.
Bl

UNIVERSITYs VIRGINIA

CS 4740 Cloud Computing (Fall 2024)
Overview of Lab 3A and 3B

-
ANiIE

UNIVERSITY VIRGINIA

Background Knowledge

Raft:
Consensus Algorithm

raft.github.io
https://thesquareplanet.com/blog/students-guide-to-raft/

Persiztent state on all servers:
{Uipdated on stable @oraps befors reipoading to RPCE)

curreslTerm Imtest teren server has soen (mnialivsd w0
on first boot, increases monotomically
voted For candidateld that reeenved vote in cumms

e (oo mud] i momse)

hegll log entries; each eniry contains command
for stale maching, and torm when calry
wa peeived by leader (firt index i 1)

Valatile #tate on all Servers:

commitlndey index of bighent log entry knows o be
itied initialized 1o 0
monotenically)
lastApplied index of highest log entry applicd 1o stase
hine (initalized 1o 0,
monoionically)
Volatile state on keaders:
(Reiniislized afber eleciion)
wextlade]] For cach sorver, index of the next bog cotry
By el By tha server (imbalired W leader
last log index + 1)
matchlindes|| for each sorver, mdiex of highest log entry
i i be replszated o server

(initialized 1o 0, cresses mosotonically)

AppendEntries RPC

Involoed bry beader o replicate log entries (§5.5); also used &
Bizaribeat (§5.2)

Arguments:

Erm: leader’s e

leaderld s folllowwer can rodinect clients

provilegleden index of log cotry immodiatcly procoding
B OIS

proviLagTerm torms off previlogIndex enéry

entrigs]] log entricy B atore (emply for heanbeat:
Y send mere than ofe for efficiency)

haderCommBl beader"s commitladen

Results:

ferm owreni Tem, for leader 1o updaie ituelf

BTN truc if fillower containgd cniry salchang
prevLaginden and previogTems

lewh‘npﬁmm
Reply false o 1em < cusrentTenms (§5.1)
?. Reply false if log doesn't contain an eatry o previlogindex
wihoae term mabches prevLog Term (§3.1)
3. IFan existing entry confliets with & new one (ame mdex
bt dif¥erent terms), delete the existing entry and all than
follow it (§5.3)
Append any new entrics nol alseady in B log
If lenderCommis > commitindex, set commitlndex =
min{leaderCommit, index of latt new entry)

o

RequestVote RPC

Irrvodood by candidates o gather vobes (§5.2)

Argurmants:

term rl:ihr':lerm

lsLogloder index of candidase’ ;wu;uqr (55.4)
lastlLog Term term of candidate's las log emry (§3.4)
Raosults:

term curresiTerm, for candsdute 1 update itself
vote(Granted e moans candidate reovived vole

Roceiver implementation;

I. Reply false if term < owrren Torm (§3.1)

1. M volodFor is null or candidateld, and candidate’s log is at
Jeait a4 up-bo-date &3 peceiver's b, grant vose (§5.2, §5.4)

Rules for Servers

All Servers:

= If comamitindex > lastApplied: increment lastApplied, apply
log|lastAppliod] 8o stale maching (§5.3)

IMRIPC rogecsl of reiponse oostaing lorm T = curreatTerm:
st curveniTers = T, cosvert to follower (§5.1)

Followaers (§5.2):

¢ Resposd 1o RPCs from candidates and leaders

= I ehection timeout clapses without receiving AppendEntrics
R from curment leader of granting vole 1o candidale:
Conver] 1o camhdale

mmuaz]
= Om b didate, 1221 <l
* Incremient curreni Terms
* Vit for scll’
¢ Resel eledtion tines
= Send Requesivoie RPCs 1o all other servers
= I wotes received from majority of servers: becoms: leader
= If AppesdEntries RPC received from sew beader: cosrven o
fiallower

= I ehecttion timeout clapses: start new election

Leaders:

* Upon clection: send initial empty AppendEntries RFCs
{heartheat) to cach sorver; pepeal duning idle porsods 1o
prevent election mmmeouls (§5.2)

= If comamand received from clisnt: appond entry to local log.
m-hmmwm:mh{is.!:

* INlant log index = nexilndes; for a follower; sced

RPC with log entries siarting at nextindex
= Isuceenaful: update rentlndes and salckindss for
follower {§5.3)
= If AppendBniries fails because of log inconsistoncy:
decremont nexiladex and retry (§5.3)

= Iff there exisis am N such that N > coenssitindex, & majority
of maichindex]i] > N, and bogf M) term = curment Term:
sct commitlmdex = N (§5.3, §54)

BliiE
UNIVERSITYs VIRGINIA

UNIVERSITYs VIRGINIA

3A Leader Election

The goal for Part 3A is

1) for a single leader to be elected

2) for the leader to remain the leader if there are no failures

3) for a new leader to take over if the old leader fails or if packets
to/from the old leader are lost.

