
Wukong: A Scalable and Locality-Enhanced
Framework for Serverless Parallel Computing
Benjamin Carver

George Mason University
bcarver2@gmu.edu

Jingyuan Zhang
George Mason University

jzhang33@gmu.edu

Ao Wang
George Mason University

awang24@gmu.edu

Ali Anwar
IBM Research–Almaden
Ali.Anwar2@ibm.com

Panruo Wu
University of Houston

pwu7@uh.edu

Yue Cheng
George Mason University

yuecheng@gmu.edu

ABSTRACT

Executing complex, burst-parallel, directed acyclic graph
(DAG) jobs poses a major challenge for serverless execution
frameworks, which will need to rapidly scale and schedule
tasks at high throughput, while minimizing data movement
across tasks.We demonstrate that, for serverless parallel com-
putations, decentralized scheduling enables scheduling to be
distributed across Lambda executors that can schedule tasks
in parallel, and brings multiple benefits, including enhanced
data locality, reduced network I/Os, automatic resource elas-
ticity, and improved cost effectiveness. We describe the im-
plementation and deployment of our new serverless parallel
framework, called Wukong, on AWS Lambda. We show that
Wukong achieves near-ideal scalability, executes parallel
computation jobs up to 68.17× faster, reduces network I/O
by multiple orders of magnitude, and achieves 92.96% tenant-
side cost savings compared to numpywren.
ACM Reference Format:

Benjamin Carver, Jingyuan Zhang, Ao Wang, Ali Anwar, Panruo
Wu, and Yue Cheng. 2020. Wukong: A Scalable and Locality-
Enhanced Framework for Serverless Parallel Computing . In ACM

Symposium on Cloud Computing (SoCC ’20), October 19–21, 2020,

Virtual Event, USA. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3419111.3421286

1 INTRODUCTION

In recent years, a new cloud computing model called server-
less computing or Function as a Service (FaaS) [21] has

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SoCC ’20, October 19–21, 2020, Virtual Event, USA

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8137-6/20/10.
https://doi.org/10.1145/3419111.3421286

emerged. Serverless computing enables a new way of build-
ing and scaling applications and services by allowing devel-
opers to break traditionally monolithic server-based appli-
cations into finer-grained cloud functions. Developers write
function logic while the service provider performs the noto-
riously tedious tasks of provisioning, scaling, and managing
the backend servers that the functions run on [38].

Serverless computing solutions are growing in popularity
and finding their way into both commercial clouds (e.g., AWS
Lambda, Google Cloud Functions, and Azure Functions) and
open source projects (e.g., OpenWhisk). While serverless
platforms were originally intended for event-driven, state-
less applications [1], a recent trend is the use of serverless
computing for more complex, stateful, parallel applications.
Some types of compute- and data-intensive applications

are inherently parallelizable and can be structured as a di-
rected acyclic graph (DAG) of short, fine-grained tasks [2, 36,
39, 49]. The large-scale parallelism and auto-scaling services
provided by serverless platforms makes them well-suited
for such kinds of burst-parallel fine-grained tasks that char-
acterize DAG-based parallel computation workflows. Burst-
parallel applications include data analytics [39], optimization
algorithms [13], and real-time machine learning classifica-
tions such as support vector machines (SVM) [20, 33, 55];
these applications typically demand low-latency schedul-
ing [49] with large-scale parallelism [26].
FaaS providers charge function execution time at a fine

granularity – AWS Lambda bills on a per-invocation ba-
sis. Workloads with short tasks can take advantage of this
fine-grained pay-per-use pricing model to keep monetary
costs low. Consequently, serverless computing can be lever-
aged by next-generation, burst-parallel workloads in high-
performance computing (HPC) and data analytics.
Migrating such applications from a traditional serverful

deployment to a serverless platform presents unique oppor-
tunities. Traditional serverful deployments rely on existing
workflow management frameworks such as MapReduce [34],
Apache Spark [54], Sparrow [49], and Dask [9] to provide

https://doi.org/10.1145/3419111.3421286
https://doi.org/10.1145/3419111.3421286
https://doi.org/10.1145/3419111.3421286

SoCC ’20, October 19–21, 2020, Virtual Event, USA Benjamin Carver, Jingyuan Zhang, Ao Wang, Ali Anwar, Panruo Wu, and Yue Cheng

…

Invoke/

Get task

Cloud

storage

Read/write
objects

Read/write
objects

(a) Existing approach

(b) Wukong approach

Cloud

storage

T2

T1

T4

T3 T5

T6 Read/write
objects

Read/write
objects

Time (progress)

Invoke

Become

Read/write
objects

Scheduler /

Task queue

Invoke/

Get task

Invoke/

Get task

Become

Cooperate

Become

Cooperate1 1

1

2 2 3

1

2

N

Figure 1: In (a), the central scheduler tracks all task comple-

tions, updates all task dependencies, and identifies all ready

tasks. The scheduler dispatches ready tasks to Lambda ex-

ecutors; or the scheduler deposits ready tasks into a shared

work queue, and a pool of Lambda executors contend for

the queued tasks. Intermediate task inputs and outputs are

stored outside of the executors, which reduces data locality.

