
SFS: Smart OS Scheduling
for Serverless Functions

Yuqi Fu1, Li Liu2, Haoliang Wang3, Yue Cheng1, Songqing Chen2

1University of Virginia, 2George Mason University, 3Adobe
Research

Serverless computing

11/18/2024 SC22 | Dallas, TX | hpc accelerates. 2

A programming abstraction that enables users to upload programs, run
them at virtually any scale, and pay only for the resources used

Function-as-a-Service (FaaS): Cloud functions
as a basic deployment unit

Alibaba

Function

Compute

API gateway

Container Container Container Container

… f(n) f(n)f(n) f(n)

Function-as-a-Service (FaaS)

11/18/2024 SC22 | Dallas, TX | hpc accelerates. 3

User

Cloud

Function-as-a-Service (FaaS)

11/18/2024 SC22 | Dallas, TX | hpc accelerates. 4

User

Cloud

User deploys apps to the cloud

Cloud function

Fn

Function-as-a-Service (FaaS)

11/18/2024 SC22 | Dallas, TX | hpc accelerates. 5

User

Cloud
API gateway

Container Container Container Container

… Fn Fn Fn Fn

Fn

Serverless functions eventually run in OSes

11/18/2024 SC22 | Dallas, TX | hpc accelerates. 6

Fn Fn

Fn

Fn Fn

Fn
Fn

Fn

Fn

“Last mile” efficiency

Auto Scaling

Fn

Fn

11/18/2024 SC22 | Dallas, TX | hpc accelerates. 7

A 14-day production FaaS workloads from Azure Function (ATC’20)

Production FaaS workloads are highly heterogeneous

11/18/2024 SC22 | Dallas, TX | hpc accelerates. 8

Production FaaS workloads are highly heterogeneous

A 14-day production FaaS workloads from Azure Function (ATC’20)

Under

10ms

Several

minutes

• Features a mixture of short and long functions

11/18/2024 SC22 | Dallas, TX | hpc accelerates. 9

Production FaaS workloads are highly heterogeneous

A 14-day production FaaS workloads from Azure Function (ATC’20)

• A majority (60%) of functions finish in one second

• Features a mixture of short and long functions

1

Second

60%

11/18/2024 SC22 | Dallas, TX | hpc accelerates. 10

Poor performance under existing OS scheduling

CFS
* Proportional-Share time slice

* Default Linux Scheduler

11/18/2024 SC22 | Dallas, TX | hpc accelerates. 11

Poor performance under existing OS scheduling

SRTF
* Optimal

* Not practical

11/18/2024 SC22 | Dallas, TX | hpc accelerates. 12

Poor performance under existing OS scheduling

IDEAL
* Infinite resource

* No preemption

11/18/2024 SC22 | Dallas, TX | hpc accelerates. 13

Poor performance under existing OS scheduling

Proportional-Share Scheduling
offer poor performance

11/18/2024 SC22 | Dallas, TX | hpc accelerates. 14

Poor performance under existing OS scheduling

Proportional-Share Scheduling
offer poor performance CFS frequently preempts functions,

causing longer waiting time (w/
smaller RTEs)

Function Run-Time Effectiveness

= Service time / Turnaround time

11/18/2024 SC22 | Dallas, TX | hpc accelerates. 15

Poor performance under existing OS scheduling

Proportional-Share Scheduling
offer poor performance

Function Run-Time Effectiveness

= Service time / Turnaround time

Existing Linux scheduling policies are a

poor match for emerging FaaS

workloads
• Implication #1: OS-level function scheduling must

be workload-aware

• Implication #2: Approximating SRTF (shortest

remaining time first) will provide a significant

performance boost for short functions

•Design

•Evaluation

•Conclusion

11/18/2024 SC22 | Dallas, TX | hpc accelerates. 16

Outline

11/18/2024 SC22 | Dallas, TX | hpc accelerates. 17

Smart function scheduler (SFS)

SFS is a FaaS-aware, user-space OS scheduler

Key idea: Two-level scheduling

Fn Fn

Fn

Fn
Fn

Fn

Fn

FILTER

Fn

Fn Fn

1st Level Scheduling

11/18/2024 SC22 | Dallas, TX | hpc accelerates. 18

Smart function scheduler (SFS)

