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Virtualization techniques

Overall objectives

1. Isolation

2. Performance

Y. Cheng UVA CS4740 Fall '24 2



Virtualization techniques

• Process-level virtualization

• OS-level virtualization

• Whole-machine virtualization
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Virtualization techniques

• OS-level virtualization
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Virtualization techniques

• Whole-machine virtualization
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Virtual machines (VMs)
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Virtual machine monitor (VMM)
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Virtual machine monitor (VMM)

• Multiple VMs running on a physical machine (PM) – 
multiplexing the underlying machine
• Similar to how OS multiplexes processes on CPU

• VMM performs VM switch (much like process 
context switch)
• Runs a VM a bit, save context and switch to another VM, 

and so on…

• What’s the problem?
• Guest OS expects to have unrestricted access to 

hardware, runs privileged instructions, unlike user 
processes
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Trap and emulate VMM 

• All CPUs have multiple privilege levels
• Ring 0,1,2,3 in x86 CPUs

• Normally, user process runs in Ring 3, 
OS in Ring 0
• Privileged instructions only run in Ring 0

• With VMM, user process in Ring 3, 
VMM/host OS in Ring 0
• Guest OS must be protected from guest 

apps
• But not fully privileged like host OS/VMM
• Let guest OS run in Ring 1? 

• Trap-and-emulate VMM: Guest OS runs 
at lower privilege level than VMM, traps 
to VMM for privileged operation
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Trap and emulate VMM (cont.)

• Guest app needs to trigger 
syscall/interrupt
• Special trap instr (int n), 

traps to VMM

• VMM doesn’t know how to 
handle trap

• VMM jumps to guest OS trap 
handler

• Trap handled by guest OS 
normally
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Trap and emulate VMM (cont.)

• Guest app needs to handle 
syscall/interrupt
• Special trap instr (int n), traps to 

VMM
• VMM doesn’t know how to handle 

trap
• VMM jumps to guest OS trap 

handler
• Trap handled by guest OS 

normally

• Guest OS performs return from 
trap
• Privileged instr, traps to VMM
• VMM jumps to corresponding 

user process
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Trap and emulate VMM (cont.)

• Guest app needs to handle 
syscall/interrupt
• Special trap instr (int n), traps to 

VMM
• VMM doesn’t know how to handle trap
• VMM jumps to guest OS trap handler
• Trap handled by guest OS normally

• Guest OS performs return from trap
• Privileged instr, traps to VMM
• VMM jumps to corresponding user 

process

• Any privileged action by guest OS 
traps to VMM, emulated by VMM
• Example: set IDT (lidt), set CR3, 

access hardware, modify hardware 
state

• Sensitive data structures like IDT must 
be managed by VMM, not guest OS
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Problems with trap and emulate

• Guest OS may realize it is running at lower 
privileged level
• Some registers in x86 reflect CPU privilege level 

(code segment/CS register)
• E.g., in x86, 0 indicates Ring 0, while 3 indicates Ring 3

• Guest OS can read these values and get offended!
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Problems with trap and emulate

• Guest OS may realize it is running at lower 
privileged level
• Some registers in x86 reflect CPU privilege level 

(code segment/CS register)

• Guest OS can read these values and get offended!

• Some x86 instructions that change hardware 
state (sensitive instructions) run in both 
privileged and unprivileged modes
• Behaves differently when guest OS in Ring 0 vs. in 

less privileged Ring 1

• OS behaves incorrectly in Ring 1, will not trap to VMM
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Problems with trap and emulate

• Guest OS may realize it is running at lower privileged 
level
• Some registers in x86 reflect CPU privilege level (code 

segment/CS register)

• Guest OS can read these values and get offended!

• Some x86 instructions that change hardware state 
(sensitive instructions) run in both privileged and 
unprivileged modes
• Behaves differently when guest OS in Ring 0 vs. in less 

privileged Ring 1

• OS behaves incorrectly in Ring 1, will not trap to VMM

• Legacy reasons
• OSes not originally designed to run at a lower privilege level

• Instruction set architecture (ISA) of x86 is not easily virtualizable 
(x86 wasn’t designed with virtualization in mind)
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Example

• EFLAGS register is a set of CPU flags
• IF (interrupt flag) indicates if interrupts on/off

• Consider the popf instruction in x86
• Pops a value from top of stack and set EFLAGS

• If executed in Ring 0, all flags set normally

• If executed in Ring 1, only some flags set
• IF is not set as it is privileged flag

• popf is a sensitive instruction, not privileged, 
does not trap, behaves differently when executed 
in different privilege levels
• Guest OS is buggy in Ring 1
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Popek Goldberg theorem

