k1, v1) → list(k2, v2)
• Apply function to (k1, v1) pair and produce set of

intermediate pairs (k2, v2)

• reduce(k2, list(v2)) → list(k3, v3)
• Apply aggregation (reduce) function to values

• Output results

Y. Cheng UVA CS4740 Fall '24 25

MapReduce data flows

Y. Cheng UVA CS4740 Fall '24 26

MapReduce visualization

Y. Cheng UVA CS4740 Fall '24 27

input.csv (in GFS)
color, shape, size
red, circle, 3
red, square, 5
blue, oval, 1
green, square, 3

How to count the number

of occurrences for each

unique color?

Map

Y. Cheng UVA CS4740 Fall '24 28

input.csv (in GFS)
color, shape, size
red, circle, 3
red, square, 5
blue, oval, 1
green, square, 3

def map(key, value):
 emit(value.color, value)

Map will be called 4 times (once for

each line of the input file).

How to count the number

of occurrences for each

unique color?

Map

Y. Cheng UVA CS4740 Fall '24 29

input.csv (in GFS)
color, shape, size
red, circle, 3
red, square, 5
blue, oval, 1
green, square, 3

How to count the number

of occurrences for each

unique color?

def map(key, value):
 emit(value.color, value)

key value
red red, circle, 3

red red, circle, 3

key2 value2

1 red, circle, 3

key1 value1

Map

Y. Cheng UVA CS4740 Fall '24 30

input.csv (in GFS)
color, shape, size
red, circle, 3
red, square, 5
blue, oval, 1
green, square, 3

How to count the number

of occurrences for each

unique color?

def map(key, value):
 emit(value.color, value)

key value
red red, circle, 3
red red, square, 5

red red, square, 5

key2 value2

2 red, square, 5

key1 value1

Map

Y. Cheng UVA CS4740 Fall '24 31

input.csv (in GFS)
color, shape, size
red, circle, 3
red, square, 5
blue, oval, 1
green, square, 3

How to count the number

of occurrences for each

unique color?

def map(key, value):
 emit(value.color, value)

key value
red red, circle, 3
red red, square, 5
blue blue, oval, 1

blue blue, oval, 1

key2 value2

3 blue, oval, 1

key1 value1

Map

Y. Cheng UVA CS4740 Fall '24 32

input.csv (in GFS)
color, shape, size
red, circle, 3
red, square, 5
blue, oval, 1
green, square, 3

How to count the number

of occurrences for each

unique color?

def map(key, value):
 emit(value.color, value)

key value
red red, circle, 3
red red, square, 5
blue blue, oval, 1
green green, square, 3

green green, square, 3

key2 value2

4 green, square, 3

key1 value1

Reduce

Y. Cheng UVA CS4740 Fall '24 33

input.csv (in GFS)
color, shape, size
red, circle, 3
red, square, 5
blue, oval, 1
green, square, 3

def map(key, value):
 emit(value.color, value)

key value
blue blue, oval, 1
green green, square, 3
red red, circle, 3
red red, square, 5

Intermediate data is grouped

and sorted by key.

How to count the number

of occurrences for each

unique color?

Reduce

Y. Cheng UVA CS4740 Fall '24 34

input.csv (in GFS)
color, shape, size
red, circle, 3
red, square, 5
blue, oval, 1
green, square, 3

def map(key, value):
 emit(value.color, value)

def reduce(key, values):
 count = 0
 for row in values:
 count = count + 1
 emit(key, count)

key value
blue blue, oval, 1
green green, square, 3
red red, circle, 3
red red, square, 5

Intermediate data is grouped

and sorted by key.

Reduce will be called 3 times (once

for each group). The call could

happen in one reduce task (or be

split over many).

How to count the number

of occurrences for each

unique color?

Reduce

Y. Cheng UVA CS4740 Fall '24 35

input.csv (in GFS)
color, shape, size
red, circle, 3
red, square, 5
blue, oval, 1
green, square, 3

def reduce(key, values):
 count = 0
 for row in values:
 count = count + 1
 emit(key, count)

key2 value2
blue blue, oval, 1
green green, square, 3
red red, circle, 3
red red, square, 5

key3 value3
blue 1

def map(key, value):
 emit(value.color, value)

Intermediate data is grouped

and sorted by key.