-
ANiIE

UNIVERSITYo VIRGINIA

Understand the Raft progress first

We are using multiple threads to emulate the raft cluster.

S1

2) 12345678910

f

-
ANiIE

UNIVERSITY VIRGINIA

Types of nodes

Leader: Handles all client requests and log replication.
Follower: Passively replicates logs from the leader.

Candidate: Seeks to become the leader through an election
process.

UNIVERSITYs VIRGINIA

The steps to finish the lab

1) Define the RPC argument

There are only two types of RPCs:

RequestVote RPCs are initiated by candidates during elections
AppendEntriesRPCs are initiated by leaders to replicate log entries
And to provide a form of heartbeat. (For lab3A, just focus on
heartbeat)

2) Implement RequestVote and AppendEntries

rF
el

UNIVERSITYs VIRGINIA

Implement RequestVote

Invoked by candidates to gather votes (§5.2)

Arguments:

term candidate’s term

candidateld candidate requesting vote

lastLozlndex index of candidate’s last log entry (§5.4)
lastLog Term term of candidate’s last log entry (§5.4)
Results:

term currentTerm, for candidate to update itself
voteGaranted true means candidate receved vote

Receiver implementation:

I. Reply false if term < currentTerm (§5.1)

2 If votedFor is null or candidateld, and candidate’s log is at
least as up-to-date as receiver’s log, grant vote (§5.2, §5.4)

AppendEntries

Invoked by leader to replicate log entries (§5.3); also used as
heartbeat (§5.2)

Arguments:

term leader’s term

leaderld so follower can redirect clients

prevLogindex index of log entry immediately preceding
new ones

prevLogTerm term of prevLoglindex entry

entries|| log entries to store (empty for heartbeat;

may send more than one for efficiency)
leaderCommit leader’s commitindex

Results:
term currentTerm, for leader to update itself
success true if follower contained entry matching

prevLoglndex and prevLogTerm

Receiver implementation:

1. Reply false if term < currentTerm (§5.1)

2. Reply false if log doesn’t contain an entry at prevLoglndex
whose term matches prevLogTerm (§5.3)

3. [Ifanexisting entry conflicts with a new one (same index
but different terms), delete the existing entry and all that
follow it (§5.3)

4. Append any new entries not already in the log

5. IfleaderCommit > commitindex, set commitlndex =
min(leaderCommit, index of last new entry)

BiE

UNIVERSITYy VIRGINIA

Biiiig
UNIVERSITYy VIRGINIA

Raise Election

Candidates (§5.2):
* Un conversion to candidate, start election:
* [ncrement current Term

* Vote for self
» Reset election hmer

* Send RequestVote RPCs to all other servers

« If votes receved from majority of servers: become leader

* If AppendEntries RPC received from new leader: convert to
follower

* If election imeout elapses: start new election

UNIVERSITYs VIRGINIA

Election Trigger & Campaigning for Leadership

When a follower node does not receive a heartbeat from the current
leader within a timeout period, it transitions to a candidate state.

The candidate requests votes from other nodes by incrementing the
term and broadcasting a vote request.

Nodes vote for the first candidate they receive a valid request from,
based on the latest known term.

.
Bl

UNIVERSITYoVIRGINIA
Leader Responsibilities & Handle Failure

Sending Heartbeats: The leader sends regular heartbeats to maintain authority and

ensure followers stay in sync.
Log Replication: Handles client requests and replicates changes to all follower nodes.

Leader Failure: When a leader fails, followers start a new election after the timeout
period expires. A new leader is elected to continue the operation.

Candidate Failure: If a candidate fails or cannot achieve a majority, it reverts to a
follower state, and the election is restarted.

