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Serverless computing 
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A programming abstraction that enables users to upload programs, run 
them at virtually any scale, and pay only for the resources used

Function-as-a-Service (FaaS): Cloud functions 
as a basic deployment unit
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Function-as-a-Service (FaaS)
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Function-as-a-Service (FaaS)
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User

Cloud

User deploys apps to the cloud

Cloud function

Fn



Function-as-a-Service (FaaS)
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Serverless functions eventually run in OSes
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A 14-day production FaaS workloads from Azure Function (ATC’20)

Production FaaS workloads are highly heterogeneous
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Production FaaS workloads are highly heterogeneous

A 14-day production FaaS workloads from Azure Function (ATC’20)

Under 

10ms

Several 

minutes

• Features a mixture of short and long functions
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Production FaaS workloads are highly heterogeneous

A 14-day production FaaS workloads from Azure Function (ATC’20)

• A majority (60%) of functions finish in one second

• Features a mixture of short and long functions

1 

Second

60%
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Poor performance under existing OS scheduling

CFS
* Proportional-Share time slice

* Default Linux Scheduler
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Poor performance under existing OS scheduling

SRTF
* Optimal

* Not practical



11/18/2024 SC22 | Dallas, TX | hpc accelerates. 12

Poor performance under existing OS scheduling

IDEAL
* Infinite resource

* No preemption
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Poor performance under existing OS scheduling

Proportional-Share Scheduling 
offer poor performance
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Poor performance under existing OS scheduling

Proportional-Share Scheduling 
offer poor performance CFS frequently preempts functions, 

causing longer waiting time (w/ 
smaller RTEs)

Function Run-Time Effectiveness 

= Service time / Turnaround time
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Poor performance under existing OS scheduling

Proportional-Share Scheduling 
offer poor performance

Function Run-Time Effectiveness 

= Service time / Turnaround time

Existing Linux scheduling policies are a 

poor match for emerging FaaS 

workloads
• Implication #1: OS-level function scheduling must 

be workload-aware

• Implication #2: Approximating SRTF (shortest 

remaining time first) will provide a significant 

performance boost for short functions



•Design

•Evaluation

•Conclusion
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Outline
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Smart function scheduler (SFS)

SFS is a FaaS-aware, user-space OS scheduler

Key idea: Two-level scheduling

Fn Fn

Fn

Fn
Fn

Fn

Fn

FILTER

Fn

Fn Fn

1st Level Scheduling
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Smart function scheduler (SFS)

SFS is a FaaS-aware, user-space OS scheduler

Key idea: Two-level scheduling

Fn Fn

Fn

Fn

2nd Level Scheduling (CFS)
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Global queue

Worker 1

Worker 2

Worker N

…

User space Kernel space

Sliding 
window stats

FILTER CFS

Time slice TGenerate time slice
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Global queue

Worker 1

Worker 2

Worker N

…

User space Kernel space

Sliding 
window stats

FILTER CFS

Time slice T

Function executes… 
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Global queue

Worker 1

Worker 2

Worker N

…

User space Kernel space

Sliding 
window stats

FILTER CFS

Time slice T

Function finishes 

in time slice T
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Global queue
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Worker N

…

User space Kernel space

Sliding 
window stats

FILTER CFS

Time slice T

Function executes…
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Global queue

Worker 1

Worker 2

Worker N

…

User space Kernel space

Sliding 
window stats

FILTER CFS

Time slice T

Function has not 

finished in time slice T
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Global queue

Worker 1

Worker 2

Worker N

…

User space Kernel space

Sliding 
window stats

FILTER CFS

Time slice T

Demote to CFS
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Global queue

Worker 1

Worker 2

Worker N

…

User space Kernel space

Sliding 
window stats

FILTER

Time slice TIf time slice is too long

FIFO-like scheduling
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Global queue

Worker 1

Worker 2

Worker N

…

User space Kernel space

Sliding 
window stats

CFS

CFS-like scheduling

If time slice is too short
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Global queue

Worker 1

Worker 2

Worker N

…

User space Kernel space

Sliding 
window stats

FILTER CFS

Time slice T

SFS collects stats using a 

sliding window
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Global queue
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User space Kernel space

Sliding 
window stats

FILTER CFS

Time slice TDynamically tune time slice

Lighter load
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Global queue
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Worker N
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User space Kernel space
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window stats

FILTER CFS

Time slice TDynamically tune time slice

Lighter load

50ms
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Global queue

Worker 1
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…

User space Kernel space

Sliding 
window stats

FILTER CFS

Time slice TDynamically tune time slice

Heavier load

20ms
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Global queue

Worker 1

Worker 2

Worker N

…

User space Kernel space

Sliding 
window stats

CFS

Execute function jobs using CFS

Overload!
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Smart function scheduler (SFS)

SFS is a FaaS-aware, user-space OS scheduler

Key idea: Two-level scheduling

•A FILTER level that dynamically tunes a global 
time slice for newly arrived functions

•Filtered functions from top level continue in CFS

•Short functions run to completion

•Online policy with minimum historical stats

•Transparent to both upper-level FaaS platform and 
underlying OSes

Orchestrates existing Linux 
scheduling policies

Improved turnaround time

Simply and practical 
heuristic

Ready to deploy



•SFS Design

•Evaluation

•Conclusion
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Outline



Experimental Setup
• Standalone

• 16-core EC2 VM

• SFS-ported OpenLambda* (HotCloud’ 16)
• 72-core EC2 bare-metal VM

• By modifying 29 lines of Go/Python code in OpenLambda

• Day one of the Azure Functions Trace
• 49, 712 function requests

• Breakdowns (min, median, max, percentiles)
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* "Serverless Computation with {OpenLambda}." Hendrickson et al. In 8th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 16). 2016.
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SFS Standalone – Turnaround time

10X
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SFS Standalone – Turnaround time

10X

SFS maintains almost identical performance for 83% of the 

function requests across all load levels

83%
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SFS Standalone – Turnaround time

10X Remaining longer 

jobs observed 

slightly higher tail 

latency

83%

SFS maintains almost identical performance for 83% of the 

function requests across all load levels
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SFS Standalone – RTE

SFS performs optimal RTE for short functions

Function Run-Time Effectiveness 

= Service time / Turnaround time

17%
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SFS-ported OpenLambda

Improvement Trade-off
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SFS-ported OpenLambda

Under 100% load, for more than 85% of functions, CFS 

suffers 10X more context switches than SFS

Ctx Switch Ratio

= Ctx Switch w CFS/ Ctx Switch w SFS



• SFS addresses the poor performance issue of CFS in FaaS workloads 

through a two-level scheduling approach

• SFS adaptively tunes a high-priority FILTER pool that optimizes the 

performance of short functions

• Experimental results show SFS outperforms CFS up to 50x for a 

production FaaS workload
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Conclusion



Thank You
Questions?

• Contact: Yuqi Fu (jwx3px@Virginia.edu)
• https://github.com/ds2-lab/SFS

https://github.com/ds2-lab/SFS


Back slides
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