
Virtualization
CS 4740: Cloud Computing 

Fall 2024

Lecture 13

Yue Cheng

Some material taken/derived from: 
• IIT Bombay CS 695 by Mythili Vutukuru 

@ 2024 released for use under a CC BY-SA license.

https://creativecommons.org/licenses/by-sa/4.0/


Virtualization techniques

Overall objectives

1. Isolation

2. Performance

Y. Cheng UVA CS4740 Fall '24 2



Virtualization techniques

• Process-level virtualization

• OS-level virtualization

• Whole-machine virtualization

Y. Cheng UVA CS4740 Fall '24 3



Virtualization techniques

• Process-level virtualization

Y. Cheng UVA CS4740 Fall '24 4

Application

Operating system

Hardware

Virtual memory

CPU scheduling

File system management 



Virtualization techniques

• Process-level virtualization

Y. Cheng UVA CS4740 Fall '24 5

App

Operating system

Hardware

Virtual memory

CPU scheduling

File system management 

App App App



Virtualization techniques

• OS-level virtualization

Y. Cheng UVA CS4740 Fall '24 6

Operating system

Hardware

Sharing the OS, but uses OS 

features (cgroups, 

namespaces) for isolation

App App App App



Virtualization techniques

• Whole-machine virtualization

Y. Cheng UVA CS4740 Fall '24 7

Application

Operating 

system

Hardware

Virtual hardware

Application

Operating 

system



Virtual machines (VMs)

Y. Cheng UVA CS4740 Fall '24 8



Virtual machine monitor (VMM)

Y. Cheng UVA CS4740 Fall '24 9

Application

Operating 

system

Hardware

Application

Operating 

system

VMM

Type 1 hypervisor

Application

Operating 

system

Hardware

Application

Operating 

system

VMM

Type 2 hypervisor

OS



Virtual machine monitor (VMM)

• Multiple VMs running on a physical machine (PM) – 
multiplexing the underlying machine
• Similar to how OS multiplexes processes on CPU

• VMM performs VM switch (much like process 
context switch)
• Runs a VM a bit, save context and switch to another VM, 

and so on…

• What’s the problem?
• Guest OS expects to have unrestricted access to 

hardware, runs privileged instructions, unlike user 
processes

Y. Cheng UVA CS4740 Fall '24 10

Proc

OS

Proc Proc Proc VM

VMM

VM VM VM



Trap and emulate VMM 

• All CPUs have multiple privilege levels
• Ring 0,1,2,3 in x86 CPUs

• Normally, user process runs in Ring 3, 
OS in Ring 0
• Privileged instructions only run in Ring 0

• With VMM, user process in Ring 3, 
VMM/host OS in Ring 0
• Guest OS must be protected from guest 

apps
• But not fully privileged like host OS/VMM
• Let guest OS run in Ring 1? 

• Trap-and-emulate VMM: Guest OS runs 
at lower privilege level than VMM, traps 
to VMM for privileged operation

Y. Cheng UVA CS4740 Fall '24 11

Guest app 

(Ring 3)

VMM / Host OS 

(Ring 0)

Guest OS 

(Ring 1)

https://en.wikipedia.org/wiki/Protection_ring 

https://en.wikipedia.org/wiki/Protection_ring


Trap and emulate VMM (cont.)

• Guest app needs to trigger 
syscall/interrupt
• Special trap instr (int n), 

traps to VMM

• VMM doesn’t know how to 
handle trap

• VMM jumps to guest OS trap 
handler

• Trap handled by guest OS 
normally

Y. Cheng UVA CS4740 Fall '24 12

Guest app 

(Ring 3)

VMM / Host OS 

(Ring 0)

Guest OS 

(Ring 1)



Trap and emulate VMM (cont.)

• Guest app needs to handle 
syscall/interrupt
• Special trap instr (int n), traps to 

VMM
• VMM doesn’t know how to handle 

trap
• VMM jumps to guest OS trap 

handler
• Trap handled by guest OS 

normally

• Guest OS performs return from 
trap
• Privileged instr, traps to VMM
• VMM jumps to corresponding 

user process

Y. Cheng UVA CS4740 Fall '24 13

Guest app 

(Ring 3)

VMM / Host OS 

(Ring 0)

Guest OS 

(Ring 1)
Trap 

and 

emulate



Trap and emulate VMM (cont.)