Biiiig
UNIVERSITYy VIRGINIA

-
ANiIE

UNIVERSITY VIRGINIA

3B Log Replication

Goal: implement leader & follower code to append new log entries
Review 5.3 and 5.4 of the Raft paper
Understand the Raft guarantees (Figure 3)

-
ANiIE

UNIVERSITY VIRGINIA

Implementation Step

Define the log
Add election restriction in RequestVote

Update AppendEntries code to support logs
Apply the logs to state machine

rF
.
- - -

UNIVERSITYs VIRGINIA
Define the Log
. 5.3 Log replication
The |Og structure ShOUId contain Once a leader has been elected, it begins servicing

. client requests. Each client request contains a command to
- Command interfa Ce{} (See Sta rt) be executed by the replicated state machines. The leader
appends the command to its log as a new entry, then is-
- Term sues AppendEntries RPCs in parallel to each of the other
servers to replicate the entry. When the entry has been
safely replicated (as described below), the leader applies
the entry to its state machine and returns the result of that
execution to the client. If followers crash or run slowly,
or if network packets are lost, the leader retries Append-
Entries RPCs indefinitely (even after it has responded to
the client) until all followers eventually store all log en-
tries.

Logs are organized as shown in Figure 6. Each log en-
try stores a state machine command along with the term
number when the entry was received by the leader. The
term numbers in log entries are used to detect inconsis-
tencies between logs and to ensure some of the properties
in Figure 3. Each log entry also has an integer index iden-

rF
.
- - -

UNIVERSITYz VIRGINIA
Define the Log

5.3 Log replication

The Sta rt funCthn Send da cOmma nd Once a leader has been elected, it begins servicing
. client requests. Each client request contains a command to
- If sendi Ng to leader be executed by the replicated state machines. The leader
. appends the command to its log as a new entry, then is-
- Packa geittoa lo g sues AppendEntries RPCs in parallel to each of the other
. . servers to replicate the entry. When the entry has been
- Add thelo g to Its IOg slice safely replicated (as described below), the leader applies
. the entry to its state machine and returns the result of that
- |f se nd | ng to Ot h ern OdeS execution to the client. If followers crash or run slowly,
or if network packets are lost, the leader retries Append-
- Return fa |Se Entries RPCs indefinitely (even after it has responded to
the client) until all followers eventually store all log en-
tries.

Logs are organized as shown in Figure 6. Each log en-
try stores a state machine command along with the term
number when the entry was received by the leader. The
term numbers in log entries are used to detect inconsis-
tencies between logs and to ensure some of the properties
in Figure 3. Each log entry also has an integer index iden-

F
alilne

UNIVERSITYs VIRGINIA

Election Restriction

. Raft uses the voting process to prevent a candidate from

Please refer to section 5.4.1 winning an election unless its log contains all committed
entries. A candidate must contact a majority of the cluster

in order to be elected, which means that every committed

. entry must be present in at least one of those servers. If the

On |V vote for u p'to'd ate candidate candidate’s log is at least as up-to-date as any other log
in that majority (where “up-to-date” is defined precisely
below), then it will hold all the committed entries. The
. 4. . RequestVote RPC implements this restriction: the RPC
Add restriction In RequeStVOte includes information about the candidate’s log, and the

voter denies its vote if its own log is more up-to-date than

Before granting vote to a candidate |y of the candidate.

Raft determines which of two logs is more up-to-date
by comparing the index and term of the last entries in the
logs. If the logs have last entries with different terms, then
the log with the later term is more up-to-date. If the logs
end with the same term, then whichever log is longer is
more up-to-date.

Implement AppendEntries RPC

What to implement -

Leaders:

Upon election: send initial empty AppendEntries RPCs

(heartbeat) to each server; repeat during idle periods to
prevent election timeouts (§5.2)

If command received from client: append entry to local log,

respond after entry applied to state machine (§5.3)

If last log index > nextIndex for a follower: send

AppendEntries RPC with log entries starting at nextIndex

+ If successful: update nextIndex and matchIndex for
follower (§5.3)

» If AppendEntries fails because of log inconsistency:
decrement nextIndex and retry (§5.3)

If there exists an N such that N > commitIndex, a majority

of matchIndex[i] > N, and log[N].term == currentTerm:

set commitIndex = N (§5.3, §5.4).

AppendEntries RPC

Invoked by leader to replicate log entries (§5.3); also used as
heartbeat (§5.2).

