
Raft: A Consensus Algorithm
for Replicated Logs

Diego Ongaro and John Ousterhout

Stanford University

● Replicated log => replicated state machine

▪ All servers execute same commands in same order

● Consensus module ensures proper log replication

● System makes progress as long as any majority of servers are up

● Failure model: fail-stop (not Byzantine), delayed/lost messages
March 3, 2013 Raft Consensus Algorithm Slide 2

Goal: Replicated Log

add jmp mov

Log

Consensus
Module

State
Machine

add jmp mov

Log

Consensus
Module

State
Machine

add jmp mov

Log

Consensus
Module

State
Machine

Servers

Clients

● Replicated log => replicated state machine

▪ All servers execute same commands in same order

● Consensus module ensures proper log replication

● System makes progress as long as any majority of servers are up

● Failure model: fail-stop (not Byzantine), delayed/lost messages
March 3, 2013 Raft Consensus Algorithm Slide 3

Goal: Replicated Log

add jmp mov shl

Log

Consensus
Module

State
Machine

add jmp mov shl

Log

Consensus
Module

State
Machine

add jmp mov shl

Log

Consensus
Module

State
Machine

Servers

Clients

shl

Two general approaches to consensus:

● Symmetric, leader-less:

▪ All servers have equal roles

▪ Clients can contact any server

● Asymmetric, leader-based:

▪ At any given time, one server is in charge, others accept its

decisions

▪ Clients communicate with the leader

● Raft uses a leader:

▪ Decomposes the problem (normal operation, leader changes)

▪ Simplifies normal operation (no conflicts)

▪ More efficient than leader-less approaches

March 3, 2013 Raft Consensus Algorithm Slide 4

Approaches to Consensus

1. Leader election:

▪ Select one of the servers to act as leader

▪ Detect crashes, choose new leader

2. Normal operation (basic log replication)

3. Safety and consistency after leader changes

4. Neutralizing old leaders

5. Client interactions

▪ Implementing linearizeable semantics

6. Configuration changes:

▪ Adding and removing servers

March 3, 2013 Raft Consensus Algorithm Slide 5

Raft Overview

● At any given time, each server is either:

▪ Leader: handles all client interactions, log replication

● At most 1 viable leader at a time

▪ Follower: completely passive (issues no RPCs, responds to

incoming RPCs)

▪ Candidate: used to elect a new leader

● Normal operation: 1 leader, N-1 followers

March 3, 2013 Raft Consensus Algorithm Slide 6

Server States

Follower Candidate Leader

start
timeout,

start election
receive votes from
majority of servers

timeout,
new election

discover server with
 higher termdiscover current server

or higher term

“step
down”

● Time divided into terms:

▪ Election

▪ Normal operation under a single leader

● At most 1 leader per term

● Some terms have no leader (failed election)

● Each server maintains current term value

● Key role of terms: identify obsolete information

March 3, 2013 Raft Consensus Algorithm Slide 7

Terms

Term 1 Term 2 Term 3 Term 4 Term 5

time

Elections Normal OperationSplit Vote

March 3, 2013 Raft Consensus Algorithm Slide 8

• Respond to RPCs from candidates and leaders.

• Convert to candidate if election timeout elapses without

either:

• Receiving valid AppendEntries RPC, or

• Granting vote to candidate

Followers

• Increment currentTerm, vote for self

• Reset election timeout

• Send RequestVote RPCs to all other servers, wait for either:

• Votes received from majority of servers: become leader

• AppendEntries RPC received from new leader: step
down

• Election timeout elapses without election resolution:

increment term, start new election

• Discover higher term: step down

Candidates

Each server persists the following to stable storage

synchronously before responding to RPCs:

currentTerm latest term server has seen (initialized to 0

on first boot)

votedFor candidateId that received vote in current
term (or null if none)

log[] log entries

Persistent State

term term when entry was received by leader

index position of entry in the log

command command for state machine

Log Entry

Invoked by candidates to gather votes.

Arguments:

candidateId candidate requesting vote

term candidate's term

lastLogIndex index of candidate's last log entry
lastLogTerm term of candidate's last log entry

Results:

term currentTerm, for candidate to update itself

voteGranted true means candidate received vote

Implementation:
1. If term > currentTerm, currentTerm ← term

(step down if leader or candidate)

2. If term == currentTerm, votedFor is null or candidateId,

and candidate's log is at least as complete as local log,

grant vote and reset election timeout

RequestVote RPC

Invoked by leader to replicate log entries and discover

inconsistencies; also used as heartbeat .

