
Yuqi Fu1, Ruizhe Shi2, Haoliang Wang3, Songqing Chen2, Yue Cheng1

ALPS:
An Adaptive Learning, Priority OS Scheduler for

Serverless Functions

USENIX ATC’24

1

2 3

Serverless Computing

1

Alibaba

Function

Compute

Function-as-a-Service (FaaS): Cloud function as a basic

deployment unit.

Main benefits: Scalability; Pay as you go; DevOps cost

Cloud provider

Fn Fn Fn Fn…

Operating Systems

Current Scheduler Limitations

2

Load Balancer

CPU2

CPU 1Job 1

Job 2Job 4

CFS (Completely Fair Scheduler)

- Proportional-share time slice

- Default Linux scheduler

…

Context switch &

Update vruntime &

Find next task

Job 3 Job 1

Fairness respect to vruntime

CPU 2CPU 1

timeline

vruntime

Job 4

…

end

end
Job 4

Job 3Job 3

Short jobs: 1, 2

Long jobs: 3, 4

Current Scheduler Limitations

3

Load Balancer

CPU2

CPU 1Job 1

Job 2Job 4 …

Job 1 Job 3

vruntime

Job 4 Job 4

Job 2 vs Job 4?

Context switch?

Job 3 … Job 3

timeline

end

end

CPU 2CPU 1

• Implication: CFS lacks application workload

intelligence

CFS (Completely Fair Scheduler)

- Proportional-share time slice

- Default Linux scheduler

Short jobs: 1, 2

Long jobs: 3, 4

Approximating SRPT

4

SRPT (Shortest Remaining Processing Time)

- provably optimal for average performance

- impractical in online scheduling

- cause CPU resource starvation for long-term jobs

• Implication: SRPT is impractical and causes

starvation for long jobs

Outline

•Motivation

•ALPS design and implementation

•Evaluation

5

Birds’ eye view of ALPS design

6

User Kernel

eBPF

Learn scheduling

behavior

feedback

ALPS has a novel OS scheduler architecture that decouples a

user-space frontend and kernel-space backend

• Policy: Time slice policy & time ordering policy

• Mechanism: Leveraging eBPF for user-kernel-space

communication

ALPS Design

7

Fn Fn Fn Fn Fn

1. Slide window (past function trace)

2. Scheduling policies

Fn Fn

ALPS Frontend

ALPS BackendCFS

SRPT simulation

Policy learning
Time slice policy

Task ordering policy
3. Update scheduling policies

4. Deploy scheduling policies

5. Profiled CPU time

Time slice policy

Task ordering policy

eBPF maps

8

Fn Fn

Fn

Fn Fn Fn Fn

<function_UID, arrival time, termination time, CPU time>

Workload statistics

alps_execve()

CPU time profiler

Fn Fn Fn Fn
Priority queue

Short job Long job

Fn

SRPT profiles:

Function UID: waiting time,

execution time, time slice

* Time slice policy

* Task ordering policy

Policy

learning

SRPT simulation

ALPS frontend: SRPT simulation

9

tick interrupt/preemption/…

CFS main schedule()

Which task to

run next?

Kernel spaceUser space

sorted by

vruntime

CFS workflow in the kernel

task a:

vruntime 0

task b:

vruntime 100

task c:

vruntime 300 RB tree
task a < task b < task c

10

User space

SRPT simulation profiles

Policy learning

Expected time slice

upper bound for function

e.g. task a: 40ms; task b: 8ms …

eBPF

maps

Current time slice

upper bound time slice

ALPS’ time slice policy
CFS main schedule()

Which task to

run next?

sorted by

vruntime

task a:

vruntime 0

tick interrupt/preemption/…Kernel space

task c:

vruntime 300

task a < task b < task c

deploy

task b:

vruntime 100

RB tree

11

User space

SRPT simulation profiles

Policy learning

Expected time slice

upper bound for function

e.g. task a: 40ms; task b: 8ms …

eBPF

maps

Current time slice: 40 ms

ALPS’ time slice policy
CFS main schedule()