• Guest app needs to handle 
syscall/interrupt
• Special trap instr (int n), traps to 

VMM
• VMM doesn’t know how to handle trap
• VMM jumps to guest OS trap handler
• Trap handled by guest OS normally

• Guest OS performs return from trap
• Privileged instr, traps to VMM
• VMM jumps to corresponding user 

process

• Any privileged action by guest OS 
traps to VMM, emulated by VMM
• Example: set IDT (lidt), set CR3, 

access hardware, modify hardware 
state

• Sensitive data structures like IDT must 
be managed by VMM, not guest OS

Y. Cheng UVA CS4740 Fall '24 14

Guest app 

(Ring 3)

VMM / Host OS 

(Ring 0)

Guest OS 

(Ring 1)
Trap 

and 

emulate



Problems with trap and emulate

• Guest OS may realize it is running at lower 
privileged level
• Some registers in x86 reflect CPU privilege level 

(code segment/CS register)
• E.g., in x86, 0 indicates Ring 0, while 3 indicates Ring 3

• Guest OS can read these values and get offended!

Y. Cheng UVA CS4740 Fall '24 15



Problems with trap and emulate

• Guest OS may realize it is running at lower 
privileged level
• Some registers in x86 reflect CPU privilege level 

(code segment/CS register)

• Guest OS can read these values and get offended!

• Some x86 instructions that change hardware 
state (sensitive instructions) run in both 
privileged and unprivileged modes
• Behaves differently when guest OS in Ring 0 vs. in 

less privileged Ring 1

• OS behaves incorrectly in Ring 1, will not trap to VMM

Y. Cheng UVA CS4740 Fall '24 16



Problems with trap and emulate

• Guest OS may realize it is running at lower privileged 
level
• Some registers in x86 reflect CPU privilege level (code 

segment/CS register)

• Guest OS can read these values and get offended!

• Some x86 instructions that change hardware state 
(sensitive instructions) run in both privileged and 
unprivileged modes
• Behaves differently when guest OS in Ring 0 vs. in less 

privileged Ring 1

• OS behaves incorrectly in Ring 1, will not trap to VMM

• Legacy reasons
• OSes not originally designed to run at a lower privilege level

• Instruction set architecture (ISA) of x86 is not easily virtualizable 
(x86 wasn’t designed with virtualization in mind)

Y. Cheng UVA CS4740 Fall '24 17



Example

• EFLAGS register is a set of CPU flags
• IF (interrupt flag) indicates if interrupts on/off

• Consider the popf instruction in x86
• Pops a value from top of stack and set EFLAGS

• If executed in Ring 0, all flags set normally

• If executed in Ring 1, only some flags set
• IF is not set as it is privileged flag

• popf is a sensitive instruction, not privileged, 
does not trap, behaves differently when executed 
in different privilege levels
• Guest OS is buggy in Ring 1

Y. Cheng UVA CS4740 Fall '24 18

https://en.wikipedia.org/wiki/FLAGS_register 

https://en.wikipedia.org/wiki/FLAGS_register


Popek Goldberg theorem

• Sensitive instruction = changes hardware state

• Privileged instruction = runs only in privileged mode
• Traps to Ring 0 if executed from unprivileged rings

• To build a VMM efficiently via trap-and-emulate 
method, sensitive instructions should be a subset of 
privileged instructions
• x86 does not satisfy this criteria, so trap and emulate VMM 

is not possible with x86

Y. Cheng UVA CS4740 Fall '24 19

https://www.scs.stanford.edu/21wi-cs140/sched/readings/virtualization.pdf 

https://www.scs.stanford.edu/21wi-cs140/sched/readings/virtualization.pdf


Popek Goldberg theorem

• Sensitive instruction = changes hardware state

• Privileged instruction = runs only in privileged mode
• Traps to Ring 0 if executed from unprivileged rings

• To build a VMM efficiently via trap-and-emulate 
method, sensitive instructions should be a subset of 
privileged instructions
• x86 does not satisfy this criteria, so trap and emulate VMM 

is not possible with x86

Y. Cheng UVA CS4740 Fall '24 20

Sensitive 

instructions

Privileged 

instructions

CPU instructions

https://www.scs.stanford.edu/21wi-cs140/sched/readings/virtualization.pdf 

https://www.scs.stanford.edu/21wi-cs140/sched/readings/virtualization.pdf


Popek Goldberg theorem

• Sensitive instruction = changes hardware state

• Privileged instruction = runs only in privileged mode
• Traps to Ring 0 if executed from unprivileged rings