In (b), task scheduling is performed by a fleet of Lambda

executors that schedule and execute their assigned tasks

in parallel and cooperate to ensure that task dependen-

cies are satisfied. Intermediate task inputs and outputs may

be stored inside the executors, which increases data local-

ity. This approach also enables fine-grained and automatic

Lambda resource elasticity, as Lambda executors finish as-

signed tasks and return (e.g., Lambda 2).

a logically centralized scheduler for managing task assign-
ments and resource allocation. The scheduler traditionally
has various objectives, including load balancing, maximizing
cluster utilization, ensuring task fairness, and so on. However,
a traditional serverful scheduler is not required by serverless
computing. This is because: (1) FaaS providers are responsi-
ble for managing the “servers” (i.e., where the task executors
are hosted); and (2) serverless platforms typically provide a
nearly unbounded amount of ephemeral resources. As a result,
a hypothetical serverless parallel computing framework may
not necessarily care about traditional “scheduling”-related
metrics (such as load balancing and cluster utilization), since
the framework has no control over where tasks are executed.
(The service provider, of course, cares about these metrics.)

Yet, designing an efficient serverless-oriented parallel com-
puting framework introduces unique challenges. First, while
serverless platforms (e.g., AWS Lambda) promise to offer
superior elasticity and auto-scaling properties, the serverless
invocation model imposes non-trivial scheduling overhead.

Unlike a typical serverful parallel framework where the cen-
tral scheduler directly communicates with each worker pro-
cess using TCP [3, 34], in a serverless setup, the scheduler
can dispatch tasks to serverless workers in one of three ways.

Figure 1(a) depicts a high-level overview of all three meth-
ods. In method #1, the scheduler invokes a Lambda func-
tion (using the HTTP protocol) to dispatch the task code
and execute the task. Note that with this method, there is a
one-to-one association between tasks and Lambda functions.
Given an average invocation overhead of 50 ms (typical for
AWS Lambda functions), the scheduler could quickly become
a performance bottleneck, especially for large and complex
jobs with thousands of tasks. These observations indicate
that a naive attempt to simply port an existing serverful
DAG framework to serverless computing will be unsuccess-
ful. In order to create a performant, cost-effective serverless
DAG engine, new techniques must be developed to fully take
advantage of the characteristics of the serverless platform.

In method #2, the scheduler launches short-lived1 Lambda
executors as workers that establish TCP connections with the
scheduler and receive RPC requests for task processing. Ex-
ample frameworks include ExCamera [37] and PyWren [42].
Task executors within these frameworks may execute several
tasks as opposed to just one as with the first method.
Similarly, in method #3, the scheduler places tasks in a

shared work queue. These tasks are retrieved from the queue
by serverless executors; state-of-the-art systems such as
numpywren [52] launch stateless Lambda executors that
connect to a centralized shared queue and constantly re-
trieve tasks from the queue. Frameworks using this method
may have a component separate from the central scheduler
that is responsible for invoking the AWS Lambda executors.
This is sometimes referred to as a “provisioner”. In the latter
two approaches, as shown in Figure 1(a), a tightly synchro-
nized central scheduler tracks all task completions, updates
all task dependencies, and identifies any ready tasks. The
scheduler dispatches ready tasks to Lambda executors, or the
scheduler deposits ready tasks into a shared work queue, and
a pool of Lambda executors contend for the queued tasks.
Intermediate task inputs and outputs are stored externally,
which reduces data locality.

The second challenge is that serverless platforms come
with inherent constraints, including bandwidth-limited, out-
bound only network connectivity; therefore, serverless work-
flows must rely on external cloud store for intermediate data
storage and exchange, which creates excessive data move-
ment overhead. Data locality enhancement is thus critical
for minimizing communication costs.

Researchers have developed serverless parallel computing
frameworks that support parallel job processing [37, 42, 52];

1Lambda functions may run up to 900 seconds in AWS cloud.

