
Serverless Computing
CS 4740: Cloud Computing

Fall 2024

Lecture 14a

Yue Cheng

Some material taken/derived from:
• Berkeley CS 262a (Spring ‘18) by Ali Ghodsi and Ion Stoica;

• Tyler Harter’s HotCloud ’18 OpenLambda talk;

@ 2024 released for use under a CC BY-SA license.

https://creativecommons.org/licenses/by-sa/4.0/

Motivation

Y. Cheng UVA CS4740 Fall '24 2

When to use the cloud?

• Data
• Large amounts of data – can’t store locally

• Shared data across users

• Long-term storage

• Compute
• Need lots of CPUs for data processing

• Varying computing demands (resources)

• No admin (for managing your local hardware)

Y. Cheng UVA CS4740 Fall '24 3

Y. Cheng UVA CS4740 Fall '24 4https://instances.vantage.sh/

https://instances.vantage.sh/

Y. Cheng UVA CS4740 Fall '24 5https://instances.vantage.sh/

https://instances.vantage.sh/

#thecloudistoodamnhard

1. What type of instances?

Y. Cheng UVA CS4740 Fall '24 6

#thecloudistoodamnhard

1. What type of instances?

2. How many to spin up?

Y. Cheng UVA CS4740 Fall '24 7

#thecloudistoodamnhard

1. What type of instances?

2. How many to spin up?

3. What base image?

Y. Cheng UVA CS4740 Fall '24 8

#thecloudistoodamnhard

1. What type of instances?

2. How many to spin up?

3. What base image?

4. On-demand or spot?

Y. Cheng UVA CS4740 Fall '24 9

#thecloudistoodamnhard

1. What type of instances?

2. How many to spin up?

3. What base image?

4. On-demand or spot?

5. What storage service to use?

Y. Cheng UVA CS4740 Fall '24 10

#thecloudistoodamnhard

1. What type of instances?

2. How many to spin up?

3. What base image?

4. On-demand or spot?

5. What storage service to use?

6. And then wait to start…

Y. Cheng UVA CS4740 Fall '24 11

#thecloudistoodamnhard

1. What type of instances?

2. How many to spin up?

3. What base image?

4. On-demand or spot?

5. What storage service to use?

6. And then wait to start…

7. Not the end of the horror story:
1. When to scale out?

2. When to scale in?

3. When to switch to different instance
types?

Y. Cheng UVA CS4740 Fall '24 12

#thecloudistoodamnhard

1. What type of instances?

2. How many to spin up?

3. What base image?

4. On-demand or spot?

5. What storage service to use?

6. And then wait to start…

7. Not the end of the horror story:
1. When to scale out?

2. When to scale in?

3. When to switch to different instance
types?

8. Go back to Step 1…

Y. Cheng UVA CS4740 Fall '24 13

#thecloudistoodamnhard

1. What type of instances?

2. How many to spin up?

3. What base image?

4. On-demand or spot?

5. What storage service to use?

6. And then wait to start…

7. Not the end of the horror story:
1. When to scale out?

2. When to scale in?

3. When to switch to different instance
types?

8. Go back to Step 1…

Y. Cheng UVA CS4740 Fall '24 14

Why is there no “cloud button”?

Decision paralysis??
Go for Serverless!

Y. Cheng UVA CS4740 Fall '24 15

Microsoft Azure Functions

Google Cloud Functions

What is serverless computing?

Y. Cheng UVA CS4740 Fall '24 16

What is serverless computing?

Serverless computing (Function-as-a-Service, or
FaaS) is a programming abstraction that enables
users to upload programs, run them at (virtually)
any scale, and pay only for the resources used

Y. Cheng UVA CS4740 Fall '24 17

A car analogy

Y. Cheng UVA CS4740 Fall '24 18

https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona

https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona

Concept of serverless is not new

• Google App Engine
• Fully managed platform as a service (PaaS)

for developing and hosting web applications

• Google BigQuery
• Fully managed data warehouse

• “Arbitrarily” large data and queries

• Pay per byte being processed

• No concept of server or cluster

• AWS S3
• Fully managed object storage service

• Pay per byte being stored and written

• No server maintenance or resource scaling

Y. Cheng UVA CS4740 Fall '24 19

Recap: Cloud evolution history –
A virtualization story

Y. Cheng UVA CS4740 Fall '24 20

Classic cloud app stack

Y. Cheng UVA CS4740 Fall '24 21

Application

Server

Operating system

Hardware

Requests

Virtual memory

CPU scheduling

…

1st generation: virtual machine (VM)

Y. Cheng UVA CS4740 Fall '24 22

Application

Server

Operating system

Hardware

Virtual hardware

Requests

1st generation: virtual machine (VM)

