
Yue Cheng Research Scholarship Statement
I request consideration for promotion to Associate Professor with tenure in the School of Data Science at
the University of Virginia (UVA). This statement summarizes my research contributions to the field of
HPC- and cloud-scale systems and data-intensive computing during my last five years at George Mason
University (GMU) and my agenda for continued scholarship productivity at UVA for years to come.

1 Background
I am an assistant professor with a primary appointment in the School of Data Science and a joint appoint-
ment in the Department of Computer Science (CS) in the School of Engineering and Applied Science at
the University of Virginia. I joined UVA as a tenure-track assistant professor in August 2022. Prior to
UVA, I was a tenure-track assistant professor in Computer Science at George Mason University from
August 2017 to August 2022. I received my Ph.D. degree in Computer Science from Virginia Tech in
2017. My Ph.D. dissertation was adviced by Prof. Ali R. Butt and focused on improving the perfor-
mance and flexibility of large-scale, distributed storage systems. I graduated from Beijing University
of Posts and Telecommunications (BUPT) in Beijing, China with a Bachelor of Engineering degree in
Computer Science in 2009.

2 Research Scholarship Statement
2.1 Scaling Large Computations on Serverless Cloud: Application Frameworks, State Man-

agement, and Infrastructures
A primary focus of my current research is on solving challenging, real-world problems in serverless
cloud computing systems. With an end-to-end approach, my research looks into each layer of the server-
less system stack, including application frameworks, FaaS (Functions-as-a-Service) platforms, and OSes.
My work in this area has shown impact outside of academia. For example, FAASNET has been incorporated
in Alibaba Cloud Function Compute, accelerating millions of function cold starts on a daily basis.

2.1.1 [Application Frameworks] Scalable Serverless Data Analytics and Parallel Computing
Executing large-scale DAG (directed acyclic graph) workflows on serverless platforms is appealing, as
serverless providers promise to offer transparent auto-scaling. Existing serverless parallel computing
frameworks borrow scheduling techniques used in conventional, serverful cluster computing frame-
works such as MapReduce/Spark: A centralized scheduler dispatches tasks to long-running task work-
ers running as a cluster of servers. Such designs, however, are not well suited for serverless platforms,
since function invocation incurs non-trivial scheduling overhead and each function is stateless and re-
source constrained. This causes application performance bottleneck and high data movement cost.

WUKONG [SoCC’20, Wukong Project] redesigns serverless parallel computing frameworks by using
decentralized scheduling, a highly scalable scheduling approach that naturally unleashes the power of
FaaS elasticity. Decentralized scheduling resolves the mismatch between serverless parallel workflow
applications and conventional cluster computing architectures. Partitioning the work of a centralized
scheduler (i.e., tracking task completions, identifying and dispatching ready tasks, etc.) across a large
number of serverless functions naturally exploits the auto-scaling property of FaaS platform.

Scheduling in WUKONG uses a combination of static and dynamic scheduling. WUKONG partitions
a DAG into multiple, possibly overlapping, subgraphs. A static schedule is a subgraph of the DAG.
Each subgraph is assigned to a serverless executor that is running inside of a serverless function. An
executor uses dynamic scheduling to enforce data dependencies of the tasks in its static schedule. An
executor can invoke additional functions to increase task parallelism, or collapse tasks to eliminate any

1



communication delay between them. Executors coordinate at DAG fan-ins and fan-outs during dynamic
scheduling. Evaluation shows that WUKONG achieves up to 68× higher performance compared to state-
of-the-art serverless frameworks while reducing the monetary cost by 93%. More importantly, WUKONG

removes users’ burden of framework configurations, which is notoriously challenging for users who lack distributed
systems background. This, lowers the bar of parallel computing for a broader set of users and makes parallel
computing effectively “server-less” and user-friendly.

The original idea was proposed by me. My research group takes all credit for this research.

2.1.2 [Big Data Management] Cost-Effective Cloud Storage using Serverless Functions
Data-intensive applications extensively use cloud memory caching for performance. A wide range of
such applications repetitively read large data objects with sizes ranging from a few MBs to several GBs.
Examples include container registries and big data analytics. Large, intermittent I/Os require huge
cache capacity and high read throughput, which existing cloud memory caching services are too expen-
sive to serve: they are designed for small-I/O-intensive, latency-sensitive workloads.