• Sensitive instruction = changes hardware state

• Privileged instruction = runs only in privileged mode
• Traps to Ring 0 if executed from unprivileged rings

• To build a VMM efficiently via trap-and-emulate 
method, sensitive instructions should be a subset of 
privileged instructions
• x86 does not satisfy this criteria, so trap and emulate VMM 

is not possible with x86
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Popek Goldberg theorem

• Sensitive instruction = changes hardware state

• Privileged instruction = runs only in privileged mode
• Traps to Ring 0 if executed from unprivileged rings

• To build a VMM efficiently via trap-and-emulate 
method, sensitive instructions should be a subset of 
privileged instructions
• x86 does not satisfy this criteria, so trap and emulate VMM 

is not possible with x86
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Techniques to virtualize x86

• Paravirtualization: rewrite guest OS code to be 
virtualizable
• Guest OS won’t invoke privileged instructions, but 

makes “hypercall” to VMM

• Needs OS source code changes, cannot work with 
unmodified OS

• Example: Xen hypervisor
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Techniques to virtualize x86

• Paravirtualization: rewrite guest OS code to be 
virtualizable
• Guest OS won’t invoke privileged instructions, but makes 

“hypercall” to VMM
• Needs OS source code changes, cannot work with 

unmodified OS
• Example: Xen hypervisor

• Full virtualization: CPU instructions of guest OS are 
translated to be virtualizable
• Sensitive instructions translated to trap to VMM
• Dynamic (on the fly) binary translation, so works with 

unmodified OS
• Higher overhead than paravirtualization
• Example: VMWare workstation
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Techniques to virtualize x86 (cont.)

• Hardware-assisted virtualization: KVM/QEMU in 
Linux
• CPU has a special VMX mode of execution

• x86 has 4 rings on non-VMX root mode, another 4 
rings in VMX mode
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Techniques to virtualize x86 (cont.)

• Hardware-assisted virtualization: KVM/QEMU in 
Linux
• CPU has a special VMX mode of execution

• x86 has 4 rings on non-VMX root mode, another 4 
rings in VMX mode
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Techniques to virtualize x86 (cont.)

• Hardware-assisted virtualization: KVM/QEMU in 
Linux
• CPU has a special VMX mode of execution

• x86 has 4 rings on non-VMX root mode, another 4 
rings in VMX mode
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Techniques to virtualize x86 (cont.)

• Hardware-assisted virtualization: KVM/QEMU in 
Linux
• CPU has a special VMX mode of execution

• x86 has 4 rings on non-VMX root mode, another 4 
rings in VMX mode

• VMM enters VMX mode to run guest OS in 
(special) Ring 0
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Techniques to virtualize x86 (cont.)

• Hardware-assisted virtualization: KVM/QEMU in 
Linux
• CPU has a special VMX mode of execution

• x86 has 4 rings on non-VMX root mode, another 4 rings in 
VMX mode

• VMM enters VMX mode to run guest OS in (special) 
Ring 0

• Exit back to VMM on triggers (VMM retains control)
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VM demo
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Containers
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Containers: Lightweight virtualization

• Containers share base OS, have different set of 
libraries, utilities, root filesystem, view of process 
tree, networking, etc. 
• VMs have different copies of OS itself

• Containers have less overhead than VMs, but weaker 
isolation
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Cgroups and namespaces

• cgroup types (resource / performance isolation)
• cpu, memory, cpuacct, cpuset, freezer, net_cls, blkio, perf_event, net_prio, 

hugetlb, pids, rdma

• namespace types (namespace isolation)
• network, mount, time, user, cgroup, IPC, PID, UTS

• Both cgroups and namespaces apply to sets of processes. 
Configuring all this by hand is VERY complicated.

• “Container framework”: Does cgroups and namespaces 
configuration automatically under the hood

• One reason Docker is popular: “docker run …” starts a process 
using all these features, each with reasonable configurations.
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Cgroups

• Assign resource limits on a set of processes
• Divide processes into groups and subgroups 

hierarchically

• Assign resource limits for processes in each 
group/subgroup

• What resources?
• CPU, memory, I/O, CPU sets (which process can run 

on which CPU core), and I/O

• Allows a user to specify what fraction of a resource 
can be used by each group of processes
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Namespaces

• Group of processes that have an isolated/sliced 
view of a global resource

• Default namespace for all processes in Linux, 
system calls to create new namespaces and 
place processes in them

• What resources can be isolated / sliced?
• mount: isolates the file system mount points seen by a 

group of processes
• PID: isolates the PID number space seen by 

processes
• network: isolates network resources like IP 

addresses, routing tables, port numbers, etc.
• … 
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Docker demo
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