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When to use the cloud?

• Data
• Large amounts of data – can’t store locally

• Shared data across users

• Long-term storage

• Compute
• Need lots of CPUs for data processing

• Varying computing demands (resources)

• No admin (for managing your local hardware)
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#thecloudistoodamnhard

1. What type of instances?
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Why is there no “cloud button”?



Decision paralysis?? 
Go for Serverless!
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Microsoft Azure Functions

Google Cloud Functions



What is serverless computing?
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What is serverless computing?

Serverless computing (Function-as-a-Service, or 
FaaS) is a programming abstraction that enables 
users to upload programs, run them at (virtually) 
any scale, and pay only for the resources used
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A car analogy
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Concept of serverless is not new

• Google App Engine 
• Fully managed platform as a service (PaaS) 

for developing and hosting web applications 

• Google BigQuery
• Fully managed data warehouse

• “Arbitrarily” large data and queries

• Pay per byte being processed

• No concept of server or cluster

• AWS S3
• Fully managed object storage service

• Pay per byte being stored and written

• No server maintenance or resource scaling
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Recap: Cloud evolution history – 
A virtualization story
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Classic cloud app stack
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Application

Server

Operating system

Hardware

Requests

Virtual memory

CPU scheduling

… 



1st generation: virtual machine (VM)
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1st generation: virtual machine (VM)
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2nd generation: containers
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3rd generation: serverless functions
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3rd generation: serverless functions
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Tradeoff discussion
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Serverless functions

(AWS Lambdas)
Containers VMs

Isolation?

Flexibility?

Overhead?

++ + +++

++++++

++++++



Above the surface: Core capability

1. (Provider) Manage a set of user-defined functions

2. Take an event sent over HTTP or received from an 
event source

3. Determine function(s) to which to dispatch the 
event

4. Find an existing instance of function or create a 
new one

5. Send the event to the function instance

6. Wait for a response

7. Gather execution logs

8. Make the response available to the user

9. Stop the function when it is no longer needed
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Above the surface: Core capability
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Clients
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AWS Lambda

• Lambda capacity config keeps evolving:
300 seconds 900 seconds (15 minutes)

single-core two-core →  up to 6 cores

1.5 GB →  10 GB memory 

512 MB →  up to 10GB of /tmp file system

Python, Java, Node.js, Go, … 

Pricing: 
• Fine-grained billing: 1-millisecond billed duration

• $0.20 per 1M requests (invocations charge $)

• $0.0000166667 for every GB-second (compute time 
charges $$)

• 6,000 1 GB Lambda functions for one second: 10¢
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1st gen
Current 

offering



Desirable properties

• Operationally
• “No-ops” – (almost) no 

configuration

• Autoscaling down to 0

• Closer to pay-per-use 
(rather than pay-per-
allocation)

• Fine-grained billing
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FaaS today

• FaaS is used mostly for simple or coarse-grained tasks
• Stateless, embarrassingly parallel tasks, simple workflows

• ETL, software testing, API middleware, image processing, etc.

• Glue to other serverless backends

• Lots of problems are limiting FaaS’ scope
• Poor performance (vs. time to run actual code) at scale
• Mismatch of infrastructure support (e.g., today’s OS not 

designed for FaaS)
• Rule-breaking research needed to reimagine/broaden the scope 
• Very resource-inefficient and costly for serverless providers
• Lack of support for accelerators 
• … 

• Orders of magnitude slower and inefficient for 
many “killer” apps

• ML inference, microservices, … 
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Limitations

• Banned inbound network

• No guaranteed data availability

• Lambdas are resource-constrained

• Lambdas have limited execution time

• High cold startup cost and invocation cost
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