Fundamentals:

Parallelism & Concurrency

CS 4740: Cloud Computing
Fall 2024
Lecture 3

Yue Cheng

UNIVERSITY
JVIRGINIA

@ 2024 released for use under a CC BY-SA license.

https://creativecommons.org/licenses/by-sa/4.0/

Parallelism & Concurrency

* Abstraction: Process vs. thread

» Concurrency in Go

Y. Cheng UVA CS4740 Fall '24

What is a process?

What is a process?

» Programs are code (static entity)
* Processes are running programs

 Java analogy
e class -> “program”
 object -> “process”

Y. Cheng UVA CS4740 Fall '24

What is in a process?

Process

What things change as a program runs?

Y. Cheng UVA CS4740 Fall '24

What is in a process?

Process

memory

Code
Heap

Stack

What things change as a program runs?

Y. Cheng UVA CS4740 Fall '24

What is in a process?

Process

registers memory

EAX Code
PC Heap
SP

BP Stack

What things change as a program runs?

Y. Cheng UVA CS4740 Fall '24

What is in a process?

Process

registers memory

EAX Code
PC Heap
SP

BP Stack

/O
FDs

What things change as a program runs?

Y. Cheng UVA CS4740 Fall '24

Threads

Why thread abstraction?

Process abstraction: Challenge 1

* Inter-process communication (IPC)

Inter-process communication

* Mechanism for processes to communicate and
to synchronize their actions

* Two models
« Communication through a shared memory region
« Communication through message passing

Y. Cheng UVA CS4740 Fall '24 12

Communication models

process A M process A |
shared —
process B M process B g
1
kernel M kernel
(a) (b)
Message Passing Shared Memory

Y. Cheng UVA CS4740 Fall '24

Communication through message passing

« Message passing can be either blocking
(synchronous) or non-blocking (asynchronous)

 Blocking Send: The sending process is blocked until the
message Is received by the recelving process or by the
mailbox

* Non-blocking Send: The sending process resumes the
operation as soon as the message Is received by the
kernel

* Blocking Receive: The receiver blocks until the message
IS available

 Non-blocking Receive: “Receive” operation does not
block; it either returns a valid message or a default value
(null) to indicate a non-existing message

Process abstraction: Challenge 1

* Inter-process communication (IPC)
« Cumbersome programming!
« Copying overheads (inefficient communication)

« Expensive context switching (why expensive?)

* As per empirical measurement, the average process-level
CFS (Completely Fair Scheduler: Linux’s current default
scheduler) context-switch overhead as ~7481.4ns

Y. Cheng UVA CS4740 Fall '24 15

Process abstraction: Challenge 2

* Inter-process communication (IPC)

« CPU utilization

Y. Cheng UVA CS4740 Fall '24

16

Disk:

(a) Not interleaved

Y. Cheng UVA CS4740 Fall '24 17

Disk:

Y. Cheng UVA CS4740 Fall '24 18

(a) Not interleaved

(b) Interleaved

Disk:

(a) Not interleaved

>
................................... What if there is Only one process?
(b) Interleaved
Disk:
>

Y. Cheng UVA CS4740 Fall '24 19

Moore’s law: # transistors doubles every ~2 years

Moore’s Law — The number of transistors on integrated circuit chips (1971-2016)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.

OurWorld
in Data

This advancement is important as other aspects of technological progress — such as processing speed or the price of electronic products — are

strongly linked to Moore's law.

