
Fundamentals:
Parallelism & Concurrency

CS 4740: Cloud Computing

Fall 2024

Lecture 3

Yue Cheng

@ 2024 released for use under a CC BY-SA license.

https://creativecommons.org/licenses/by-sa/4.0/

Parallelism & Concurrency

• Abstraction: Process vs. thread

• Concurrency in Go

2Y. Cheng UVA CS4740 Fall '24

What is a process?

3Y. Cheng UVA CS4740 Fall '24

What is a process?

• Programs are code (static entity)

• Processes are running programs

• Java analogy
• class -> “program”

• object -> “process”

4Y. Cheng UVA CS4740 Fall '24

What is in a process?

5

Process

What things change as a program runs?

Y. Cheng UVA CS4740 Fall '24

What is in a process?

6

Process

What things change as a program runs?

Code
Heap

…
Stack

memory

Y. Cheng UVA CS4740 Fall '24

What is in a process?

7

Process

What things change as a program runs?

Code
Heap

…
Stack

memory

EAX
PC
SP
BP

registers

Y. Cheng UVA CS4740 Fall '24

What is in a process?

8

Process

What things change as a program runs?

Code
Heap

…
Stack

memory

EAX
PC
SP
BP

registers

FDs
I/O

Y. Cheng UVA CS4740 Fall '24

Threads

9Y. Cheng UVA CS4740 Fall '24

Why thread abstraction?

10Y. Cheng UVA CS4740 Fall '24

Process abstraction: Challenge 1

• Inter-process communication (IPC)

11Y. Cheng UVA CS4740 Fall '24

Inter-process communication

• Mechanism for processes to communicate and
to synchronize their actions

• Two models
• Communication through a shared memory region

• Communication through message passing

12Y. Cheng UVA CS4740 Fall '24

Communication models

Y. Cheng UVA CS4740 Fall '24 13

Message Passing Shared Memory

Communication through message passing

14

• Message passing can be either blocking
(synchronous) or non-blocking (asynchronous)
• Blocking Send: The sending process is blocked until the

message is received by the receiving process or by the
mailbox

• Non-blocking Send: The sending process resumes the
operation as soon as the message is received by the
kernel

• Blocking Receive: The receiver blocks until the message
is available

• Non-blocking Receive: “Receive” operation does not
block; it either returns a valid message or a default value
(null) to indicate a non-existing message

Y. Cheng UVA CS4740 Fall '24

Process abstraction: Challenge 1

• Inter-process communication (IPC)
• Cumbersome programming!

• Copying overheads (inefficient communication)

• Expensive context switching (why expensive?)
• As per empirical measurement, the average process-level

CFS (Completely Fair Scheduler: Linux’s current default
scheduler) context-switch overhead as ~7481.4ns

15Y. Cheng UVA CS4740 Fall '24

Process abstraction: Challenge 2

• Inter-process communication (IPC)
• Cumbersome programming!

• Copying overheads (inefficient communication)

• Expensive context switching (why expensive?)

• CPU utilization

16Y. Cheng UVA CS4740 Fall '24

17

ACPU:

Disk:

A

A

A

A

B
(a) Not interleaved

Y. Cheng UVA CS4740 Fall '24

18

ACPU:

Disk:

A

A

A

A

B
(a) Not interleaved

ACPU:

Disk:

A

A

A

A

B
(b) Interleaved

BB

Y. Cheng UVA CS4740 Fall '24

19

ACPU:

Disk:

A

A

A

A

B
(a) Not interleaved

ACPU:

Disk:

A

A

A

A

B
(b) Interleaved

B B

What if there is only one process?

Y. Cheng UVA CS4740 Fall '24

20Y. Cheng UVA CS4740 Fall '24

Moore’s law is ending!

Moore’s law: # transistors doubles every ~2 years

CPU trends – What Moore’s Law implies…

• The future
• Same CPU speed

• More cores (to scale-up or scale-out)

• Faster programs => concurrent/parallel execution

• Goal: Write applications that fully utilize many CPU
cores…

21Y. Cheng UVA CS4740 Fall '24

Goal

• Write applications that fully utilize many CPUs…

22Y. Cheng UVA CS4740 Fall '24

Strategy 1

• Build applications from many communicating
processes
• Like Chrome (process per tab)

• Communicate via pipe() or similar

• Pros/cons?