Arguments:

term leader's term

leaderId so follower can redirect clients
prevLogIndex index of log entry immediately preceding

new ones

prevLogTerm term of prevLogIndex entry

entries[] log entries to store (empty for heartbeat)

commitIndex last entry known to be committed

Results:

term currentTerm, for leader to update itself

success true if follower contained entry matching

prevLogIndex and prevLogTerm

Implementation:
1. Return if term < currentTerm

2. If term > currentTerm, currentTerm ← term

3. If candidate or leader, step down

4. Reset election timeout

5. Return failure if log doesn’t contain an entry at
prevLogIndex whose term matches prevLogTerm

6. If existing entries conflict with new entries, delete all

existing entries starting with first conflicting entry

7. Append any new entries not already in the log

8. Advance state machine with newly committed entries

AppendEntries RPC

Raft Protocol Summary

• Initialize nextIndex for each to last log index + 1

• Send initial empty AppendEntries RPCs (heartbeat) to each

follower; repeat during idle periods to prevent election

timeouts

• Accept commands from clients, append new entries to local
log

• Whenever last log index ≥ nextIndex for a follower, send

AppendEntries RPC with log entries starting at nextIndex,

update nextIndex if successful

• If AppendEntries fails because of log inconsistency,
decrement nextIndex and retry

• Mark log entries committed if stored on a majority of

servers and at least one entry from current term is stored on

a majority of servers

• Step down if currentTerm changes

Leaders

● Servers start up as followers

● Followers expect to receive RPCs from leaders or

candidates

● Leaders must send heartbeats (empty

AppendEntries RPCs) to maintain authority

● If electionTimeout elapses with no RPCs:

▪ Follower assumes leader has crashed

▪ Follower starts new election

▪ Timeouts typically 100-500ms

March 3, 2013 Raft Consensus Algorithm Slide 9

Heartbeats and Timeouts

● Increment current term

● Change to Candidate state

● Vote for self

● Send RequestVote RPCs to all other servers, retry

until either:

1. Receive votes from majority of servers:

● Become leader

● Send AppendEntries heartbeats to all other servers

2. Receive RPC from valid leader:

● Return to follower state

3. No-one wins election (election timeout elapses):

● Increment term, start new election

March 3, 2013 Raft Consensus Algorithm Slide 10

Election Basics

● Safety: allow at most one winner per term

▪ Each server gives out only one vote per term (persist on disk)

▪ Two different candidates can’t accumulate majorities in same

term

● Liveness: some candidate must eventually win

▪ Choose election timeouts randomly in [T, 2T]

▪ One server usually times out and wins election before others

wake up

▪ Works well if T >> broadcast time

March 3, 2013 Raft Consensus Algorithm Slide 11

Elections, cont’d

Servers

Voted for

candidate A

B can’t also

get majority

● Log entry = index, term, command

● Log stored on stable storage (disk); survives crashes

● Entry committed if known to be stored on majority of servers
▪ Durable, will eventually be executed by state machines

March 3, 2013 Raft Consensus Algorithm Slide 12

Log Structure

1
add

1 2 3 4 5 6 7 8

3
jmp

1
cmp

1
ret

2
mov

3
div

3
shl

3
sub

1
add

3
jmp

1
cmp

1
ret

2
mov

1
add

3
jmp

1
cmp

1
ret

2
mov

3
div

3
shl

3
sub

1
add

1
cmp

1
add

3
jmp

1
cmp

1
ret

2
mov

3
div

3
shl

leader

log index

followers

committed entries

term

command

● Client sends command to leader

● Leader appends command to its log

● Leader sends AppendEntries RPCs to followers

● Once new entry committed:

▪ Leader passes command to its state machine, returns result to

client

▪ Leader notifies followers of committed entries in subsequent

AppendEntries RPCs

▪ Followers pass committed commands to their state machines

● Crashed/slow followers?

▪ Leader retries RPCs until they succeed

● Performance is optimal in common case:
▪ One successful RPC to any majority of servers

March 3, 2013 Raft Consensus Algorithm Slide 13

Normal Operation

High level of coherency between logs:

● If log entries on different servers have same index

and term:

▪ They store the same command

▪ The logs are identical in all preceding entries

● If a given entry is committed, all preceding entries

are also committed

March 3, 2013 Raft Consensus Algorithm Slide 14

Log Consistency

1
add

1 2 3 4 5 6

3
jmp

1
cmp

1
ret

2
mov

3
div

4
sub

1
add

3
jmp

1
cmp

1
ret

2
mov

● Each AppendEntries RPC contains index, term of

entry preceding new ones

● Follower must contain matching entry; otherwise it

rejects request

● Implements an induction step, ensures coherency

March 3, 2013 Raft Consensus Algorithm Slide 15

AppendEntries Consistency Check

1
add

3
jmp

1
cmp

1
ret

2
mov

1
add

1
cmp

1
ret

2
mov

leader

follower

1 2 3 4 5

1
add

3
jmp

1
cmp

1
ret

2
mov

1
add

1
cmp

1
ret

1
shl

leader

follower

AppendEntries succeeds:

matching entry

AppendEntries fails:

mismatch

● At beginning of new leader’s term:

▪ Old leader may have left entries partially replicated

▪ No special steps by new leader: just start normal operation

▪ Leader’s log is “the truth”

▪ Will eventually make follower’s logs identical to leader’s

▪ Multiple crashes can leave many extraneous log entries:

March 3, 2013 Raft Consensus Algorithm Slide 16

Leader Changes

1 2 3 4 5 6 7 8log index

1 1

1 1

5

5

6 6 6

6

1 1 5 5

1 41

1 1

7 7

2 2 3 3 3

2

7

term s1

s2

s3

s4

s5

Once a log entry has been applied to a state machine,

no other state machine must apply a different value for

that log entry

● Raft safety property:

▪ If a leader has decided that a log entry is committed, that entry

will be present in the logs of all future leaders

● This guarantees the safety requirement

▪ Leaders never overwrite entries in their logs

▪ Only entries in the leader’s log can be committed

▪ Entries must be committed before applying to state machine

March 3, 2013 Raft Consensus Algorithm Slide 17

Safety Requirement

Committed → Present in future leaders’ logs

Restrictions on

commitment

Restrictions on

leader election

● Can’t tell which entries are committed!

● During elections, choose candidate with log most

likely to contain all committed entries

▪ Candidates include log info in RequestVote RPCs

(index & term of last log entry)

▪ Voting server V denies vote if its log is “more complete”:

(lastTermV > lastTermC) ||

(lastTermV == lastTermC) && (lastIndexV > lastIndexC)

▪ Leader will have “most complete” log among electing majority
March 3, 2013 Raft Consensus Algorithm Slide 18

Picking the Best Leader

1 21 1 2

1 2 3 4 5

1 21 1

1 21 1 2
unavailable during
leader transition

committed?

● Case #1/2: Leader decides entry in current term is

committed

● Safe: leader for term 3 must contain entry 4

March 3, 2013 Raft Consensus Algorithm Slide 19

Committing Entry from Current Term

1 2 3 4 5 6

1 1

1 1

1 1

1

2

1

1 1

s1

s2

s3

s4

s5

2

2

2

2

2

2

2

AppendEntries just
succeeded

Can’t be elected as
leader for term 3

Leader for
term 2

● Case #2/2: Leader is trying to finish committing entry

from an earlier term

● Entry 3 not safely committed:

▪ s5 can be elected as leader for term 5

▪ If elected, it will overwrite entry 3 on s1, s2, and s3!

March 3, 2013 Raft Consensus Algorithm Slide 20

Committing Entry from Earlier Term

1 2 3 4 5 6

1 1

1 1

1 1

1

2

1

1 1

s1

s2

s3

s4

s5

2

2
AppendEntries just
succeeded

3

4

3

Leader for
term 4

3

● For a leader to decide an

entry is committed:

▪ Must be stored on a majority

of servers

▪ At least one new entry from

leader’s term must also be

stored on majority of servers

● Once entry 4 committed:

▪ s5 cannot be elected leader

for term 5

▪ Entries 3 and 4 both safe

March 3, 2013 Raft Consensus Algorithm Slide 21

New Commitment Rules

1 2 3 4 5

1 1

1 1

1 1

1

2

1

1 1

s1

s2

s3

s4

s5

2

2

3

4

3

Leader for
term 4

4

4

Combination of election rules and commitment rules

makes Raft safe

3

Leader changes can result in log inconsistencies:

March 3, 2013 Raft Consensus Algorithm Slide 22

Log Inconsistencies

1 41 1 4 5 5 6 6 6

1 2 3 4 5 6 7 8 9 10 11 12log index

leader for
term 8

1 41 1 4 5 5 6 6

1 41 1

1 41 1 4 5 5 6 6 6 6

1 41 1 4 5 5 6 6 6

1 41 1 4

1 1 1

possible
followers

4 4

7 7

2 2 33 3 3 32

(a)

(b)

(c)

(d)

(e)

(f)

Extraneous

Entries

Missing

Entries

March 3, 2013 Raft Consensus Algorithm

● New leader must make follower logs consistent with its own

▪ Delete extraneous entries

▪ Fill in missing entries

● Leader keeps nextIndex for each follower:

▪ Index of next log entry to send to that follower

▪ Initialized to (1 + leader’s last index)

● When AppendEntries consistency check fails, decrement

nextIndex and try again:

Repairing Follower Logs

1 41 1 4 5 5 6 6 6

1 2 3 4 5 6 7 8 9 10 11 12log index

leader for term 7

1 41 1

1 1 1
followers

2 2 33 3 3 32

(a)

(b)

nextIndex

Slide 23

● When follower overwrites inconsistent entry, it

deletes all subsequent entries:

March 3, 2013 Raft Consensus Algorithm Slide 24

Repairing Logs, cont’d

1 41 1 4 5 5 6 6 6

1 2 3 4 5 6 7 8 9 10 11log index

leader for term 7

1 1 1follower (before) 2 2 33 3 3 32

nextIndex

1 1 1follower (after) 4

● Deposed leader may not be dead:

▪ Temporarily disconnected from network

▪ Other servers elect a new leader

▪ Old leader becomes reconnected, attempts to commit log entries

● Terms used to detect stale leaders (and candidates)

▪ Every RPC contains term of sender

▪ If sender’s term is older, RPC is rejected, sender reverts to

follower and updates its term

▪ If receiver’s term is older, it reverts to follower, updates its term,

then processes RPC normally

● Election updates terms of majority of servers

▪ Deposed server cannot commit new log entries

March 3, 2013 Raft Consensus Algorithm Slide 25

Neutralizing Old Leaders

● Send commands to leader

▪ If leader unknown, contact any server

▪ If contacted server not leader, it will redirect to leader

● Leader does not respond until command has been

logged, committed, and executed by leader’s state

machine

● If request times out (e.g., leader crash):

▪ Client reissues command to some other server

▪ Eventually redirected to new leader

▪ Retry request with new leader

March 3, 2013 Raft Consensus Algorithm Slide 26

Client Protocol

● What if leader crashes after executing command, but

before responding?

▪ Must not execute command twice

● Solution: client embeds a unique id in each

command

▪ Server includes id in log entry

▪ Before accepting command, leader checks its log for entry with

that id

▪ If id found in log, ignore new command, return response from old

command

● Result: exactly-once semantics as long as client

doesn’t crash

March 3, 2013 Raft Consensus Algorithm Slide 27

Client Protocol, cont’d

● System configuration:

▪ ID, address for each server

▪ Determines what constitutes a majority

● Consensus mechanism must support changes in the

configuration:

▪ Replace failed machine

▪ Change degree of replication

March 3, 2013 Raft Consensus Algorithm Slide 28

Configuration Changes

Cannot switch directly from one configuration to

another: conflicting majorities could arise

March 3, 2013 Raft Consensus Algorithm Slide 29

Configuration Changes, cont’d

Cold Cnew

Server 1

Server 2

Server 3

Server 4

Server 5

Majority of Cold

Majority of Cnew

time

March 3, 2013 Raft Consensus Algorithm Slide 30

● Raft uses a 2-phase approach:

▪ Intermediate phase uses joint consensus (need majority of both

old and new configurations for elections, commitment)

▪ Configuration change is just a log entry; applied immediately on

receipt (committed or not)

▪ Once joint consensus is committed, begin replicating log entry

for final configuration

Joint Consensus

timeCold+new entry

committed

Cnew entry

committed

Cold

Cold+new

Cnew

Cold can make

unilateral decisions

Cnew can make

unilateral decisions

● Additional details:

▪ Any server from either configuration can serve as leader

▪ If current leader is not in Cnew, must step down once Cnew is

committed.

March 3, 2013 Raft Consensus Algorithm Slide 31

Joint Consensus, cont’d

timeCold+new entry

committed

Cnew entry

committed

Cold

Cold+new

Cnew

Cold can make

unilateral decisions

Cnew can make

unilateral decisions

leader not in Cnew

steps down here

1. Leader election

2. Normal operation

3. Safety and consistency

4. Neutralize old leaders

5. Client protocol

6. Configuration changes

March 3, 2013 Raft Consensus Algorithm Slide 32

Raft Summary

	Slide 1: Raft: A Consensus Algorithm for Replicated Logs
	Slide 2: Goal: Replicated Log
	Slide 3: Goal: Replicated Log
	Slide 4: Approaches to Consensus
	Slide 5: Raft Overview
	Slide 6: Server States
	Slide 7: Terms
	Slide 8
	Slide 9: Heartbeats and Timeouts
	Slide 10: Election Basics
	Slide 11: Elections, cont’d
	Slide 12: Log Structure
	Slide 13: Normal Operation
	Slide 14: Log Consistency
	Slide 15: AppendEntries Consistency Check
	Slide 16: Leader Changes
	Slide 17: Safety Requirement
	Slide 18: Picking the Best Leader
	Slide 19: Committing Entry from Current Term
	Slide 20: Committing Entry from Earlier Term
	Slide 21: New Commitment Rules
	Slide 22: Log Inconsistencies
	Slide 23: Repairing Follower Logs
	Slide 24: Repairing Logs, cont’d
	Slide 25: Neutralizing Old Leaders
	Slide 26: Client Protocol
	Slide 27: Client Protocol, cont’d
	Slide 28: Configuration Changes
	Slide 29: Configuration Changes, cont’d
	Slide 30: Joint Consensus
	Slide 31: Joint Consensus, cont’d
	Slide 32: Raft Summary