20,000,000,000 —
10,000,000,000 PP AT AR SPARC M7
i O il a.(,\\ ©22-core Xoon Broadwel E5
5,000,000,000 Sicondecnn® $ '“.:i'; e
V4 s M I B-core Xeon N(V'ak‘m f;iﬁﬂlr‘ Appie ASX un core ARMEGS “mabde SoC*)
O O re S a W I S e n I n g [] Ste-core Xoon "‘n ‘ ‘ ¢ (t’gf;‘?un'n 'H\ “?l E\ orn 17 Broadwel-L)
Dua-core Ransam ’ * . Q .V\JN"(‘&Y" « G G T2 Coone (7 Sytakn K
gbum O Presior ‘ Juad-core « GPU Core I7 Maswel
1,000,000,000 g - O rccia A7 (s oore ARNEA "mobie §
‘40 I7 IO
sm.OOO'mo Rany m.‘"mom(@/’ C 10 quac-coce 2M L3
Portium O Sovthont Dw Comroe
Ranum 2 MCKerday »x A& .Cuu 2 Dud Woltdale 3M
Porsum 4 Prescot-2 Sore 2 Dud Aler
" o Pentiumn 4 l.(:.uijr:j.‘lq
100.000.000 AVD K5 QO .“\vr um 4 Prescon
Portum 4 NOMhwool -
= 50,000,000 Parsum 4 Wiksmeted @, 0, D00 o
ontivem IN Tuatatn
— | Pertum # Mobde Dyor QARM Conex-Ad
Q AND KT ?"n‘t‘u’h N Copparmirs 2 oing
S AMD K61
o) AMD K8 Sum X)
S 10,000,000 R ¥
7 5,000,000 T giliwvath
(CO Pore mn. f-.‘.$
.‘: SAS110
Irted 20484
1,000,000 * Suxo
T) Explor 3200
500,000 > A TR oo
il 20386, Inm_. Qs
Wotorcta 62020 @
° Sesrm
100,000 o3 ket 30286 i \
VS 4T0AN
50.“)0 Qimet 00100
el 0869 © ntel BOSS Onan 2 ?)
od t(Qa1 cE
L"f ol r.':;'.tl‘!f_
10.000 T™MS1000 2dog 280 23 NAOT6
ROCA 4 &CL’ \ b AR
5000 g g P
“l’.&: ols ga0g | ooy
Iobed 4004
1,000
PP LIS T FLFPFTSTE S ®
ST FFFFFIITITIEFFTTITFTES S S

Year of introduction
Data source: Wikipedia (Mtps.//en wikipedia. org/wikiTranssstor_count)
The data visuakzation & avallable at OurWorldinData.org, There you find more visualizations and research on this topic

Licensed under CC-BY-SA by the author Max Roser

CPU trends - What Moore’s Law implies...

 The future
« Same CPU speed
« More cores (to scale-up or scale-out)

» Faster programs => concurrent/parallel execution

» Goal: Write applications that fully utilize many CPU
cores...

Goal

» Write applications that fully utilize many CPUs...

Strategy 1

 Build applications from many communicating
pProcesses

* Like Chrome (process per tab)
« Communicate via pipe () or similar

* Pros/cons?

Strategy 1

 Build applications from many communicating
Processes
* Like Chrome (process per tab)
« Communicate via pipe () or similar

* Pros/cons”? — That we've talked about in previous slides

* Pros:
« Don't need new abstractions!
 Better (fault) isolation?

« Cons:
« Cumbersome programming using IPC
« Copying overheads
« Expensive context switching

Y. Cheng UVA CS4740 Fall '24

24

Strategy 2

 New abstraction: the thread

Y. Cheng UVA CS4740 Fall '24

25

Introducing thread abstraction

 New abstraction: the thread

* Threads are just like processes, but threads
share the address space

Y. Cheng UVA CS4740 Fall '24

26

Thread

* A process, as defined so far, has only one thread
of execution

* |dea: Allow multiple threads of concurrently
running execution within the same process
environment, to a large degree independent of
each other

« Each thread may be executing different code at the
same time

Y. Cheng UVA CS4740 Fall '24 27

Process vs. thread

» Multiple threads within a process will share
* The address space
» Open files (file descriptors)
« Other resources