INFINICACHE [FAST’20, InfiniCache Project] addresses this problem by exploiting serverless func-
tions as a cost-effective, yet performant storage medium. A serverless application is structured as a
collection of serverless functions. A function has memory that can be used to store objects that are
needed during its execution. The key idea of INFINICACHE is to use this collective, distributed mem-
ory to store cached objects. Under INFINICACHE, functions are invoked by a user application to access
the cached objects. FaaS provider caches invoked functions and their state so in-memory objects are
retained between function invocations. Providers charge users only when a function is invoked, in our
case, when a cached object is accessed. INFINICACHE significantly reduces the monetary cost of mem-
ory capacity compared to today’s in-memory caching services such as AWS ElastiCache (by up to two
orders of magnitude).

Conventional wisdom holds that it is impractical to support stateful storage services directly on
ephemeral serverless functions. Contrary to common beliefs, we have demonstrated, for the first time,
that the FaaS model has great potential of supporting data-intensive, stateful backend services. I be-
lieve that harvesting collective, ephemeral resources in form of serverless functions is a missing piece
that enables new, serverless BaaS (Backend-as-a-Service). INFINICACHE provides continuous availability
and fault tolerance by using an efficient primary-backup mechanism; this mechanism pairs a function
and a clone instance of itself for periodic delta-sync and leverages FaaS auto-scaling to provide au-
tomatic failover in face of a function failure. INFINICACHE stores object chunks in separate functions
using erasure coding to (1) enhance data availability, (2) parallelize I/Os for high aggregate throughput,
(3) tolerate straggling functions with redundancy.

In general, INFINICACHE is well suited for cloud-native, data-intensive applications that need a large,
intermediate storage. For example, INFINICACHE could provide a drop-in solution for caching inter-
mediate data of big data analytics applications such as Spark. Companies including BigStream have
expressed interests in adopting INFINICACHE. INFINICACHE could also leverage the processing power
of serverless functions to enable in-situ computations. This will open doors to new, stateful serverless
applications in a broader range of disciplines. I have received an NSF CAREER Award [NSF CAREER]
to support this research and I am very excited to explore these new directions in the near term.

I came up with the whole idea of serverless storage, and the whole project was designed and devel-
oped by my Ph.D. students.

2.1.3 [Platforms] Scalable Provisioning of Custom Serverless Container Runtimes
Custom serverless container support is gaining traction as it enables better control over OSes and tool-
ing for modernizing FaaS applications (e.g., dependency-heavy ML applications, data analytics, etc.).
However, providing rapid container provisioning introduces non-trivial challenges for FaaS providers,
as containers are often huge in size and real-world FaaS workloads are highly dynamic.

FAASNET [ATC’21, FaaSNet Project] eliminates the scalability bottlenecks in custom serverless con-
tainer provisioning. The key idea is to decentralize container provisioning to all participating function

2



environments—a virtual machine (VM) or a bare-metal machine—which are organized in function tree
structures. A function tree (FT) is a logical, tree-based network overlay. A FT consists of multiple host
VMs and allows provisioning of container runtimes or code packages to be decentralized in a scalable
manner. FAASNET is highly adaptive using a tree balancing algorithm that dynamically adapts the FT
topology to accommodate dynamic VM joining and leaving.

The design of FAASNET is driven by the needs of custom-container-based FaaS applications from a
large cloud provider’s FaaS platform, Alibaba Cloud Function Compute. However, FAASNET is gener-
ally applicable to other open platforms as well, e.g., OpenWhisk and Kubernetes. A key design principle
of FAASNET is to separate control and data planes. This has two benefits. First, it naturally fits Alibaba
Function Compute’s architecture, which uses lots of resource-constrained VMs to hold function contain-
ers; a VM would have become a bottleneck if it were to run FT’s control plane on it; this also rules out
existing provisioning solutions, which use extra, dedicated, centralized components for data seeding,
metadata management, and coordination. Second, by separating control and data paths, FAASNET can
be integrated as a plugin to an existing FaaS scheduler, thus offering a general solution to a broader
set of applications including large data sharing on Kubernetes. After I published it at USENIX ATC
2021, FAASNET was integrated as part of the next-generation FaaS infrastructure of Alibaba Function Compute,
enabling second-level function container provisioning at scale.