CFS branch:

pick the task with

minimal vruntime

sorted by

vruntime

task a:

vruntime 0

tick interrupt/preemption/…Kernel space

task c:

vruntime 300

task a < task b < task cupper bound time slice: 8ms

Greater than

deploy

task b:

vruntime 100

RB tree

12

User space

SRPT simulation profiles

Policy learning

Expected time slice

upper bound for function

e.g. task a: 40ms; task b: 8ms …

eBPF

maps

Current time slice: 8 ms

ALPS’ time slice policy
CFS main schedule()

ALPS branch:

grant additional

time slice to current

task

sorted by

vruntime

task a:

vruntime 0

tick interrupt/preemption/…Kernel space

task c:

vruntime 300

task a < task b < task cupper bound time slice: 40ms

Less than

deploy

task b:

vruntime 100

RB tree

13

User space

Expected ALPS task priority

for function

e.g. task a: 2; task b: 1 …

ALPS priority overrides CFS

vruntime

ALPS’ task ordering policy

eBPF

maps

CFS main schedule()

Which task to

run next?

sorted by

vruntime

task a:

vruntime 0

tick interrupt/preemption/…Kernel space

task c:

vruntime 300

task a < task b < task c

SRPT simulation profiles

Policy learning

deploy

task b:

vruntime 100

RB tree

14

User space

Expected ALPS task priority

for function

e.g. task a: 2; task b: 1 …

ALPS priority overrides CFS

vruntime

ALPS’ task ordering policy

eBPF

maps

CFS main schedule()

Which task to

run next?

sorted by

ALPS priority

task a:

vruntime 0

tick interrupt/preemption/…Kernel space

task c:

vruntime 300

task b < task a < task c

SRPT simulation profiles

Policy learning

deploy

task b:

vruntime 100

RB tree

15

User space

Expected ALPS task priority

for function

e.g. task a: 2; task b: 1 …

ALPS priority overrides CFS

vruntime

ALPS’ task ordering policy

eBPF

maps

CFS main schedule()

Which task to

run next?

sorted by

ALPS priority

task b:

ALPS priority 1

vruntime 100

tick interrupt/preemption/…Kernel space

task c:

ALPS priority 2

vruntime 300

task b < task a < task c

SRPT simulation profiles

Policy learning

deploy

task a:

ALPS priority 2

vruntime 0

RB tree

Outline

•Motivation

•ALPS design and implementation

•Evaluation

16

Experimental methodology
• Platform:

• OpenLambda & Docker

• We modified 135 LoC in OpenLambda and 223 LoC in Docker

• Host machine: bare-mental with 56 CPUs and 256 GB RAM

• OS: Ubuntu 22.04.1 LTS

• Production workload traces:

• Huawei Cloud Functions trace [SoCC’23]

• Azure Functions trace [ATC’20]

17

18

End-to-End Performance: Azure Workload

Short Functions Long Functions
Shorter tail latency

Execution Duration (ms) Execution Duration (ms)ALPS achieves shorter execution durations compared to CFS

19

Short Functions Long Functions

50%

5x

End-to-End Performance: Huawei Workload

ALPS outperforms CFS across all function execution duration

percentiles

20

Conclusion
• ALPS continuously learns FaaS workload intelligence from user-

space SRPT simulation.

• We built a prototype of ALPS into a user-space frontend and a

kernel-space backend atop Linux CFS using customized eBPF

functions and hooks.

• Extensive evaluation shows that ALPS improves the performance

for both short functions and long functions compared to CFS.

21

Thank You!
Questions?

Yuqi Fu, Ruizhe Shi, Haoliang Wang, Songqing Chen, Yue Cheng

ALPS source code: https://github.com/ds2-lab/ALPS

https://github.com/ds2-lab/ALPS

	Slide 0
	Slide 1: Serverless Computing
	Slide 2: Current Scheduler Limitations
	Slide 3: Current Scheduler Limitations
	Slide 4: Approximating SRPT
	Slide 5: Outline
	Slide 6: Birds’ eye view of ALPS design
	Slide 7: ALPS Design
	Slide 8: ALPS frontend: SRPT simulation
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13: ALPS’ task ordering policy
	Slide 14: ALPS’ task ordering policy
	Slide 15: ALPS’ task ordering policy
	Slide 16: Outline
	Slide 17: Experimental methodology
	Slide 18: End-to-End Performance: Azure Workload
	Slide 19: End-to-End Performance: Huawei Workload
	Slide 20: Conclusion
	Slide 21