Y. Cheng UVA CS4740 Fall '24 23

Application

Server

OS

Hardware

Virtual hardware

Application

Server

OS

Requests

2nd generation: containers

Y. Cheng UVA CS4740 Fall '24 24

Application

Server

Hardware

Virtual OS

Application

Server

Operating system

Requests

3rd generation: serverless functions

Y. Cheng UVA CS4740 Fall '24 25

Application

Hardware

Virtual servers

Application

Operating system

Server

Requests

3rd generation: serverless functions

Y. Cheng UVA CS4740 Fall '24 26

Fn

A

Hardware

Virtual servers

Operating system

Server

FnZ Fn0 Fn9… …
Requests

Tradeoff discussion

Y. Cheng UVA CS4740 Fall '24 27

Serverless functions

(AWS Lambdas)
Containers VMs

Isolation?

Flexibility?

Overhead?

++ + +++

++++++

++++++

Above the surface: Core capability

1. (Provider) Manage a set of user-defined functions

2. Take an event sent over HTTP or received from an
event source

3. Determine function(s) to which to dispatch the
event

4. Find an existing instance of function or create a
new one

5. Send the event to the function instance

6. Wait for a response

7. Gather execution logs

8. Make the response available to the user

9. Stop the function when it is no longer needed

Y. Cheng UVA CS4740 Fall '24 28

Above the surface: Core capability

1. (Provider) Manage a set of user-defined functions

2. Take an event sent over HTTP or received from an
event source

3. Determine function(s) to which to dispatch the
event

4. Find an existing instance of function or create a
new one

5. Send the event to the function instance

6. Wait for a response

7. Gather execution logs

8. Make the response available to the user

9. Stop the function when it is no longer needed

Y. Cheng UVA CS4740 Fall '24 29

Above the surface: Core capability

1. (Provider) Manage a set of user-defined functions

2. Take an event sent over HTTP or received from an
event source

3. Determine function(s) to which to dispatch the
event

4. Find an existing instance of function or create a
new one

5. Send the event to the function instance

6. Wait for a response

7. Gather execution logs

8. Make the response available to the user

9. Stop the function when it is no longer needed

Y. Cheng UVA CS4740 Fall '24 30

Above the surface: Core capability

1. (Provider) Manage a set of user-defined functions

2. Take an event sent over HTTP or received from an
event source

3. Determine function(s) to which to dispatch the
event

4. Find an existing instance of function or create a
new one

5. Send the event to the function instance

6. Wait for a response

7. Gather execution logs

8. Make the response available to the user

9. Stop the function when it is no longer needed

Y. Cheng UVA CS4740 Fall '24 31

Above the surface: Core capability

1. (Provider) Manage a set of user-defined functions

2. Take an event sent over HTTP or received from an
event source

3. Determine function(s) to which to dispatch the
event

4. Find an existing instance of function or create a
new one

5. Send the event to the function instance

6. Wait for a response

7. Gather execution logs

8. Make the response available to the user

9. Stop the function when it is no longer needed

Y. Cheng UVA CS4740 Fall '24 32

Above the surface: Core capability

1. (Provider) Manage a set of user-defined functions

2. Take an event sent over HTTP or received from an
event source

3. Determine function(s) to which to dispatch the
event

4. Find an existing instance of function or create a
new one

5. Send the event to the function instance

6. Wait for a response

7. Gather execution logs

8. Make the response available to the user

9. Stop the function when it is no longer needed

Y. Cheng UVA CS4740 Fall '24 33

Above the surface: Core capability

1. (Provider) Manage a set of user-defined functions

2. Take an event sent over HTTP or received from an
event source

3. Determine function(s) to which to dispatch the
event

4. Find an existing instance of function or create a
new one

5. Send the event to the function instance

6. Wait for a response

7. Gather execution logs

8. Make the response available to the user

9. Stop the function when the execution terminates

Y. Cheng UVA CS4740 Fall '24 34

Clients

Y. Cheng 35

UI

API

gateway

Event

sources

Scheduler

Python

Server

Container

Container

…

Scheduler

…

…Fn1 FnN

Fn1

Function registry

Workers

Developer

FaaS backend infrastructure

Node.js

Server

Fn2

Fn2

Under the hood: FaaS architecture