• To build a VMM efficiently via trap-and-emulate 
method, sensitive instructions should be a subset of 
privileged instructions
• x86 does not satisfy this criteria, so trap and emulate VMM 

is not possible with x86

Y. Cheng UVA CS4740 Fall '24 21

Sensitive 

instructions

Privileged 

instructions

CPU instructions x86 instructions

https://www.scs.stanford.edu/21wi-cs140/sched/readings/virtualization.pdf 

https://www.scs.stanford.edu/21wi-cs140/sched/readings/virtualization.pdf


Techniques to virtualize x86

• Paravirtualization: rewrite guest OS code to be 
virtualizable
• Guest OS won’t invoke privileged instructions, but 

makes “hypercall” to VMM

• Needs OS source code changes, cannot work with 
unmodified OS

• Example: Xen hypervisor

Y. Cheng UVA CS4740 Fall '24 22

https://www.cl.cam.ac.uk/research/srg/netos/papers/2003-xensosp.pdf 

https://www.cl.cam.ac.uk/research/srg/netos/papers/2003-xensosp.pdf


Techniques to virtualize x86

• Paravirtualization: rewrite guest OS code to be 
virtualizable
• Guest OS won’t invoke privileged instructions, but makes 

“hypercall” to VMM
• Needs OS source code changes, cannot work with 

unmodified OS
• Example: Xen hypervisor

• Full virtualization: CPU instructions of guest OS are 
translated to be virtualizable
• Sensitive instructions translated to trap to VMM
• Dynamic (on the fly) binary translation, so works with 

unmodified OS
• Higher overhead than paravirtualization
• Example: VMWare workstation

Y. Cheng UVA CS4740 Fall '24 23

https://www.cl.cam.ac.uk/research/srg/netos/papers/2003-xensosp.pdf 

https://www.cl.cam.ac.uk/research/srg/netos/papers/2003-xensosp.pdf


Techniques to virtualize x86 (cont.)

• Hardware-assisted virtualization: KVM/QEMU in 
Linux
• CPU has a special VMX mode of execution

• x86 has 4 rings on non-VMX root mode, another 4 
rings in VMX mode

Y. Cheng UVA CS4740 Fall '24 24



Techniques to virtualize x86 (cont.)

• Hardware-assisted virtualization: KVM/QEMU in 
Linux
• CPU has a special VMX mode of execution

• x86 has 4 rings on non-VMX root mode, another 4 
rings in VMX mode

Y. Cheng UVA CS4740 Fall '24 25

Guest app 

(Ring 3)

Guest OS 

(Ring 0)

VMX mode



Techniques to virtualize x86 (cont.)

• Hardware-assisted virtualization: KVM/QEMU in 
Linux
• CPU has a special VMX mode of execution

• x86 has 4 rings on non-VMX root mode, another 4 
rings in VMX mode

Y. Cheng UVA CS4740 Fall '24 26

Guest app 

(Ring 3)

Guest OS 

(Ring 0)

VMX mode

Host app 

(Ring 3)

VMM / Host OS 

(Ring 0)

Non-VMX root mode



Techniques to virtualize x86 (cont.)

• Hardware-assisted virtualization: KVM/QEMU in 
Linux
• CPU has a special VMX mode of execution

• x86 has 4 rings on non-VMX root mode, another 4 
rings in VMX mode

• VMM enters VMX mode to run guest OS in 
(special) Ring 0

Y. Cheng UVA CS4740 Fall '24 27

Guest app 

(Ring 3)

Guest OS 

(Ring 0)

VMX mode

Host app 

(Ring 3)

VMM / Host OS 

(Ring 0)

Non-VMX root mode

Enter VMX mode to run VM



Techniques to virtualize x86 (cont.)