 Thread

« Efficient and fast resource sharing

« Efficient utilization of many CPU cores with only one
Process

 Less context switching overheads

CPU 1

Running
thread 1

CPU 2

Running
thread 2

Y. Cheng

UVA CS4740 Fall '24

29

CPU 1

Running
thread 1

CPU 2

Running
thread 2

Y. Cheng

UVA CS4740 Fall '24

30

CPU 1

CPU 2

Running
thread 1

Running
thread 2

Y. Cheng

Virtual mem

UVA CS4740 Fall '24

31

CPU 1

CPU 2

Running
thread 1

Running
thread 2

Each thread may be executing
different code at the same time

Y. Cheng

Virtual mem

UVA CS4740 Fall '24

32

CPU 1

CPU 2

Running
thread 1

Running
thread 2

Y. Cheng

Virtual mem

UVA CS4740 Fall '24

33

CPU 1

Running
thread 1

CPU 2

Running
thread 2

Y. Cheng

Virtual mem

UVA CS4740 Fall '24

34

CPU 1

Running
thread 1

CPU 2

Running
thread 2

STACK 1 - STACK 2

Y. Cheng

Virtual mem

UVA CS4740 Fall '24

35

Thread executing different functions need different stacks

CPU 1

Running
thread 1

CPU 2

Running
thread 2

STACK 1 - STACK 2

Y. Cheng

Virtual mem

UVA CS4740 Fall '24

36

Parallelism & Concurrency

o Abstraction: Process vs. thread

« Concurrency in Go

Y. Cheng UVA CS4740 Fall '24

37

Go keywords

break
default
func

case
defer

g0

interface map

select

struct

chan
else
goto
package
switch

const
fallthrough
if

range

type

This lecture covers go, chan, select

break
default
func

case
defer

g0

interface map

select

struct

chan
else
goto
package
switch

const
fallthrough
if

range

type

continue
for
import
return
var

continue
for
import
return
var

Concurrency

Concurrency vs. parallelism

“Concurrency is about dealing with lots of things at
once. Parallelism is about doing lots of things at once.’

-- Rob Pike: Concurrency is not Parallelism

« Concurrency is possible with even a single CPU core
» Parallelism is not

« Backbone of concurrency in Go:
» (Goroutines
* Channels
 select construct

Y. Cheng UVA CS4740 Fall '24 40

Concurrency vs. parallelism

Concurrency

CPUO

Time

Thread 0

Context
switch

Thread 1

Context
switch

Thread 0

Y. Cheng

Parallelism
CPUO CPU 1
Thread 0 Thread 1

UVA CS4740 Fall '24

Concurrency & Parallelism

CPUO CPU 1
Thread 0
Thread 1
Context
switch
Context
switch
Thread 3
e Thread 0
Context
Context switch
switch
Thread 0 Thread 1

41

Goroutines

Goroutines

» Core concepts in Go

 Basically, lightweight threads

« Managed by Go’s runtime

 Limited context switching and interaction with the OS

» (Goroutine scheduler is able to better optimize the workload
» Generally cheap to spawn

* Initial stack size is smaller compared to POSIX threads (8KB
vs. 8MB)

« But do not get the false sense you can spawn infinite
number of them, it is still a resource

» Up to tens/hundreds of thousands are fine
* Internally multiplexed across on kernel thread pool (M:N)

Goroutines

package main

import (
"fmt"
"time"
)

func print(s string) {
for range 5 {
fmt.Printf("Hello from %s!\n", s)
time.Sleep(500 * time.Millisecond)

¥

func main() {
go print("first")
go print("second")
print("main"

Runtime

Runtime

 Just a library
« Same as the 1ibc library for C

o Statically linked with your program upon
compilation

func main() {
fmt.Printf("Logical CPUs (\"P\"s): %d\n", runtime.NumCPU())
runtime.GC() // Invokes garbage collector
fmt.Printf("GOMAXPROCS: %d\n", runtime.GOMAXPROCS(8))

}
Go’s runtime package

https://pkg.go.dev/runtime

Scheduler

* Runs goroutines
e Pauses and resumes them

* Preemptive since Go 1.14

« Goroutines are preempted after 10ms
¢ Sysmon

» Work-stealing

» Coordinates system calls, I/O operations,
runtime tasks, etc.