23Y. Cheng UVA CS4740 Fall '24

Strategy 1

• Build applications from many communicating
processes
• Like Chrome (process per tab)
• Communicate via pipe() or similar

• Pros/cons? – That we’ve talked about in previous slides

• Pros:
• Don’t need new abstractions!

• Better (fault) isolation?

• Cons:
• Cumbersome programming using IPC

• Copying overheads

• Expensive context switching

24Y. Cheng UVA CS4740 Fall '24

Strategy 2

• New abstraction: the thread

25Y. Cheng UVA CS4740 Fall '24

Introducing thread abstraction

• New abstraction: the thread

• Threads are just like processes, but threads
share the address space

26Y. Cheng UVA CS4740 Fall '24

Thread

• A process, as defined so far, has only one thread
of execution

• Idea: Allow multiple threads of concurrently
running execution within the same process
environment, to a large degree independent of
each other
• Each thread may be executing different code at the

same time

27Y. Cheng UVA CS4740 Fall '24

Process vs. thread

• Multiple threads within a process will share
• The address space

• Open files (file descriptors)

• Other resources

• Thread
• Efficient and fast resource sharing

• Efficient utilization of many CPU cores with only one
process

• Less context switching overheads

28Y. Cheng UVA CS4740 Fall '24

Y. Cheng UVA CS4740 Fall '24 29

Running
thread 1

CPU 1

Running
thread 2

CPU 2

Y. Cheng UVA CS4740 Fall '24 30

Running
thread 1

CPU 1

Running
thread 2

CPU 2

PC PC

Y. Cheng UVA CS4740 Fall '24 31

Running
thread 1

CPU 1

Running
thread 2

CPU 2

PC PC

Virtual mem

CODE HEAP

Y. Cheng UVA CS4740 Fall '24 32

Running
thread 1

CPU 1

Running
thread 2

CPU 2

PC PC

CODE HEAP

Each thread may be executing
different code at the same time

Virtual mem

Y. Cheng UVA CS4740 Fall '24 33

Running
thread 1

CPU 1

Running
thread 2

CPU 2

PC PC

CODE HEAP

Virtual mem

Y. Cheng UVA CS4740 Fall '24 34

Running
thread 1

CPU 1

Running
thread 2

CPU 2

PC PC

CODE HEAP

SP SP

Virtual mem

Y. Cheng UVA CS4740 Fall '24 35

Running
thread 1

CPU 1

Running
thread 2

CPU 2

PC PC

CODE HEAP

SP SP

STACK 1 STACK 2

Virtual mem

Y. Cheng UVA CS4740 Fall '24 36

Running
thread 1

CPU 1

Running
thread 2

CPU 2

PC PC

CODE HEAP

SP SP

STACK 1 STACK 2

Thread executing different functions need different stacks

Virtual mem

Parallelism & Concurrency

• Abstraction: Process vs. thread

• Concurrency in Go

37Y. Cheng UVA CS4740 Fall '24

Go keywords

Y. Cheng UVA CS4740 Fall '24 38

break case chan const continue
default defer else fallthrough for
func go goto if import
interface map package range return
select struct switch type var

break case chan const continue
default defer else fallthrough for
func go goto if import
interface map package range return
select struct switch type var

This lecture covers go, chan, select

Concurrency

Y. Cheng UVA CS4740 Fall '24 39

Concurrency vs. parallelism

“Concurrency is about dealing with lots of things at
once. Parallelism is about doing lots of things at once.”

-- Rob Pike: Concurrency is not Parallelism

• Concurrency is possible with even a single CPU core
• Parallelism is not

• Backbone of concurrency in Go:
• Goroutines

• Channels
• select construct

Y. Cheng UVA CS4740 Fall '24 40

Concurrency vs. parallelism

Y. Cheng UVA CS4740 Fall '24 41

Goroutines

Y. Cheng UVA CS4740 Fall '24 42

Goroutines

• Core concepts in Go

• Basically, lightweight threads
• Managed by Go’s runtime

• Limited context switching and interaction with the OS

• Goroutine scheduler is able to better optimize the workload

• Generally cheap to spawn
• Initial stack size is smaller compared to POSIX threads (8KB

vs. 8MB)

• But do not get the false sense you can spawn infinite
number of them, it is still a resource

• Up to tens/hundreds of thousands are fine

• Internally multiplexed across on kernel thread pool (M:N)