SFS is a FaaS-aware, user-space OS scheduler

Key idea: Two-level scheduling

Fn Fn

Fn

Fn
Fn

Fn

Fn

FILTER

Fn

Fn Fn

1st Level Scheduling

11/18/2024 SC22 | Dallas, TX | hpc accelerates. 19

Smart function scheduler (SFS)

SFS is a FaaS-aware, user-space OS scheduler

Key idea: Two-level scheduling

Fn Fn

Fn

Fn

2nd Level Scheduling (CFS)

11/18/2024 SC22 | Dallas, TX | hpc accelerates. 20

Global queue

Worker 1

Worker 2

Worker N

…

User space Kernel space

Sliding
window stats

FILTER CFS

Time slice TGenerate time slice

11/18/2024 SC22 | Dallas, TX | hpc accelerates. 21

Global queue

Worker 1

Worker 2

Worker N

…

User space Kernel space

Sliding
window stats

FILTER CFS

Time slice T

Function executes…

11/18/2024 SC22 | Dallas, TX | hpc accelerates. 22

Global queue

Worker 1

Worker 2

Worker N

…

User space Kernel space

Sliding
window stats

FILTER CFS

Time slice T

Function finishes

in time slice T

11/18/2024 SC22 | Dallas, TX | hpc accelerates. 23

Global queue

Worker 1

Worker 2

Worker N

…

User space Kernel space

Sliding
window stats

FILTER CFS

Time slice T

Function executes…

11/18/2024 SC22 | Dallas, TX | hpc accelerates. 24

Global queue

Worker 1

Worker 2

Worker N

…

User space Kernel space

Sliding
window stats

FILTER CFS

Time slice T

Function has not

finished in time slice T

11/18/2024 SC22 | Dallas, TX | hpc accelerates. 25

Global queue

Worker 1

Worker 2

Worker N

…

User space Kernel space

Sliding
window stats

FILTER CFS

Time slice T

Demote to CFS

11/18/2024 SC22 | Dallas, TX | hpc accelerates. 26

Global queue

Worker 1

Worker 2

Worker N

…

User space Kernel space

Sliding
window stats

FILTER

Time slice TIf time slice is too long

FIFO-like scheduling

11/18/2024 SC22 | Dallas, TX | hpc accelerates. 27

Global queue

Worker 1

Worker 2

Worker N

…

User space Kernel space

Sliding
window stats

CFS

CFS-like scheduling

If time slice is too short

11/18/2024 SC22 | Dallas, TX | hpc accelerates. 28

Global queue

Worker 1

Worker 2

Worker N

…

User space Kernel space

Sliding
window stats

FILTER CFS

Time slice T

SFS collects stats using a

sliding window

11/18/2024 SC22 | Dallas, TX | hpc accelerates. 29

Global queue

Worker 1

Worker 2

Worker N

…

User space Kernel space

Sliding
window stats

FILTER CFS

Time slice TDynamically tune time slice

Lighter load

11/18/2024 SC22 | Dallas, TX | hpc accelerates. 30

Global queue

Worker 1

Worker 2

Worker N

…

User space Kernel space

Sliding
window stats

FILTER CFS

Time slice TDynamically tune time slice

Lighter load

50ms

11/18/2024 SC22 | Dallas, TX | hpc accelerates. 31

Global queue

Worker 1

Worker 2

Worker N

…

User space Kernel space

Sliding
window stats

FILTER CFS

Time slice TDynamically tune time slice

Heavier load

11/18/2024 SC22 | Dallas, TX | hpc accelerates. 32

Global queue

Worker 1

Worker 2

Worker N

…

User space Kernel space

Sliding
window stats

FILTER CFS

Time slice TDynamically tune time slice

Heavier load

20ms

11/18/2024 SC22 | Dallas, TX | hpc accelerates. 33

Global queue

Worker 1

Worker 2

Worker N

…

User space Kernel space

Sliding
window stats

CFS

Execute function jobs using CFS

Overload!