Arguments:
term leader’s term
leaderld so follower can redirect clients

prevLoglndex index of log entry immediately preceding

prevLogTerm term of prevLogindex entry
entries|] log entries to store (empty for heartbeat;

leaderCommit leader’s commitindex

Results:
term currentTerm, for leader to update itself
success true if follower contained entry matching

Receiver implementation:
1.

i
alllne
- -

UNIVERSITYy VIRGINIA

new ones

may send more than one for efficiency)

prevLogindex and prevLogTerm

Reply false if term < currentTerm (§5.1)

2.

3.

Reply false 1f log doesn’t contain an entry at prevLoglndex
whose term matches prevLogTerm (§5.3)

If an existing entry conflicts with a new one (same index
but different terms), delete the existing entry and all that
follow it (§5.3)

Append any new entries not already in the log

If leaderCommit > commitlndex, set commitindex =
min(leaderCommit, index of last new entry)

UNIVERSITYs VIRGINIA

Leader Side

If command received from client: append entry to local log,
respond after entry applied to state machine (§5.3)
The Start function would send the entry
Leader append the log to its local log
sendAppendEntries

.
Bl

UNIVERSITYs VIRGINIA

Leader Side

If last log index > nextIndex for a follower: send AppendEntries RPC

. . . Arguments:
with log entries starting at nextIndex term leader’s term
. leaderld so follower can redirect clients
Args = Appen dEntri esArgs{ prevLoglndex index of log entry immediately preceding
T] new ones
erm: ... prevLogTerm term of prevLogIndex entry
. entries|| log entries to store (empty for heartbeat;

Leaderld: .. may send more than one for efficiency)
PrevLogIndex: rf.nextIndex[server] - 1 WARSCOmINE oMl ORIy

PrevLogTerm: rf.log[PrevLogIindex].Term
Entries: rf.log[rf.nextIndex[server]:]
LeaderCommit: ...

}

Empty entries can serve as heartbeat

UNIVERSITYs VIRGINIA

Leader Side

If last log index > nextIndex for a follower: send AppendEntries RPC
with log entries starting at nextIndex

If successful: update nextindex and matchlndex for follower

If AppendEntries fails because of log inconsistency: decrement

nextindex and retry

nextlndex[follower]-- (or decrease further if optimized)
Resend the RPC

UNIVERSITYs VIRGINIA

Leader Side

If there exists an N such that N > commitindex, a majority of
matchindex][i] = N, and log[N].term == currentTerm: set commitindex
=N
Leader append (start) - servers append (appendEntriesRPC) -
Leader commit (majority replicated) - servers commit (see

leaderCommit)

UNIVERSITYs VIRGINIA

Leader Side

If there exists an N such that N > commitindex, a majority of
matchindex][i] = N, and log[N].term == currentTerm: set commitindex
=N
Leader append (start) - servers append (appendEntriesRPC) -
Leader commit (majority replicated) - servers commit (see
leaderCommit)
After handling the reply from EACH server, check the highest
index entry, where more than a half servers successfully replicate
If so, leader can set commitindex and apply to its state machine

i
alllne
- -

UNIVERSITYy VIRGINIA

Follower Side

AppendEntries RPC

2 & 3 Invoked by leader to replicate log entries (§5.3); also used as
heartbeat (§5.2).

- log[prevLogindex].Term = prevLogTerm | Agumens: @ .

leaderld so follower can redirect clients

—_— prevLoglindex index of log entry immediately preceding
- success = false a6 e

prevLogTerm term of prevLogindex entry

entries|] log entries to store (empty for heartbeat;
may send more than one for efficiency)

leaderCommit leader’s commitindex

Results:
term currentTerm, for leader to update itself
success true if follower contained entry matching

prevLoglndex and prevLogTerm

Receiver implementation:

1. Reply false if term < currentTerm (§5.1)

2. Reply false if log doesn’t contain an entry at prevLogIndex
whose term matches prevLogTerm (§5.3)

3. Ifan existing entry conflicts with a new one (same index
but different terms), delete the existing entry and all that
follow it (§5.3)

4. Append any new entries not already in the log

5. If leaderCommit > commitIndex, set commitindex =
min(leaderCommit, index of last new entry)

Follower Side

4

Logs <= prevLoglndex are good
restLog = logs > prevLogindex

Compare restLog with entries|]
- len(restlog) < len(entries) or any term
inconsistency

- Otherwise, use restlLog

rF
.—-:.-.-I-
- - -

UNIVERSITYs VIRGINIA

AppendEntries RPC

Invoked by leader to replicate log entries (§5.3); also used as
heartbeat (§5.2).