Y. Cheng UVA CS4740 Fall '24 43

Goroutines

Y. Cheng UVA CS4740 Fall '24 44

package main

import (
 "fmt"
 "time"
)

func print(s string) {
 for range 5 {
 fmt.Printf("Hello from %s!\n", s)
 time.Sleep(500 * time.Millisecond)
 }
}

func main() {
 go print("first")
 go print("second")
 print("main")
}

Runtime

Y. Cheng UVA CS4740 Fall '24 45

Runtime

• Just a library
• Same as the libc library for C

• Statically linked with your program upon
compilation

Go’s runtime package

Y. Cheng UVA CS4740 Fall '24 46

func main() {
 fmt.Printf("Logical CPUs (\"P\"s): %d\n", runtime.NumCPU())
 runtime.GC() // Invokes garbage collector
 fmt.Printf("GOMAXPROCS: %d\n", runtime.GOMAXPROCS(8))
}

https://pkg.go.dev/runtime

Scheduler

• Runs goroutines

• Pauses and resumes them

• Preemptive since Go 1.14
• Goroutines are preempted after 10ms

• Sysmon

• Work-stealing

• Coordinates system calls, I/O operations,
runtime tasks, etc.

Ardan Labs: Scheduling in Go

Y. Cheng UVA CS4740 Fall '24 47

https://github.com/golang/go/blob/go1.19.1/src/runtime/proc.go
https://www.ardanlabs.com/blog/2018/08/scheduling-in-go-part2.html

Goroutine scheduling states

• Runnable
• Can be run but is not assigned to a CPU core

• Executing
• Currently running

• Waiting
• System calls

• Synchronous calls

• I/O operations

Y. Cheng UVA CS4740 Fall '24 48

Goroutine scheduling illustration

Y. Cheng UVA CS4740 Fall '24 49

P (Processor): Logical processor

M (Machine): OS thread

• Initially, each P gets assigned one M

• More can be spawned by the runtime

G (Goroutine): Goroutine

Goroutine scheduling algorithm

Y. Cheng UVA CS4740 Fall '24 50

runtime.schedule() {
 // only 1/61 of the time, check the global runnable queue for a G.
 // if not found, check the local queue.
 // if not found,
 // try to steal from other Ps.
 // if not, check the global runnable queue.
 // if not found, poll network.
}

Jaana Dogan: Scheduler (CC BY SA 4.0)

https://rakyll.org/scheduler/

Channels

Y. Cheng UVA CS4740 Fall '24 51

Channels

• Way to transfer data between Goroutines

• Data type is a part of the channel type

• Buffered and unbuffered

• Channels can be created only with make

• New operator <- used to send and receive
messages from channels

Y. Cheng UVA CS4740 Fall '24 52

ch := make(chan int)

value := <-ch // read
ch<-value // write

Unbuffered channels

Note that this example is racy

Y. Cheng UVA CS4740 Fall '24 53

package main

import "fmt"

func readAndPrint(c <-chan int) { // c is read-only channel
 value := <-c
 fmt.Println("Received", value)
}

func main() {
 c := make(chan int)
 fmt.Println("Channel length:", len(c))
 fmt.Println("Channel capacity:", cap(c))

 go readAndPrint(c)
 c <- 5
}

Unbuffered channels

Y. Cheng UVA CS4740 Fall '24 54

Channel deadlocks

Unbuffered channels do block
• Buffered channels also block when full or empty

• Go kindly detects deadlocks

Y. Cheng UVA CS4740 Fall '24 55

package main

import "fmt"

func readAndPrint(c <-chan int) {
 value := <-c
 fmt.Println("Received", value)
}

func main() {
 c := make(chan int)
 c <- 5 // blocks
 go readAndPrint(c)
}

Goroutine synchronization

Unbuffered channels can be used to synchronize
goroutines

Y. Cheng UVA CS4740 Fall '24 56

func process(done chan<- struct{}) { // done is write-only channel
 fmt.Println("Processing...")
 time.Sleep(2 * time.Second)
 fmt.Println("Finished!")
 done <- struct{}{}
}

func main() {
 done := make(chan struct{})
 go process(done)

 fmt.Println("Waiting for processing...")
 <-done // Blocks until `process` finishes
 fmt.Println("Continuing in main")
}