I had been deeply involved from the very beginning and contributed to the design, implementation,
and evaluation of this idea.

2.2 Building Scalable and High-Performance Machine Learning Systems
Another focus of my current research is on designing scalable and high-performance ML systems. My
research in this area rethinks the design of federated learning (FL) systems [HPDC’20, SC’21] and dis-
tributed deep learning (DDL) systems [ICDM’20].

2.2.1 High-Performance Federated Learning Systems
Traditional, distributed machine learning requires the training dataset to be located in a common, cen-
tral location accessible to trusted training parties. However, privacy concerns and legislations such as
General Data Protection Regulation (GDPR) inhibit transmitting data to a central location. This makes
training a high-quality machine learning model impossible. Federated learning (FL) has emerged as an
alternative way to perform collaborative model training without requiring training parties to share their
private data. In FL, each data party or owner, maintains its own data locally while engaging in collab-
orative training. Model updates are shared, aggregated, and broadcast by a central aggregator. In FL,
data parties may have highly heterogeneous hardware capacity and training data. Such heterogeneity
creates bottlenecks in both training time and model performance.

TIFL [HPDC’20] tackles the resource and data heterogeneity challenge via a new, tiered design. TIFL
logically divides data parties into tiers based on their training time and selects parties from the same tier
in each training round. This solves the straggler issues caused by imbalanced hardware capacity and
training data sizes. TIFL uses a dynamic tier selection approach to make sure that parties from different
tiers can all participate in training. This way, TIFL is data heterogeneity-aware and strikes a balance
between training time and model accuracy.

Asynchronous FL training is straggler resilient, as the central aggregator does not need to wait for
the stragglers before updating other waiting parties. However, in asynchronous FL training, all data
parties can communicate with the aggregator at any time and thus introduce communication bottleneck
at the aggregator. To solve this problem, I design FedAT [SC’21], a tiered FL system that supports
asynchronous FL training. FedAT inherits the tiered design from TIFL [HPDC’20], but goes beyond
TIFL in that FedAT combines synchronous, intra-tier training and asynchronous, cross-tier training.
This way, FedAT minimizes the straggler effect with improved convergence speed and test accuracy.
FedAT compresses uplink and downlink communications using an efficient, polyline-encoding-based
compression algorithm to minimize the communication cost.

3



My research in FL systems has been integrated in IBM’s Federated Learning Framework, which is used to
solve critical, real-world problems such as anti-money laundering, fraud detection by banking industry,
and improving diagnostics and treatment design by medical research facilities. I am excited to see
applications of FL technologies in these critical domains and am enthusiastic to collaborate with domain
scientists on applying FL to new application scenarios. For example, I have secured a collaborative NSF
FMSG grant [NSF FMSG] to support new FL applications in distributed additive manufacturing.

This was a collaborative project and my research group (my Ph.D. student and I), as the project lead,
takes a significant portion of credit.

2.2.2 Scalable Deep Learning Systems
Alternating Direction Method of Multipliers (ADMM) has recently emerged as a potential alternative
optimizer to Stochastic Gradient Descent (SGD) for deep learning. This is because ADMM can solve
gradient vanishing and poor conditioning problems. However, ADMM training shows poor parallelism
due to a high level of layer dependencies among variables. I co-design pdADMM [ICDM’20] that ad-
dresses the scalability problem of ADMM-based deep neural network (DNN) training. pdADMM uses
a novel reformulation of feed-forward problem in ADMM by splitting a DNN into independent layer
partitions; this way, parameters in each layer can be updated in parallel in order to speed up the train-
ing process with proved convergence rate. This naturally enables model parallelism for ADMM. This re-
search is supported by an NSF OAC grant [NSF OAC] and an Amazon Research Award [Amazon Research Award].

Million-node, billion-edge graphs are prevalent in today’s graph-based applications. Despite the
success of Graph Neural Networks (GNNs), it remains a grand challenge to train GNNs on those large
graphs. I propose a new disaggregated architecture that manages the training (compute) and embed-
ding data (storage) separately and independently. The new method partitions a large graph into sub-
graphs and uses historical embeddings to train subgraphs in parallel. This research has received a Meta
Research Award for AI System Hardware/Software Codesign [Meta Research Award].