Wukong: A Scalable and Locality-Enhanced Framework for Serverless Parallel Computing SoCC ’20, October 19–21, 2020, Virtual Event, USA

however, these solutions do not fully address the aforemen-
tioned performance issues of efficient scheduling and data lo-
cality, which leads to long scale-out delays, sub-optimal per-
formance, and higher monetary cost. To this end, we design
and build a new serverless parallel computing framework
called Wukong2. Wukong is a serverless-oriented, decen-
tralized, locality-aware, and cost-effective parallel computing
framework. The key insight of Wukong is that partitioning

the work of a centralized scheduler (i.e., tracking task comple-

tions, identifying and dispatching ready tasks, etc.) across a

large number of Lambda executors, can greatly improve perfor-

mance by permitting tasks to be scheduled in parallel, reducing

resource contention during scheduling, and making task sched-

uling data locality-aware, with automatic resource elasticity

and improved cost effectiveness.

Scheduling is decentralized by partitioning a DAG into
multiple, possibly overlapping, subgraphs. Each subgraph is
assigned to a task Executor (implemented as an AWS Lambda
function runtime) that is responsible for scheduling and exe-
cuting tasks in its assigned subgraph. This decentralization
brings multiple key benefits:
Enhanced data locality and reduced resource contention:

Decentralization improves the data locality of scheduling.
Unlike PyWren [42] and numpywren [52], which require
executors to perform network I/Os to obtain each task they
execute (since numpywren’s task executor is completely
stateless), Wukong preserves task dependency information
on the Lambda side. This allows Lambda executors to cache
intermediate data and schedule the downstream tasks in their
subgraph locally, i.e., without constant remote interaction
with a centralized scheduler.
Harnessing scale and local optimization opportunities:

Decentralizing scheduling allows an Executor to make lo-
cal data-aware scheduling decisions about the level of task
granularity (or parallelism) appropriate for its subgraph. Ag-
ile executors can scale out compute resources in the face of
burst-parallel workloads by partitioning their subgraphs into
smaller graphs that are assigned to other executors for an
even higher level of parallel task scheduling and execution.
Alternately, an executor can execute tasks locally, when the
cost of data communication between the tasks outweighs
the benefit of parallel execution.
Automatic resource elasticity and improved cost effec-

tiveness: Decentralization does not require users to explic-
itly tune the number of active Lambdas running as workers
and thus is easier to use, more cost effective, and more re-
source efficient.

We make the following contributions in this paper.
• We thoroughly explore the problem space of serverless
parallel computing framework design. For a range of

2https://mason-leap-lab.github.io/Wukong

parallel computation applications, we identify issues of
the state-of-the-art serverless frameworks—task sched-
uling, data locality, and resource efficiency (monetary
cost effectiveness).

• Wepresent the design and implementation of Wukong,
a new serverless parallel computing framework that
solves the identified issues. Wukong synergizes a set
of optimization techniques, including decentralized
scheduling, task clustering, and delayed I/O. These
techniques together achieve near-ideal scalability, re-
duce data movement over the network, enhance data
locality, and improve cost effectiveness.

• We evaluated Wukong extensively on AWS. Our re-
sults show thatWukong reduces network I/O bymany
orders of magnitude and achieves up to 68.17× higher
performance than numpywren, while reducing the
monetary cost by as much as 92.96%.

2 BACKGROUND AND MOTIVATION

2.1 Why Serverless?

Serverless Computing handles virtually all system admin-
istration tasks, making it easier for developers to use a near-
infinite amount of cloud resources, including bundled CPUs
and memory, object stores, and a lot more [43]. Service
providers provide a flexible interface for defining serverless
functions, which allows developers to focus on core appli-
cation logic. Service providers in turn auto-scale function
executions in a demand-driven fashion, hiding tedious server
configuration and management tasks from the users.
General Constraints and Limitations. Service providers
place limits on the use of cloud resources to simplify resource
management. Take AWS Lambda for example: users config-
ure Lambda’s memory and CPU resources in a bundle. Users
can choose a memory capacity between 128MB–3008MB in
64MB increments. Lambda will then allocate CPU power
linearly in proportion to the amount of memory configured.
Each Lambda function can run at most 900 seconds and will
be forcibly stopped when the time limit is reached. In addi-
tion, Lambda only allows outbound TCP network connec-
tions and bans inbound connections and the UDP protocol.
Opportunities. Running large-scale, burst-parallel compu-
tation jobs has long been challenging for domain scien-
tists due to the complexity of configuring, provisioning, and
managing compute clusters [17, 18]. By taking over system
administration and automatically providing capability to
launch thousands of processes with no advance notice, the
emerging serverless computing model seems to provide a
foundation that will attract domain scientists and data an-
alysts. However, to fully unleash the potential of serverless

computing, an efficient serverless-optimized parallel comput-

ing framework is needed.

https://mason-leap-lab.github.io/Wukong

SoCC ’20, October 19–21, 2020, Virtual Event, USA Benjamin Carver, Jingyuan Zhang, Ao Wang, Ali Anwar, Panruo Wu, and Yue Cheng

 0

 20

 40

 60

 80

 100

 120

1000 2000 5000 10000

T
im

e
 (

s
e
c
o
n
d
s
)

Number of Tasks

Omniscient
(Num)PyWren

Figure 2: (Num)PyWren scaling tasks

on AWS Lambda.