Buffered channels

The size of the channel is provided as the second
argument to make

Y. Cheng UVA CS4740 Fall '24 57

func readAndPrint(c <-chan int) {
 value := <-c
 fmt.Println("Received", value)
}

func main() {
 c := make(chan int, 1)
 fmt.Println("Channel length:", len(c))
 fmt.Println("Channel capacity:", cap(c))

 c <- 5 // note that now it does not block
 fmt.Println("Channel length:", len(c))
 fmt.Println("Channel capacity:", cap(c))

 go readAndPrint(c)
 time.Sleep(time.Second) // need to wait
}

Buffered channels

Y. Cheng UVA CS4740 Fall '24 58

Buffered channels

59

Select

Y. Cheng UVA CS4740 Fall '24 60

Select

• Syntanctically similar to the switch statement

• Helps us manipulate multiple channels at the
same time
• You can read on/write to numerous channels at once

• Prevents reads/writes that would otherwise block

Y. Cheng UVA CS4740 Fall '24 61

Select

• The select statement always chooses a case that does
not block

• Both of the channels in the following example are ready
to be read from
• Therefore, the select chooses one of them at random

Y. Cheng UVA CS4740 Fall '24 62

func main() {
 chanA := make(chan int, 1)
 chanB := make(chan int, 1)
 chanA <- 0
 chanB <- 0

 select {
 case <-chanA:
 fmt.Println("Read from A")
 case <-chanB:
 fmt.Println("Read from B")
 }
 fmt.Println("All done")
}

Select

• The same works for writes
• Neither channels is full

• Writing to them would not block

Y. Cheng UVA CS4740 Fall '24 63

func main() {
 chanA := make(chan int, 1)
 chanB := make(chan int, 1)

 select {
 case chanA <- 0:
 fmt.Println("Wrote to A")
 case chanB <- 1:
 fmt.Println("Wrote to B")
 }
 fmt.Println("All done")
}

Select

• The chanB would block on read
• The select therefore always chooses the chanA

Y. Cheng UVA CS4740 Fall '24 64

func main() {
 chanA := make(chan int, 1)
 chanB := make(chan int, 1)
 chanA <- 0

 select {
 case <-chanA:
 fmt.Println("Read from A")
 case <-chanB:
 fmt.Println("Read from B")
 }
 fmt.Println("All done") }

Select default
• All channel reads block

• select would panic

• We can leverage the default case
• The default gets selected only when all the cases

would block

Y. Cheng UVA CS4740 Fall '24 65

func main() {
 chanA := make(chan int, 1)
 chanB := make(chan int, 1)

 select {
 case <-chanA:
 fmt.Println("Read from A")
 case <-chanB:
 fmt.Println("Read from B")
 default:
 fmt.Println("Fallback")
 }
 fmt.Println("All done")
}

Next Monday: MapReduce

Y. Cheng UVA CS4740 Fall '24 66

	Slide 1: Fundamentals: Parallelism & Concurrency
	Slide 2: Parallelism & Concurrency
	Slide 3: What is a process?
	Slide 4: What is a process?
	Slide 5: What is in a process?
	Slide 6: What is in a process?
	Slide 7: What is in a process?
	Slide 8: What is in a process?
	Slide 9: Threads
	Slide 10: Why thread abstraction?
	Slide 11: Process abstraction: Challenge 1
	Slide 12: Inter-process communication
	Slide 13: Communication models
	Slide 14: Communication through message passing
	Slide 15: Process abstraction: Challenge 1
	Slide 16: Process abstraction: Challenge 2
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: CPU trends – What Moore’s Law implies…
	Slide 22: Goal
	Slide 23: Strategy 1
	Slide 24: Strategy 1
	Slide 25: Strategy 2
	Slide 26: Introducing thread abstraction
	Slide 27: Thread
	Slide 28: Process vs. thread
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37: Parallelism & Concurrency
	Slide 38: Go keywords
	Slide 39: Concurrency
	Slide 40: Concurrency vs. parallelism
	Slide 41: Concurrency vs. parallelism
	Slide 42: Goroutines
	Slide 43: Goroutines
	Slide 44: Goroutines
	Slide 45: Runtime
	Slide 46: Runtime
	Slide 47: Scheduler
	Slide 48: Goroutine scheduling states
	Slide 49: Goroutine scheduling illustration
	Slide 50: Goroutine scheduling algorithm
	Slide 51: Channels
	Slide 52: Channels
	Slide 53: Unbuffered channels
	Slide 54: Unbuffered channels
	Slide 55: Channel deadlocks
	Slide 56: Goroutine synchronization
	Slide 57: Buffered channels
	Slide 58: Buffered channels
	Slide 59: Buffered channels
	Slide 60: Select
	Slide 61: Select
	Slide 62: Select
	Slide 63: Select
	Slide 64: Select
	Slide 65: Select default
	Slide 66: Next Monday: MapReduce