I am also co-leading a project where I adopt a hardware-software codesign to enable scalable and
high-performance, SGD-based, data-parallel DNN training. The key idea is to leverage a novel hardware-
based compression technique to design a distributed, OS-level data cache that effectively exploits the
physical memory freed via program-memory compression. This research has received an NSF SPX
grant [NSF SPX].

2.3 Data-intensive Systems and Data Storage Systems
My Ph.D. dissertation research had focused on solving challenges in data-intensive and storage systems
targeting three main application scenarios: (1) massive-scale web applications that need efficient and
scalable distributed storage systems; (2) enterprise server applications that demand intelligent caching
systems; and (3) cloud-native big data analytics applications that require careful deployment planning.

MBal [EuroSys’15] improves the performance of distributed memory caching for web applications.
MBal performs fast, lockless PUT and GET operations via partitioned compute and memory resources
called cachelets. MBal quickly detects presence of hotspots (i.e., overload) in the workloads and uses an
adaptive, multi-phase load balancing approach to mitigate load imbalance.

While there are many flash caching solutions, their effectiveness is difficult to judge due to lack of
a “best case” baseline. Belady’s MIN, the go-to offline optimal caching algorithm, considers read hit
ratio but not flash endurance. I designed the first offline flash caching heuristic [ATC’16] that mini-
mizes erasures with optimal read hit ratio. My investigation provides a useful approximate baseline for
evaluating any online flash caching algorithms.

I co-designed BESPOKV, the first serverless storage framework [SC’18], to make it easier to develop
and debug distributed storage systems. BESPOKV abstracts away redundant components that handle
distributed system management tasks such as fault tolerance, network topology management, and con-
sistency. Using BESPOKV, developers only need to focus on the development of core storage functions
(such as read and write); BESPOKV will convert provided storage functions into a scalable, highly con-
figurable, and distributed storage deployment, following a serverless programming model.

4



Finally, I presented the first characterization of a large-scale, production Docker registry work-
load [FAST’18]. This study reveals insights about optimizing cloud object storage systems and container
registries and my workload trace datasets have been widely used by researchers across the globe.

2.4 Future Research Directions
Serverless computing and machine learning are still rapidly changing areas. I believe that the funda-
mental themes of my research will only grow in importance as the areas mature. Looking further for-
ward, my interests extend to the following directions: designing easy-to-use serverless supercomputer;
inventing new abstractions for self-managed FaaS infrastructure; exploring ML for systems and systems
for ML; and enhancing security and privacy for user data.

2.4.1 Easy-to-Use Serverless Supercomputing for All
With systems like WUKONG [SoCC’20, Wukong Project], we have addressed many of the challenges of
executing large-scale, asymmetric DAG workflows. However, accelerators such as GPU are still not
first-class citizens in today’s serverless computing. Yet, there are huge demands from domain scien-
tists and researchers for having one-click deployment and execution of large computations on massive,
elastically-scaled resources. I am currently collaborating with Adobe Research on designing the first
serverless GPU infrastructure for interactive ML training workloads. This work is a step towards the
broader goal of supporting serverless, heterogeneous computing. Many systems challenges remain:
How can we design language-integrated programming models to make the life easier for users to
program massive, disaggregated cloud resources? How can we build efficient scheduling algorithms
for large-scale data science and scientific computing applications on heterogeneous CPU and GPU re-
sources? How can we support fast data storage and network communication across cloud functions? I
will explore these directions and hope to collaborate with domain experts to investigate intersections of
serverless supercomputing with programming languages, frameworks, and OSes, as well as interesting
application use-cases in the near term (the coming 3-4 years).