Ardan Labs: Scheduling in Go

Y. Cheng UVA CS4740 Fall '24

47

https://github.com/golang/go/blob/go1.19.1/src/runtime/proc.go
https://www.ardanlabs.com/blog/2018/08/scheduling-in-go-part2.html

Goroutine scheduling states

* Runnable
« Can be run but is not assigned to a CPU core

* Executing
 Currently running
* \Waiting
« System calls

« Synchronous calls
* |/O operations

Goroutine scheduling illustration

P (Processor): Logical processor
M (Machine): OS thread

 Initially, each P gets assigned one M
* More can be spawned by the runtime

G (Goroutine): Goroutine

(OF]
Threads

Processors

Local
queues

Global
queue

MO

G

<po

Waiting Executing

Runnable

M6

Goroutine scheduling algorithm

runtime.schedule() {
// only 1/61 of the time, check the global runnable queue for a G.
// if not found, check the local queue.
// if not found,

// try to steal from other Ps.
// if not, check the global runnable queue.
// if not found, poll network.

Jaana Dogan: Scheduler (CC BY SA 4.0)

https://rakyll.org/scheduler/

Channels

Channels

» Way to transfer data between Goroutines
» Data type is a part of the channel type
 Buffered and unbuffered

» Channels can be created only with make

ch := make(chan int)

* New operator <- used to send and receive
messages from channels

value := <-ch // read
ch<-value // write

Unbuffered channels

Note that this example is racy

package main
import "fmt"

func readAndPrint(c <-chan int) { // c is read-only channel
value := <-c
fmt.Println("Received”, value)

¥

func main() {
c := make(chan int)
fmt.Println("Channel length:", len(c))
fmt.Println("Channel capacity:", cap(c))

go readAndPrint(c)
c <- 5

Unbuffered channels

unblocked blocked

Writer Unbuffered channel Reader

G —

c<-1
Waits until
someone reads :

Waits until

; someone writes
GO :

Y. Cheng UVA CS4740 Fall '24

Channel deadlocks

Unbuffered channels do block
 Buffered channels also block when full or empty
« Go kindly detects deadlocks

package main
import "fmt"

func readAndPrint(c <-chan int) {
value := <-c
fmt.Println("Received", value)

}

func main() {
c := make(chan int)
c <- 5 // blocks
go readAndPrint(c)

Goroutine synchronization

Unbuffered channels can be used to synchronize
goroutines

func process(done chan<- struct{}) { // done is write-only channel
fmt.Println("Processing...")
time.Sleep(2 * time.Second)
fmt.Println("Finished!")
done <- struct{}{}

}

func main() {
done := make(chan struct{})
go process(done)

fmt.Println("Waiting for processing...")
<-done // Blocks until "process finishes
fmt.Println("Continuing in main")

Buffered channels

The size of the channel is provided as the second
argument to make

func readAndPrint(c <-chan int) {
value := <-c
fmt.Println("Received"”, value)

}

func main() {
c := make(chan int, 1)
fmt.Println("Channel length:", len(c))
fmt.Println("Channel capacity:", cap(c))

c <- 5 // note that now it does not block
fmt.Println("Channel length:", len(c))
fmt.Println("Channel capacity:", cap(c))

go readAndPrint(c)
time.Sleep(time.Second) // need to wait

Buffered channels

Writer

Y. Cheng

<1

returns right awéy

< 2

returns right away

U

Buffered channel Reader

make(chan int, 2)