11/18/2024 SC22 | Dallas, TX | hpc accelerates. 34

Smart function scheduler (SFS)

SFS is a FaaS-aware, user-space OS scheduler

Key idea: Two-level scheduling

•A FILTER level that dynamically tunes a global
time slice for newly arrived functions

•Filtered functions from top level continue in CFS

•Short functions run to completion

•Online policy with minimum historical stats

•Transparent to both upper-level FaaS platform and
underlying OSes

Orchestrates existing Linux
scheduling policies

Improved turnaround time

Simply and practical
heuristic

Ready to deploy

•SFS Design

•Evaluation

•Conclusion

11/18/2024 SC22 | Dallas, TX | hpc accelerates. 35

Outline

Experimental Setup
• Standalone

• 16-core EC2 VM

• SFS-ported OpenLambda* (HotCloud’ 16)
• 72-core EC2 bare-metal VM

• By modifying 29 lines of Go/Python code in OpenLambda

• Day one of the Azure Functions Trace
• 49, 712 function requests

• Breakdowns (min, median, max, percentiles)

11/18/2024 SC22 | Dallas, TX | hpc accelerates. 36

* "Serverless Computation with {OpenLambda}." Hendrickson et al. In 8th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 16). 2016.

11/18/2024 SC22 | Dallas, TX | hpc accelerates. 37

SFS Standalone – Turnaround time

10X

11/18/2024 SC22 | Dallas, TX | hpc accelerates. 38

SFS Standalone – Turnaround time

10X

SFS maintains almost identical performance for 83% of the

function requests across all load levels

83%

11/18/2024 SC22 | Dallas, TX | hpc accelerates. 39

SFS Standalone – Turnaround time

10X Remaining longer

jobs observed

slightly higher tail

latency

83%

SFS maintains almost identical performance for 83% of the

function requests across all load levels

11/18/2024 SC22 | Dallas, TX | hpc accelerates. 40

SFS Standalone – RTE

SFS performs optimal RTE for short functions

Function Run-Time Effectiveness

= Service time / Turnaround time

17%

11/18/2024 SC22 | Dallas, TX | hpc accelerates. 41

SFS-ported OpenLambda

Improvement Trade-off

11/18/2024 SC22 | Dallas, TX | hpc accelerates. 42

SFS-ported OpenLambda

Under 100% load, for more than 85% of functions, CFS

suffers 10X more context switches than SFS

Ctx Switch Ratio

= Ctx Switch w CFS/ Ctx Switch w SFS

• SFS addresses the poor performance issue of CFS in FaaS workloads

through a two-level scheduling approach

• SFS adaptively tunes a high-priority FILTER pool that optimizes the

performance of short functions

• Experimental results show SFS outperforms CFS up to 50x for a

production FaaS workload

11/18/2024 SC22 | Dallas, TX | hpc accelerates. 43

Conclusion

Thank You
Questions?

• Contact: Yuqi Fu (jwx3px@Virginia.edu)
• https://github.com/ds2-lab/SFS

https://github.com/ds2-lab/SFS

Back slides

11/18/2024 SC22 | Dallas, TX | hpc accelerates. 45

	Slide 1: SFS: Smart OS Scheduling for Serverless Functions
	Slide 2: Serverless computing
	Slide 3: Function-as-a-Service (FaaS)
	Slide 4: Function-as-a-Service (FaaS)
	Slide 5: Function-as-a-Service (FaaS)
	Slide 6: Serverless functions eventually run in OSes
	Slide 7: Production FaaS workloads are highly heterogeneous
	Slide 8: Production FaaS workloads are highly heterogeneous
	Slide 9: Production FaaS workloads are highly heterogeneous
	Slide 10: Poor performance under existing OS scheduling
	Slide 11: Poor performance under existing OS scheduling
	Slide 12: Poor performance under existing OS scheduling
	Slide 13: Poor performance under existing OS scheduling
	Slide 14: Poor performance under existing OS scheduling
	Slide 15: Poor performance under existing OS scheduling
	Slide 16: Outline
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35: Outline
	Slide 36: Experimental Setup
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43: Conclusion
	Slide 44: Thank You Questions?
	Slide 45

