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Parallelism & Concurrency

• Abstraction: Process vs. thread

• Concurrency in Go

2Y. Cheng UVA CS4740 Fall '24



What is a process?
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What is a process?

• Programs are code (static entity)

• Processes are running programs

• Java analogy
• class -> “program”

• object -> “process”
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What is in a process?
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Process

What things change as a program runs?
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What is in a process?
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What is in a process?
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What is in a process?
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Process

What things change as a program runs?

Code
Heap

…
Stack

memory

EAX
PC
SP
BP

registers

FDs
I/O
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Threads
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Why thread abstraction?
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Process abstraction: Challenge 1

• Inter-process communication (IPC)
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Inter-process communication

• Mechanism for processes to communicate and 
to synchronize their actions

• Two models
• Communication through a shared memory region

• Communication through message passing
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Communication models

Y. Cheng UVA CS4740 Fall '24 13

Message Passing Shared Memory



Communication through message passing
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• Message passing can be either blocking 
(synchronous) or non-blocking (asynchronous)
• Blocking Send: The sending process is blocked until the 

message is received by the receiving process or by the 
mailbox

• Non-blocking Send: The sending process resumes the 
operation as soon as the message is received by the 
kernel

• Blocking Receive: The receiver blocks until the message 
is available

• Non-blocking Receive: “Receive” operation does not 
block; it either returns a valid message or a default value 
(null) to indicate a non-existing message
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Process abstraction: Challenge 1

• Inter-process communication (IPC)
• Cumbersome programming!

• Copying overheads (inefficient communication)

• Expensive context switching (why expensive?)
• As per empirical measurement, the average process-level 

CFS (Completely Fair Scheduler: Linux’s current default 
scheduler) context-switch overhead as ~7481.4ns
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Process abstraction: Challenge 2

• Inter-process communication (IPC)
• Cumbersome programming!

• Copying overheads (inefficient communication)

• Expensive context switching (why expensive?)

• CPU utilization
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What if there is only one process?
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Moore’s law is ending!

Moore’s law: # transistors doubles every ~2 years



CPU trends – What Moore’s Law implies…

• The future
• Same CPU speed

• More cores (to scale-up or scale-out)

• Faster programs => concurrent/parallel execution

• Goal: Write applications that fully utilize many CPU 
cores… 
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Goal

• Write applications that fully utilize many CPUs…
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Strategy 1

• Build applications from many communicating 
processes
• Like Chrome (process per tab)

• Communicate via pipe() or similar

• Pros/cons?
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Strategy 1

• Build applications from many communicating 
processes
• Like Chrome (process per tab)
• Communicate via pipe() or similar

• Pros/cons? – That we’ve talked about in previous slides

• Pros: 
• Don’t need new abstractions!

• Better (fault) isolation?

• Cons: 
• Cumbersome programming using IPC

• Copying overheads

• Expensive context switching
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Strategy 2

• New abstraction: the thread
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Introducing thread abstraction

• New abstraction: the thread

• Threads are just like processes, but threads 
share the address space
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Thread

• A process, as defined so far, has only one thread 
of execution

• Idea: Allow multiple threads of concurrently 
running execution within the same process 
environment, to a large degree independent of 
each other
• Each thread may be executing different code at the 

same time
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Process vs. thread

• Multiple threads within a process will share
• The address space

• Open files (file descriptors)

• Other resources

• Thread
• Efficient and fast resource sharing

• Efficient utilization of many CPU cores with only one 
process

• Less context switching overheads
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Running 
thread 1

CPU 1

Running 
thread 2

CPU 2

PC PC

CODE HEAP

Each thread may be executing 
different code at the same time

Virtual mem
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Running 
thread 1