UVA CS4740 Fall '24

58

Buffered channels

Writer

GO

Buffered channel Reader
make(chan int, 2)
returns rjght aw’a;);
returns rlght away
Yy
—c<-3 2 1 / G1
L
Blocks as .
channel is full - < C
S unblocks -~~~ -~ {) 3 2 >/-|E --------- » Gi

59

Select

Select

» Syntanctically similar to the switch statement

* Helps us manipulate multiple channels at the
same time
* You can read on/write to numerous channels at once
* Prevents reads/writes that would otherwise block

Select

* The select statement always chooses a case that does
not block

« Both of the channels in the following example are ready
to be read from
* Therefore, the select chooses one of them at random

func main() {
chanA := make(chan int, 1)
chanB := make(chan int, 1)
chanA <- 0
chanB <- ©

select {

case <-chanA:
fmt.Println("Read from A")

case <-chanB:
fmt.Println("Read from B")

}
fmt.Println("All done")

Select

 The same works for writes
* Neither channels is full
 Writing to them would not block

func main() {

chanA := make(chan int, 1)
chanB := make(chan int, 1)
select {

case chanA <- 0:
fmt.Println("Wrote to A")

case chanB <- 1:
fmt.Println("Wrote to B")

}
fmt.Println("All done")

Select

* The chanB would block on read
* The select therefore always chooses the chanA

func main() {

chanA := make(chan int, 1)
chanB := make(chan int, 1)
chanA <- 0

select {

case <-chanA:
fmt.Println("Read from A")

case <-chanB:
fmt.Println("Read from B")

}
fmt.Println("All done") }

Select default

e All channel reads block
* select would panic

» \We can leverage the default case

* The default gets selected only when all the cases
would block

func main() {
chanA := make(chan int, 1)
chanB := make(chan int, 1)

select {

case <-chanA:
fmt.Println("Read from A")

case <-chanB:
fmt.Println("Read from B")

default:
fmt.Println("Fallback")

}
fmt.Println("All done")

Next Monday: MapReduce

	Slide 1: Fundamentals: Parallelism & Concurrency
	Slide 2: Parallelism & Concurrency
	Slide 3: What is a process?
	Slide 4: What is a process?
	Slide 5: What is in a process?
	Slide 6: What is in a process?
	Slide 7: What is in a process?
	Slide 8: What is in a process?
	Slide 9: Threads
	Slide 10: Why thread abstraction?
	Slide 11: Process abstraction: Challenge 1
	Slide 12: Inter-process communication
	Slide 13: Communication models
	Slide 14: Communication through message passing
	Slide 15: Process abstraction: Challenge 1
	Slide 16: Process abstraction: Challenge 2
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: CPU trends – What Moore’s Law implies…
	Slide 22: Goal
	Slide 23: Strategy 1
	Slide 24: Strategy 1
	Slide 25: Strategy 2
	Slide 26: Introducing thread abstraction
	Slide 27: Thread
	Slide 28: Process vs. thread
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37: Parallelism & Concurrency
	Slide 38: Go keywords
	Slide 39: Concurrency
	Slide 40: Concurrency vs. parallelism
	Slide 41: Concurrency vs. parallelism
	Slide 42: Goroutines
	Slide 43: Goroutines
	Slide 44: Goroutines
	Slide 45: Runtime
	Slide 46: Runtime
	Slide 47: Scheduler
	Slide 48: Goroutine scheduling states
	Slide 49: Goroutine scheduling illustration
	Slide 50: Goroutine scheduling algorithm
	Slide 51: Channels
	Slide 52: Channels
	Slide 53: Unbuffered channels
	Slide 54: Unbuffered channels
	Slide 55: Channel deadlocks
	Slide 56: Goroutine synchronization
	Slide 57: Buffered channels
	Slide 58: Buffered channels
	Slide 59: Buffered channels
	Slide 60: Select
	Slide 61: Select
	Slide 62: Select
	Slide 63: Select
	Slide 64: Select
	Slide 65: Select default
	Slide 66: Next Monday: MapReduce