• Hardware-assisted virtualization: KVM/QEMU in 
Linux
• CPU has a special VMX mode of execution

• x86 has 4 rings on non-VMX root mode, another 4 rings in 
VMX mode

• VMM enters VMX mode to run guest OS in (special) 
Ring 0

• Exit back to VMM on triggers (VMM retains control)

Y. Cheng UVA CS4740 Fall '24 28

Host app 

(Ring 3)

VMM / Host OS 

(Ring 0)

Non-VMX root mode

Guest app 

(Ring 3)

Guest OS 

(Ring 0)

Enter VMX mode to run VM

Exit to trap to VMM

VMX mode



VM demo

Y. Cheng UVA CS4740 Fall '24 29



Containers

Y. Cheng UVA CS4740 Fall '24 30



Containers: Lightweight virtualization

• Containers share base OS, have different set of 
libraries, utilities, root filesystem, view of process 
tree, networking, etc. 
• VMs have different copies of OS itself

• Containers have less overhead than VMs, but weaker 
isolation

Y. Cheng UVA CS4740 Fall '24 31

process 2

Container

namespaces: mount, network, etc.
cgroups: cpu, memory, etc.

process 3

process 1

Base OS / kernel

Guest OS 1
Guest 
OS 2

Guest 
OS 3

VMM / host OS

VMs are separate systems with complete 
copies of OS, user processes, etc. 



Cgroups and namespaces

• cgroup types (resource / performance isolation)
• cpu, memory, cpuacct, cpuset, freezer, net_cls, blkio, perf_event, net_prio, 

hugetlb, pids, rdma

• namespace types (namespace isolation)
• network, mount, time, user, cgroup, IPC, PID, UTS

• Both cgroups and namespaces apply to sets of processes. 
Configuring all this by hand is VERY complicated.

• “Container framework”: Does cgroups and namespaces 
configuration automatically under the hood

• One reason Docker is popular: “docker run …” starts a process 
using all these features, each with reasonable configurations.

Y. Cheng UVA CS4740 Fall '24 32



Cgroups

• Assign resource limits on a set of processes
• Divide processes into groups and subgroups 

hierarchically

• Assign resource limits for processes in each 
group/subgroup

• What resources?
• CPU, memory, I/O, CPU sets (which process can run 

on which CPU core), and I/O

• Allows a user to specify what fraction of a resource 
can be used by each group of processes

Y. Cheng UVA CS4740 Fall '24 33



Namespaces

• Group of processes that have an isolated/sliced 
view of a global resource

• Default namespace for all processes in Linux, 
system calls to create new namespaces and 
place processes in them

• What resources can be isolated / sliced?
• mount: isolates the file system mount points seen by a 

group of processes
• PID: isolates the PID number space seen by 

processes
• network: isolates network resources like IP 

addresses, routing tables, port numbers, etc.
• … 

Y. Cheng UVA CS4740 Fall '24 34



Docker demo

Y. Cheng UVA CS4740 Fall '24 35


	Slide 1: Virtualization
	Slide 2: Virtualization techniques
	Slide 3: Virtualization techniques
	Slide 4: Virtualization techniques
	Slide 5: Virtualization techniques
	Slide 6: Virtualization techniques
	Slide 7: Virtualization techniques
	Slide 8: Virtual machines (VMs)
	Slide 9: Virtual machine monitor (VMM)
	Slide 10: Virtual machine monitor (VMM)
	Slide 11: Trap and emulate VMM 
	Slide 12: Trap and emulate VMM (cont.)
	Slide 13: Trap and emulate VMM (cont.)
	Slide 14: Trap and emulate VMM (cont.)
	Slide 15: Problems with trap and emulate
	Slide 16: Problems with trap and emulate
	Slide 17: Problems with trap and emulate
	Slide 18: Example
	Slide 19: Popek Goldberg theorem
	Slide 20: Popek Goldberg theorem
	Slide 21: Popek Goldberg theorem
	Slide 22: Techniques to virtualize x86
	Slide 23: Techniques to virtualize x86
	Slide 24: Techniques to virtualize x86 (cont.)
	Slide 25: Techniques to virtualize x86 (cont.)
	Slide 26: Techniques to virtualize x86 (cont.)
	Slide 27: Techniques to virtualize x86 (cont.)
	Slide 28: Techniques to virtualize x86 (cont.)
	Slide 29: VM demo
	Slide 30: Containers
	Slide 31: Containers: Lightweight virtualization
	Slide 32: Cgroups and namespaces
	Slide 33: Cgroups
	Slide 34: Namespaces
	Slide 35: Docker demo