CPU 1

Running 
thread 2

CPU 2

PC PC

CODE HEAP

SP SP

STACK 1 STACK 2

Thread executing different functions need different stacks

Virtual mem



Parallelism & Concurrency

• Abstraction: Process vs. thread

• Concurrency in Go
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Go keywords
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break     case     chan     const        continue
default   defer    else     fallthrough  for
func      go       goto     if           import
interface map      package  range        return
select    struct   switch   type         var

break     case     chan     const        continue
default   defer    else     fallthrough  for
func      go       goto     if           import
interface map      package  range        return
select    struct   switch   type         var

This lecture covers go, chan, select



Concurrency

Y. Cheng UVA CS4740 Fall '24 39



Concurrency vs. parallelism

“Concurrency is about dealing with lots of things at 
once. Parallelism is about doing lots of things at once.”

-- Rob Pike: Concurrency is not Parallelism

• Concurrency is possible with even a single CPU core
• Parallelism is not

• Backbone of concurrency in Go:
• Goroutines

• Channels
• select construct
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Concurrency vs. parallelism
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Goroutines
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Goroutines

• Core concepts in Go

• Basically, lightweight threads
• Managed by Go’s runtime

• Limited context switching and interaction with the OS

• Goroutine scheduler is able to better optimize the workload

• Generally cheap to spawn
• Initial stack size is smaller compared to POSIX threads (8KB 

vs. 8MB)

• But do not get the false sense you can spawn infinite 
number of them, it is still a resource

• Up to tens/hundreds of thousands are fine

• Internally multiplexed across on kernel thread pool (M:N)
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Goroutines
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package main 

import ( 
    "fmt" 
    "time" 
) 

func print(s string) { 
    for range 5 { 
        fmt.Printf("Hello from %s!\n", s) 
        time.Sleep(500 * time.Millisecond) 
    } 
} 

func main() { 
    go print("first") 
    go print("second") 
    print("main") 
} 



Runtime
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Runtime

• Just a library
• Same as the libc library for C

• Statically linked with your program upon 
compilation

Go’s runtime package
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func main() { 
    fmt.Printf("Logical CPUs (\"P\"s): %d\n", runtime.NumCPU()) 
    runtime.GC() // Invokes garbage collector    
    fmt.Printf("GOMAXPROCS: %d\n", runtime.GOMAXPROCS(8)) 
} 

https://pkg.go.dev/runtime


Scheduler

• Runs goroutines

• Pauses and resumes them

• Preemptive since Go 1.14
• Goroutines are preempted after 10ms

• Sysmon 

• Work-stealing

• Coordinates system calls, I/O operations, 
runtime tasks, etc. 

Ardan Labs: Scheduling in Go
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https://github.com/golang/go/blob/go1.19.1/src/runtime/proc.go
https://www.ardanlabs.com/blog/2018/08/scheduling-in-go-part2.html


Goroutine scheduling states 

• Runnable
• Can be run but is not assigned to a CPU core

• Executing
• Currently running

• Waiting
• System calls

• Synchronous calls 

• I/O operations
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Goroutine scheduling illustration
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P (Processor): Logical processor

M (Machine): OS thread

• Initially, each P gets assigned one M

• More can be spawned by the runtime

G (Goroutine): Goroutine



Goroutine scheduling algorithm
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runtime.schedule() { 
    // only 1/61 of the time, check the global runnable queue for a G. 
    // if not found, check the local queue. 
    // if not found, 
    //     try to steal from other Ps. 
    //     if not, check the global runnable queue. 
    //     if not found, poll network. 
}

Jaana Dogan: Scheduler (CC BY SA 4.0)

https://rakyll.org/scheduler/


Channels
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Channels

• Way to transfer data between Goroutines

• Data type is a part of the channel type

• Buffered and unbuffered 

• Channels can be created only with make

• New operator <- used to send and receive 
messages from channels
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ch := make(chan int)

value := <-ch      // read
ch<-value          // write



Unbuffered channels

Note that this example is racy
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package main 

import "fmt" 

func readAndPrint(c <-chan int) { // c is read-only channel 
    value := <-c 
    fmt.Println("Received", value) 
} 

func main() { 
    c := make(chan int) 
    fmt.Println("Channel length:", len(c)) 
    fmt.Println("Channel capacity:", cap(c)) 
    
    go readAndPrint(c) 
    c <- 5 
}



Unbuffered channels
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Channel deadlocks