2.4.2 Data-Driven, Autonomous FaaS Infrastructure
Today’s FaaS is still in its infancy. Frontend FaaS offerings require users to decide on almost every con-
figuration option such as function resources and concurrency levels. Backend FaaS resource scheduling
and allocation heavily rely on existing cloud infrastructure, e.g., the VM infrastructure, which are not
designed for FaaS. The whole FaaS infrastructure badly needs new cross-cutting tools and data-driven
approaches to enable holistic, self-managed, autonomous services for FaaS users and providers. Such
tools would offer users optimal configuration options for their applications. Better visualization tools
would help ease the infrastructure management by exposing observability and monitoring as first-class
citizen. A compelling direction that I am interested in pursuing in the long run is designing data-driven
approaches to automating allocation of backend resources such as function caches. I will leverage my
collaborations with cloud providers such as IBM and Alibaba to achieve these goals.

2.4.3 ML/DS for Systems and Systems for ML/DS
My prior and current research on systems software has inspired me to explore effective ML techniques
that help solve systems challenges. For example, my offline flash caching work [ATC’16] has demon-
strated huge opportunity space for improving flash endurance; however, an optimal flash caching al-
gorithm is in theory intractable and designing efficient, online flash caching algorithm remains a chal-
lenging, manual task. I am interested in exploring ML approaches to learn a flash caching policy that
optimizes both performance and endurance. Furthermore, emerging ML applications such as Federated
Learning and Graph Neural Networks (GNNs) require new systems innovations. In particular, I am in-
terested in exploring new ways to scale these applications. One direction that I am currently working
on is to exploit serverless computing to achieve automatic scaling for these applications.

5



3 Concluding Remarks
This statement summarizes my accomplishments in research as an assistant professor for the last five
years. My research has made significant contributions to the field of big data processing systems, cloud
computing, and data storage systems. My work has been consistently published at top-tier conferences
and has over 900 citations. I have developed an independent research program with 7 Ph.D. students
(4 at UVA and 3 at GMU) and 5 NSF research grants. I am the recipient of a number of highly com-
petitive awards, including an NSF CAREER award (2021), an Amazon Research Award (2021), a Meta
Research Award (2022), and an IEEE CS TCHPC Early Career Researchers Award for Excellence in
High Performance Computing (2022). With a carefully planned research agenda towards the joint do-
mains of Data Science and Computer Science, I am committed to continued excellence in scholarship
development and data science and data systems research for years to come.

Selected Publications and Grants

[FAST’20] Ao Wang, Jingyuan Zhang, Xiaolong Ma, Ali Anwar, Lukas Rupprecht, Dimitrios Skourtis, Vasily
Tarasov, Feng Yan, Yue Cheng. INFINICACHE: Exploiting Ephemeral Serverless Functions to Build a Cost-Effective
Memory Cache, In USENIX FAST ’20.

[NSF CAREER] CNS-2045680: CAREER: Harnessing Serverless Functions to Build Highly Elastic Cloud Storage Infras-
tructure, https://www.nsf.gov/awardsearch/showAward?AWD_ID=2045680, 2021.

[SoCC’20] Benjamin Carver, Jingyuan Zhang, Ao Wang, Ali Anwar, Panruo Wu, Yue Cheng. WUKONG: A Scalable
and Locality-Enhanced Framework for Serverless Parallel Computing, In ACM SoCC ’20.

[ATC’21] Ao Wang, Shuai Chang, Huangshi Tian, Hongqi Wang, Haoran Yang, Huiba Li, Rui Du, Yue Cheng.
FAASNET: Scalable and Fast Provisioning of Custom Serverless Container Runtimes at Alibaba Cloud Function
Compute, In USENIX ATC ’21.

[SoCC’21] Li Liu, Haoliang Wang, An Wang, Mengbai Xiao, Yue Cheng, Songqing Chen. Mind the Gap: Broken
Promises of CPU Reservations in Containerized Multi-tenant Clouds, In ACM SoCC ’21.

[SC’22] Yuqi Fu, Li Liu, Haoliang Wang, Yue Cheng, Songqing Chen. SFS: Smart OS Scheduling for Serverless
Functions, In SC ’22.

[HPDC’20] Zheng Chai, Ahsan Ali, Syed Zawad, Stacey Truex, Ali Anwar, Nathalie Baracaldo, Yi Zhou, Heiko
Ludwig, Feng Yan, Yue Cheng. TIFL: A Tier-based Federated Learning System, In ACM HPDC ’20.