How to count the number

of occurrences for each

unique color?

Reduce

Y. Cheng UVA CS4740 Fall '24 36

input.csv (in GFS)
color, shape, size
red, circle, 3
red, square, 5
blue, oval, 1
green, square, 3

def reduce(key, values):
 count = 0
 for row in values:
 count = count + 1
 emit(key, count)

key2 value2
blue blue, oval, 1
green green, square, 3
red red, circle, 3
red red, square, 5

key3 value3
blue 1
green 1

def map(key, value):
 emit(value.color, value)

Intermediate data is grouped

and sorted by key.

How to count the number

of occurrences for each

unique color?

Reduce

Y. Cheng UVA CS4740 Fall '24 37

input.csv (in GFS)
color, shape, size
red, circle, 3
red, square, 5
blue, oval, 1
green, square, 3

def reduce(key, values):
 count = 0
 for row in values:
 count = count + 1
 emit(key, count)

key2 value2
blue blue, oval, 1
green green, square, 3
red red, circle, 3
red red, square, 5

key3 value3
blue 1
green 1
red 2

def map(key, value):
 emit(value.color, value)

Intermediate data is grouped

and sorted by key.

How to count the number

of occurrences for each

unique color?

Multiple reducers (for big intermediate data)

Y. Cheng UVA CS4740 Fall '24 38

input.csv (in GFS)
color, shape, size
red, circle, 3
red, square, 5
green, square, 4
blue, oval, 1
green, square, 3
red, oval, 8

Mapper

Mapper

Reducer

Each reduce task produces one output file.

A reduce task might take multiple keys.

All intermediate rows with the same key go to the

same reducer.

intermediate file

Reducer

Cluster of machines

Blk1

Blk2

red

blue

green

intermediate file

map phase

green

red

Map emits intermediate files by

groups.

Blk1

Blk2

Multiple reducers (for big intermediate data)

Y. Cheng UVA CS4740 Fall '24 39

input.csv (in GFS)
color, shape, size
red, circle, 3
red, square, 5
green, square, 4
blue, oval, 1
green, square, 3
red, oval, 8

Mapper

Mapper

Reducer

Each reduce task produces one output file.

A reduce task might take multiple keys.

All intermediate rows with the same key go to the

same reducer.

intermediate file

Reducer

Cluster of machines

Blk1

Blk2

red

blue

green

intermediate file

green

red

shuffle phase

Reducer collects all intermediate

files of its assigned keys (groups).

blue

green

green

red

red

Multiple reducers (for big intermediate data)

Y. Cheng UVA CS4740 Fall '24 40

input.csv (in GFS)
color, shape, size
red, circle, 3
red, square, 5
green, square, 4
blue, oval, 1
green, square, 3
red, oval, 8

Mapper

Mapper

Reducer

Each reduce task produces one output file.

A reduce task might take multiple keys.

All intermediate rows with the same key go to the

same reducer.

intermediate file

Reducer

Cluster of machines

Blk1

Blk2

red

blue

green

intermediate file

green

red

output file 1

output file 2

reduce phase

Reducer dumps final results to GFS.

green

red

blue

MapReduce: Word Count

Y. Cheng UVA CS4740 Fall '24 41

map(key, value):
 for each word w in value:
 EmitIntermediate(w, “1”);

reduce(key, values):
 int result = 0;
 for each v in values:
 results += ParseInt(v);
 Emit(AsString(result));