Unbuffered channels do block
• Buffered channels also block when full or empty

• Go kindly detects deadlocks 
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package main 

import "fmt" 

func readAndPrint(c <-chan int) { 
    value := <-c 
    fmt.Println("Received", value) 
} 

func main() { 
    c := make(chan int) 
    c <- 5 // blocks 
    go readAndPrint(c) 
}



Goroutine synchronization 

Unbuffered channels can be used to synchronize 
goroutines
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func process(done chan<- struct{}) { // done is write-only channel 
    fmt.Println("Processing...") 
    time.Sleep(2 * time.Second) 
    fmt.Println("Finished!") 
    done <- struct{}{} 
} 

func main() { 
    done := make(chan struct{}) 
    go process(done) 
    
    fmt.Println("Waiting for processing...") 
    <-done // Blocks until `process` finishes 
    fmt.Println("Continuing in main") 
}



Buffered channels

The size of the channel is provided as the second 
argument to make
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func readAndPrint(c <-chan int) { 
    value := <-c 
    fmt.Println("Received", value) 
} 

func main() { 
    c := make(chan int, 1) 
    fmt.Println("Channel length:", len(c)) 
    fmt.Println("Channel capacity:", cap(c)) 

    c <- 5 // note that now it does not block 
    fmt.Println("Channel length:", len(c)) 
    fmt.Println("Channel capacity:", cap(c)) 

    go readAndPrint(c) 
    time.Sleep(time.Second) // need to wait 
} 



Buffered channels
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Buffered channels
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Select
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Select

• Syntanctically similar to the switch statement

• Helps us manipulate multiple channels at the 
same time 
• You can read on/write to numerous channels at once

• Prevents reads/writes that would otherwise block
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Select

• The select statement always chooses a case that does 
not block

• Both of the channels in the following example are ready 
to be read from 
• Therefore, the select chooses one of them at random

Y. Cheng UVA CS4740 Fall '24 62

func main() { 
    chanA := make(chan int, 1) 
    chanB := make(chan int, 1) 
    chanA <- 0 
    chanB <- 0 
    
    select { 
    case <-chanA: 
        fmt.Println("Read from A") 
    case <-chanB: 
        fmt.Println("Read from B") 
    } 
    fmt.Println("All done") 
}



Select

• The same works for writes 
• Neither channels is full

• Writing to them would not block
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func main() { 
    chanA := make(chan int, 1) 
    chanB := make(chan int, 1) 

    select { 
    case chanA <- 0: 
        fmt.Println("Wrote to A") 
    case chanB <- 1: 
        fmt.Println("Wrote to B") 
    } 
    fmt.Println("All done") 
}



Select

• The chanB would block on read 
• The select therefore always chooses the chanA
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func main() { 
    chanA := make(chan int, 1) 
    chanB := make(chan int, 1) 
    chanA <- 0 

    select { 
    case <-chanA: 
        fmt.Println("Read from A") 
    case <-chanB: 
        fmt.Println("Read from B") 
    } 
    fmt.Println("All done") }



Select default
• All channel reads block 

• select would panic

• We can leverage the default case 
• The default gets selected only when all the cases 

would block
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func main() { 
    chanA := make(chan int, 1) 
    chanB := make(chan int, 1) 

    select { 
    case <-chanA: 
        fmt.Println("Read from A") 
    case <-chanB: 
        fmt.Println("Read from B") 
    default: 
        fmt.Println("Fallback") 
    } 
    fmt.Println("All done") 
} 



Next Monday: MapReduce
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