Clients

Y. Cheng 36

UI

API

gateway

Event

sources

Scheduler

Python

Server

…

Scheduler

…

…Fn1 FnN

Workers

Developer Node.js

Server

Fn2

Upload

function
Function registry

Under the hood: FaaS architecture

FaaS backend infrastructure

Clients

Y. Cheng 37

UI

API

gateway

Event

sources

Scheduler

Python

Server

…

Scheduler

…

…Fn1 FnN

Workers

Developer Node.js

Server

Fn2

Req

Function registry

Under the hood: FaaS architecture

FaaS backend infrastructure

Clients

Y. Cheng 38

UI

API

gateway

Event

sources

Scheduler

Python

Server

…

Scheduler

…

…Fn1 FnN

Workers

Developer Node.js

Server

Fn2

Req

Function registry

Under the hood: FaaS architecture

FaaS backend infrastructure

Clients

Y. Cheng 39

UI

API

gateway

Event

sources

Scheduler

Python

Server

Container

…

Scheduler

…

…Fn1 FnN

Fn1

Workers

Developer Node.js

Server

Fn2

Req

Function registry

Under the hood: FaaS architecture

FaaS backend infrastructure

Clients

Y. Cheng 40

UI

API

gateway

Event

sources

Scheduler

Python

Server

…

Scheduler

…

…Fn1 FnN

Fn1

Developer

Servers are

auto-scaled

Node.js

Server

Fn2

Req

Function registry

Fn1

Under the hood: FaaS architecture

FaaS backend infrastructure

AWS Lambda

• Lambda capacity config keeps evolving:
300 seconds 900 seconds (15 minutes)

single-core two-core → up to 6 cores

1.5 GB → 10 GB memory

512 MB → up to 10GB of /tmp file system

Python, Java, Node.js, Go, …

Pricing:
• Fine-grained billing: 1-millisecond billed duration

• $0.20 per 1M requests (invocations charge $)

• $0.0000166667 for every GB-second (compute time
charges $$)

• 6,000 1 GB Lambda functions for one second: 10¢

Y. Cheng UVA CS4740 Fall '24 41

1st gen
Current

offering

Desirable properties

• Operationally
• “No-ops” – (almost) no

configuration

• Autoscaling down to 0

• Closer to pay-per-use
(rather than pay-per-
allocation)

• Fine-grained billing

Y. Cheng UVA CS4740 Fall '24 42

FaaS today

• FaaS is used mostly for simple or coarse-grained tasks
• Stateless, embarrassingly parallel tasks, simple workflows

• ETL, software testing, API middleware, image processing, etc.

• Glue to other serverless backends

• Lots of problems are limiting FaaS’ scope
• Poor performance (vs. time to run actual code) at scale
• Mismatch of infrastructure support (e.g., today’s OS not

designed for FaaS)
• Rule-breaking research needed to reimagine/broaden the scope
• Very resource-inefficient and costly for serverless providers
• Lack of support for accelerators
• …

• Orders of magnitude slower and inefficient for
many “killer” apps

• ML inference, microservices, …

Y. Cheng UVA CS4740 Fall '24 43

Limitations

• Banned inbound network

• No guaranteed data availability

• Lambdas are resource-constrained

• Lambdas have limited execution time

• High cold startup cost and invocation cost

Y. Cheng UVA CS4740 Fall '24 44

	Slide 1: Serverless Computing
	Slide 2: Motivation
	Slide 3: When to use the cloud?
	Slide 4
	Slide 5
	Slide 6: #thecloudistoodamnhard
	Slide 7: #thecloudistoodamnhard
	Slide 8: #thecloudistoodamnhard
	Slide 9: #thecloudistoodamnhard
	Slide 10: #thecloudistoodamnhard
	Slide 11: #thecloudistoodamnhard
	Slide 12: #thecloudistoodamnhard
	Slide 13: #thecloudistoodamnhard
	Slide 14: #thecloudistoodamnhard
	Slide 15: Decision paralysis?? Go for Serverless!
	Slide 16: What is serverless computing?
	Slide 17: What is serverless computing?
	Slide 18: A car analogy
	Slide 19: Concept of serverless is not new
	Slide 20: Recap: Cloud evolution history – A virtualization story
	Slide 21: Classic cloud app stack
	Slide 22: 1st generation: virtual machine (VM)
	Slide 23: 1st generation: virtual machine (VM)
	Slide 24: 2nd generation: containers
	Slide 25: 3rd generation: serverless functions
	Slide 26: 3rd generation: serverless functions
	Slide 27: Tradeoff discussion
	Slide 28: Above the surface: Core capability
	Slide 29: Above the surface: Core capability
	Slide 30: Above the surface: Core capability
	Slide 31: Above the surface: Core capability
	Slide 32: Above the surface: Core capability
	Slide 33: Above the surface: Core capability
	Slide 34: Above the surface: Core capability
	Slide 35
	Slide 36
	Slide 37
	Slide 38: Under the hood: FaaS architecture
	Slide 39: Under the hood: FaaS architecture
	Slide 40: Under the hood: FaaS architecture
	Slide 41: AWS Lambda
	Slide 42: Desirable properties
	Slide 43: FaaS today
	Slide 44: Limitations