Word Count execution

Y. Cheng UVA CS4740 Fall '24 42

the quick

brown fox

the fox

ate the

mouse

how now

brown

cow

Input Map

Map

Map

Map

Reduce

Reduce

OutputReduce

Word Count execution

Y. Cheng UVA CS4740 Fall '24 43

the quick

brown fox

the fox

ate the

mouse

how now

brown

cow

Input Map

Map

Map

Map

Reduce

Reduce

OutputReduce
Shuffle

& Sort

quick, 1

ate, 1

mouse, 1

cow, 1

the, 1

brown, 1

fox, 1

how, 1

now, 1

brown, 1
fox, 1

the, 1

the, 1

Word Count execution

Y. Cheng UVA CS4740 Fall '24 44

the quick

brown fox

the fox

ate the

mouse

how now

brown

cow

Input Map

Map

Map

Map

Reduce

Reduce

OutputReduce
Shuffle

& Sort

the, 1

brown, 1

fox, 1

how, 1

now, 1

brown, 1

the, 1 fox, 1

the, 1

quick, 1

ate, 1

mouse, 1

cow, 1

brown, 2

fox, 2

how, 1

now, 1

the, 3

ate, 1

cow, 1

mouse, 1

quick, 1

Stragglers

Y. Cheng UVA CS4740 Fall '24 45

Map task completion time distribution

#
 t

a
s
k
s

Stragglers

Y. Cheng UVA CS4740 Fall '24 46

Map task completion time distribution

#
 t

a
s
k
s

• Tail execution time means some executors
(always) finish late (tail latency)

Q: How can MapReduce work around this?
• Hint: its approach to fault-tolerance provides the

right tool

Resilience against stragglers?

• If a task is going slowly (i.e., straggler):
• Launch second copy of task (backup task) on

another node

• Take the output of whichever finishes first

Y. Cheng UVA CS4740 Fall '24 47

Resilience against stragglers

Y. Cheng UVA CS4740 Fall '24 48

Mapper

Mapper

Cluster of machines

Mapper

DataNode

DataNode

DataNode

Job tracker

Input file

Input file

Input file

… ?
(still hasn’t finished)

> 2X avg running time

?

Resilience against stragglers

Y. Cheng UVA CS4740 Fall '24 49

Mapper

Mapper

Cluster of machines

Mapper

DataNode

DataNode

DataNode

Job tracker

> 2X avg running time

… ?

< ~avg running time

Reducer takes the

intermediate result

from this map task.

Launch a

second copy of

the same task

Input file

Input file

Input file

(completes)

(still hasn’t finished)

Would backup tasks cause correctness
issue in MapReduce jobs?

Y. Cheng UVA CS4740 Fall '24 50

Discussion: MapReduce eval (paper)

Y. Cheng UVA CS4740 Fall '24 51

	Slide 1: MapReduce
	Slide 2: Recap: Parallelism vs. concurrency
	Slide 3: Recap: Shared memory
	Slide 4: Recap: Shared memory vs. Message passing
	Slide 5: Recap: Shared memory vs. Message passing
	Slide 6: Recap: Shared memory vs. Message passing
	Slide 7: Shared memory: Pthread
	Slide 8: Shared memory: Pthread
	Slide 9: Message passing: MPI
	Slide 10: Message passing: MPI
	Slide 11: Message passing: MPI
	Slide 12: MapReduce
	Slide 13: The big picture (motivation)
	Slide 14: The big picture (motivation)
	Slide 15: The big picture (motivation)
	Slide 16: Context (Google circa 2000)
	Slide 17: Context (Google circa 2000)
	Slide 18: Application: Word Count
	Slide 19: Deal with multiple files?
	Slide 20: Deal with multiple files?
	Slide 21: Deal with multiple files?
	Slide 22: What if the data is too big to fit in one computer?
	Slide 23: What if the data is too big to fit in one computer?
	Slide 24: What if the data is too big to fit in one computer?
	Slide 25: MapReduce: Programming interface
	Slide 26: MapReduce data flows
	Slide 27: MapReduce visualization
	Slide 28: Map
	Slide 29: Map
	Slide 30: Map
	Slide 31: Map
	Slide 32: Map
	Slide 33: Reduce
	Slide 34: Reduce
	Slide 35: Reduce
	Slide 36: Reduce
	Slide 37: Reduce
	Slide 38: Multiple reducers (for big intermediate data)
	Slide 39: Multiple reducers (for big intermediate data)
	Slide 40: Multiple reducers (for big intermediate data)
	Slide 41: MapReduce: Word Count
	Slide 42: Word Count execution
	Slide 43: Word Count execution
	Slide 44: Word Count execution
	Slide 45: Stragglers
	Slide 46: Stragglers
	Slide 47: Resilience against stragglers?
	Slide 48: Resilience against stragglers
	Slide 49: Resilience against stragglers
	Slide 50: Would backup tasks cause correctness issue in MapReduce jobs?
	Slide 51: Discussion: MapReduce eval (paper)