Arguments:

term leader’s term

leaderld so follower can redirect clients

prevLoglndex index of log entry immediately preceding
new ones

prevLogTerm term of prevLogindex entry

entries|] log entries to store (empty for heartbeat;

may send more than one for efficiency)
leaderCommit leader’s commitindex

Results:
term currentTerm, for leader to update itself
success true if follower contained entry matching

prevLogindex and prevLogTerm

Receiver implementation:

1. Reply false if term < currentTerm (§5.1)

2. Reply false if log doesn’t contain an entry at prevLogIndex
whose term matches prevLogTerm (§5.3)

3. Ifan existing entry conflicts with a new one (same index
but different terms), delete the existing entry and all that
follow it (§5.3)

4. Append any new entries not already in the log

5. If leaderCommit > commitIndex, set commitindex =
min(leaderCommit, index of last new entry)

rF
.—-:.-.-I-
- - -

UNIVERSITYs VIRGINIA

Apply to State Machine

. . (EEEETTEEETTTTEEe
Committed: safe to apply to state machine [seristent state on ai sorvers:

(Updated on stable storage before responding to RPCs)

currentTerm latest term server has seen (initialized to 0
on first boot, increases monotonically)
votedFor candidateld that received vote in current
1 1 term (or null if none)
When Comm Itl ndex Increasel log|] log entries; each entry contains command

for state machine, and term when entry

Apply committed, but no applied logs was received by leader (first index s 1)

Volatile state on all servers:
. commitindex index of highest log entry known to be
TO St a t e m a C h I n e committed (initialized to 0, increases
monotonically)
lastApplied index of highest log entry applied to state
machine (initialized to 0, increases
monotonically)

Volatile state on leaders:

(Reinitialized after election)

nextindex(] for each server, index of the next log entry
to send to that server (initialized to leader
last log index + 1)

matchIndex|] for each server, index of highest log entry
known to be replicated on server
(initialized to 0, increases monotonically)

Apply to State Machine

How?

For logs to apply

YourChannel <- ApplyMsg{...}

i
alllne
- -

UNIVERSITYy VIRGINIA

Persistent state on all servers:
(Updated on stable storage before responding to RPCs)

currentTerm latest term server has seen (initialized to 0
on first boot, increases monotonically)

votedFor candidateld that received vote in current
term (or null if none)

log|] log entries; each entry contains command

for state machine, and term when entry
was received by leader (first index is 1)

Volatile state on all servers:

commitindex index of highest log entry known to be
committed (initialized to 0, increases
monotonically)

lastApplied index of highest log entry applied to state
machine (initialized to 0, increases
monotonically)

Volatile state on leaders:

(Reinitialized after election)

nextindex(] for each server, index of the next log entry
to send to that server (initialized to leader
last log index + 1)

matchIndex|] for cach server, index of highest log entry
known to be replicated on server
(initialized to 0, increases monotonically)

.
Bl

UNIVERSITYs VIRGINIA

Architecture Suggestion

In Make, after init, start a go routine to run a infinite loop

Follower: check heartbeat timeout
Leader: broadcast AppendEntries/heartbeat RPCs
Candidate: broadcast RequestVote RPCs, status change

Sleep for some time

	Slide 1: CS 4740 Cloud Computing (Fall 2024) Overview of Lab 3A and 3B
	Slide 2: Background Knowledge
	Slide 3
	Slide 4: 3A Leader Election
	Slide 5: Understand the Raft progress first
	Slide 6: Types of nodes
	Slide 7: The steps to finish the lab
	Slide 8: Implement RequestVote
	Slide 9: AppendEntries
	Slide 10: Raise Election
	Slide 11: Election Trigger & Campaigning for Leadership
	Slide 12: Leader Responsibilities & Handle Failure
	Slide 13
	Slide 14: 3B Log Replication
	Slide 15: Implementation Step
	Slide 16: Define the Log
	Slide 17: Define the Log
	Slide 18: Election Restriction
	Slide 19: Implement AppendEntries RPC
	Slide 20: Leader Side
	Slide 21: Leader Side
	Slide 22: Leader Side
	Slide 23: Leader Side
	Slide 24: Leader Side
	Slide 25: Follower Side
	Slide 26: Follower Side
	Slide 27: Apply to State Machine
	Slide 28: Apply to State Machine
	Slide 29: Architecture Suggestion