[SC’21] Zheng Chai, Yujing Chen, Ali Anwar, Liang Zhao, Yue Cheng, Huzefa Rangwala. FedAT: A High-
Performance and Communication-Efficient Federated Learning System with Asynchronous Tiers, In SC ’21.

[NSF FMSG] CMMI-2134689: FMSG: Cyber: Federated Deep Learning for Future Ubiquitous Distributed Additive Man-
ufacturing, https://www.nsf.gov/awardsearch/showAward?AWD_ID=2134689, 2021.

[ICDM’20] Junxiang Wang, Zheng Chai, Yue Cheng, Liang Zhao. Toward Model Parallelism for Deep Neural Network
based on Gradient-free ADMM Framework, In IEEE ICDM ’20.

[NSF OAC] OAC-2007976: OAC Core: SMALL: DeepJIMU: Model-Parallelism Infrastructure for Large-scale Deep
Learning by Gradient-Free Optimization, https://www.nsf.gov/awardsearch/showAward?AWD_ID=2007976,
2020.

[Amazon Research Award] Amazon Research Award: Distributed Large-scale Graph Deep Learning by Gradient-free
Optimization, 2020.

[Meta Research Award] Serverless and Scalable GNN Training with Disaggregated
Compute and Storage, https://research.facebook.com/research-awards/

2022-request-for-research-proposals-for-ai-system-hardware-software-codesign/, 2022.

[NSF SPX] CCF-1919075: SPX: Collaborative Research: Cross-stack Memory Optimizations for Boosting I/O Performance
of Deep Learning HPC Applications, https://www.nsf.gov/awardsearch/showAward?AWD_ID=1919075, 2019.

[EuroSys’15] Yue Cheng, Aayush Gupta, Ali R. Butt. An In-Memory Object Caching Framework with Adaptive Load
Balancing, In ACM EuroSys ’15.

6

https://www.nsf.gov/awardsearch/showAward?AWD_ID=2045680
https://www.nsf.gov/awardsearch/showAward?AWD_ID=2134689
https://www.nsf.gov/awardsearch/showAward?AWD_ID=2007976
https://research.facebook.com/research-awards/2022-request-for-research-proposals-for-ai-system-hardware-software-codesign/
https://research.facebook.com/research-awards/2022-request-for-research-proposals-for-ai-system-hardware-software-codesign/
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1919075


[HPDC’15] Yue Cheng, M. Safdar Iqbal, Aayush Gupta, Ali R. Butt. CAST: Tiering Storage for Data Analytics in the
Cloud, In ACM HPDC ’15.

[ATC’16] Yue Cheng, Fred Douglis, Philip Shilane, Michael Trachtman, Grant Wallace, Peter Desnoyers, Kai Li.
Erasing Belady’s Limitations: In Search of Flash Cache Offline Optimality, In USENIX ATC ’16.

[FAST’18] Ali Anwar, Mohamed Mohamed, Vasily Tarasov, Michael Littley, Lukas Rupprecht, Yue Cheng, Nan-
nan Zhao, Dimitrios Skourtis, Amit S. Warke, Heiko Ludwig, Dean Hildebrand, Ali R. Butt. Improving Docker
Registry Design based on Production Workload Analysis, In USENIX FAST ’18.

[SC’18] Ali Anwar, Yue Cheng, Hai Huang, Jingoo Han, Hyogi Sim, Dongyoon Lee, Fred Douglis, Ali R. Butt.
BESPOKV: Application Tailored Scale-Out Key-Value Stores, In SC ’18.

[InfiniCache Project] https://ds2-lab.github.io/infinicache/.

[Wukong Project] https://ds2-lab.github.io/Wukong/.

[FaaSNet Project] https://github.com/ds2-lab/FaaSNet.

[SFS Project] https://github.com/ds2-lab/SFS.

7

https://ds2-lab.github.io/infinicache/
https://ds2-lab.github.io/Wukong/
https://github.com/ds2-lab/FaaSNet
https://github.com/ds2-lab/SFS

	Background
	Research Scholarship Statement
	Scaling Large Computations on Serverless Cloud: Application Frameworks, State Management, and Infrastructures
	Building Scalable and High-Performance Machine Learning Systems
	Data-intensive Systems and Data Storage Systems
	Future Research Directions

	Concluding Remarks

