
CS 4740 Cloud Computing (Fall 2024)
Overview of Lab 3A and 3B

Background Knowledge

Raft:

Consensus Algorithm

raft.github.io

https://thesquareplanet.com/blog/students-guide-to-raft/

3A Leader Election

The goal for Part 3A is

1) for a single leader to be elected

2) for the leader to remain the leader if there are no failures

3) for a new leader to take over if the old leader fails or if packets

to/from the old leader are lost.

Understand the Raft progress first

We are using multiple threads to emulate the raft cluster.

Types of nodes

Leader: Handles all client requests and log replication.

Follower: Passively replicates logs from the leader.

Candidate: Seeks to become the leader through an election

process.

The steps to finish the lab

1) Define the RPC argument

There are only two types of RPCs:

RequestVote RPCs are initiated by candidates during elections

AppendEntriesRPCs are initiated by leaders to replicate log entries

And to provide a form of heartbeat.（For lab3A, just focus on

heartbeat)

2) Implement RequestVote and AppendEntries

Implement RequestVote

AppendEntries

Raise Election

Election Trigger & Campaigning for Leadership

When a follower node does not receive a heartbeat from the current

leader within a timeout period, it transitions to a candidate state.

The candidate requests votes from other nodes by incrementing the

term and broadcasting a vote request.

Nodes vote for the first candidate they receive a valid request from,

based on the latest known term.

Leader Responsibilities & Handle Failure

Sending Heartbeats: The leader sends regular heartbeats to maintain authority and

ensure followers stay in sync.

Log Replication: Handles client requests and replicates changes to all follower nodes.

Leader Failure: When a leader fails, followers start a new election after the timeout

period expires. A new leader is elected to continue the operation.

Candidate Failure: If a candidate fails or cannot achieve a majority, it reverts to a

follower state, and the election is restarted.

3B Log Replication

Goal: implement leader & follower code to append new log entries

- Review 5.3 and 5.4 of the Raft paper

- Understand the Raft guarantees (Figure 3)

Implementation Step

- Define the log

- Add election restriction in RequestVote

- Update AppendEntries code to support logs

- Apply the logs to state machine

Define the Log

The log structure should contain

- Command interface{} (see Start)

- Term

Define the Log

The Start function send a command

- If sending to leader

- Package it to a log

- Add the log to its log slice

- If sending to other nodes
- Return false

Election Restriction

Please refer to section 5.4.1

Only vote for up-to-date candidate

Add restriction in RequestVote

Before granting vote to a candidate

Implement AppendEntries RPC

What to implement →

Leader Side

If command received from client: append entry to local log,

respond after entry applied to state machine (§5.3)

- The Start function would send the entry

- Leader append the log to its local log

- sendAppendEntries

Leader Side

If last log index ≥ nextIndex for a follower: send AppendEntries RPC

with log entries starting at nextIndex
Args = AppendEntriesArgs{

Term: …

LeaderId: …

PrevLogIndex: rf.nextIndex[server] - 1

PrevLogTerm: rf.log[PrevLogIndex].Term

Entries: rf.log[rf.nextIndex[server]:]

LeaderCommit: …

}

Empty entries can serve as heartbeat

Leader Side

If last log index ≥ nextIndex for a follower: send AppendEntries RPC

with log entries starting at nextIndex

- If successful: update nextIndex and matchIndex for follower

- If AppendEntries fails because of log inconsistency: decrement

nextIndex and retry

- nextIndex[follower]-- (or decrease further if optimized)

- Resend the RPC

Leader Side

If there exists an N such that N > commitIndex, a majority of

matchIndex[i] ≥ N, and log[N].term == currentTerm: set commitIndex

= N

- Leader append (start) → servers append (appendEntriesRPC) →

Leader commit (majority replicated) → servers commit (see

leaderCommit)

Leader Side

If there exists an N such that N > commitIndex, a majority of

matchIndex[i] ≥ N, and log[N].term == currentTerm: set commitIndex

= N

- Leader append (start) → servers append (appendEntriesRPC) →

Leader commit (majority replicated) → servers commit (see

leaderCommit)

- After handling the reply from EACH server, check the highest

index entry, where more than a half servers successfully replicate

- If so, leader can set commitIndex and apply to its state machine

Follower Side

2 & 3

- log[prevLogIndex].Term != prevLogTerm

- success = false

Follower Side

4

- Logs <= prevLogIndex are good

- restLog = logs > prevLogIndex

- Compare restLog with entries[]
- len(restlog) < len(entries) or any term

inconsistency

- Otherwise, use restLog

Apply to State Machine

Committed: safe to apply to state machine

When commitIndex increase,

Apply committed, but no applied logs

To state machine

Apply to State Machine

How?

For logs to apply

YourChannel <- ApplyMsg{...}

Architecture Suggestion

- In Make, after init, start a go routine to run a infinite loop
- Follower: check heartbeat timeout

- Leader: broadcast AppendEntries/heartbeat RPCs

- Candidate: broadcast RequestVote RPCs, status change

- Sleep for some time

	Slide 1: CS 4740 Cloud Computing (Fall 2024) Overview of Lab 3A and 3B
	Slide 2: Background Knowledge
	Slide 3
	Slide 4: 3A Leader Election
	Slide 5: Understand the Raft progress first
	Slide 6: Types of nodes
	Slide 7: The steps to finish the lab
	Slide 8: Implement RequestVote
	Slide 9: AppendEntries
	Slide 10: Raise Election
	Slide 11: Election Trigger & Campaigning for Leadership
	Slide 12: Leader Responsibilities & Handle Failure
	Slide 13
	Slide 14: 3B Log Replication
	Slide 15: Implementation Step
	Slide 16: Define the Log
	Slide 17: Define the Log
	Slide 18: Election Restriction
	Slide 19: Implement AppendEntries RPC
	Slide 20: Leader Side
	Slide 21: Leader Side
	Slide 22: Leader Side
	Slide 23: Leader Side
	Slide 24: Leader Side
	Slide 25: Follower Side
	Slide 26: Follower Side
	Slide 27: Apply to State Machine
	Slide 28: Apply to State Machine
	Slide 29: Architecture Suggestion