 1

 10

 100

 1000

Read Input Write Final Result

S
iz

e
 (

G
B

)

254.176

10.00

102.752

5.00

Figure 3: Numpywren GEMM read

and write amplification.

 0.0001
 0.001
 0.01
 0.1

 1
 10

 100
 1000

 10000
 100000

Read Input Write Final Result

S
iz

e
 (

G
B

)

49.59 17.18

8535

0.0001

Figure 4: Numpywren TSQR read and

write amplification.

2.2 Challenges

We build on our experience with serverless frameworks to
synthesize the performance requirement for an ideal, server-
less, parallel computing framework, and discuss why current
solutions are not able to meet these performance require-
ments of burst-parallel applications at both the task schedul-
ing and the data locality level.
Challenge toRapidly Scale Out.A family of burst-parallel
computation jobs (e.g., data analytics [49], machine learning
classifications [20], etc.) are dominated by short-lived tasks
with a span ranging from hundreds of milliseconds (ms) to
tens of seconds [39, 42, 49, 55]. Such applications pose a dif-
ficult scheduling challenge to the serverless computing plat-
forms. This is because, while serverless computing promises
to deliver elastic auto-scaling feature in response to bursts
of concurrent workloads, serverless function invocations
incur non-negligible overhead, thus creating a scheduling
bottleneck with slow scaling out.

PyWren is a state-of-the-art serverless execution engine [42].
PyWren enables users to program MapReduce-like applica-
tions on serverless platforms such as AWS Lambda. Numpy-
wren [52] is a system for linear algebra built on top of Py-
Wren. Numpywren uses PyWren’s existing infrastructure
to deploy their own serverless task executors, which run
as a user-defined function within PyWren’s own Lambda
executors. In order for numpywren to scale the size of their
Lambda cluster, numpywren invokes additional PyWren ex-
ecutors (using PyWren’s own API) from their central sched-
uler. Based on this design, numpywren relies heavily on
PyWren for Lambda scaling and management.
Figure 2 shows PyWren’s ability to schedule large num-

bers of no-op tasks on AWS Lambda-based executors. Ideally,
an omniscient serverless scheduler should be able to take
full advantage of the massive parallelism offered by server-
less computing and rapidly scale to thousands of Lambda
executors in seconds in response to bursty, highly parallel
workloads. PyWren uses a centralized scheduling approach,
where it employs 64 threads for task scheduling and invoca-
tion; it takes almost 2 minutes to scale out to 10, 000 Lambda
executors3. To make it worse, a serverless framework like

3As did in [37], we also performed warmup operations to make sure each
Lambda invocation does not incur a cold start [22].

PyWren cannot always keep thousands of Lambda execu-
tors actively running (unlike the worker servers to a typical
serverful parallel framework such as MapReduce [34]), so
it has to constantly invoke many Lambdas in response to
bursts of job tasks.
This serves to illustrate the failure of existing serverless

execution frameworks to fully utilize serverless computing’s

elastic auto-scaling property.

Challenge of ExcessiveDataMovement. Parallel applica-
tions require intermediate data exchange among tasks. Direct
task-to-task data communication is naturally supported in
traditional serverful parallel computing frameworks such
as MPI [18], MapReduce [34], and Dask [9]. However, data
exchange in serverless applications may be supported only
indirectly, through the use of remote cloud storage systems.

Consider the data exchanged during the execution of 25𝑘×
25𝑘 GEMM (general matrix multiplication) and 8, 192𝑘 × 128
TSQR (tall skinny QR) on numpywren. Figure 3 and Figure 4
present a comparison between pure input and output sizes
and the amount of data transferred during the two workloads
respectively. For GEMM, the total quantity of data read is
more than 25× the size of the input data while the total
quantity of data written is more than 20× the size of the
output. This trend is further exemplified by TSQR. While
the amount of data read is only 2.88× greater than the input
data size, the amount of data written over 65𝑀× greater than
the output size. This is because numpywren and PyWren
adopt a stateless Lambda executor design where a task can
be dispatched to any Lambda executor; once dispatched to a
Lambda, the task simply performs the following four steps: 1)
reads its input data (the intermediate data generated by one
or multiple upstream tasks) from cloud storage (numpywren
uses S3), 2) performs computation, 3) writes the intermediate
results (as output) to the cloud storage, and 4) returns. While
the stateless design seems to be a good fit for serverless
platforms, it does not preserve data locality, which results in
excessive data movement.

This stresses a strong need for reducing data movement and

increasing data locality in serverless frameworks.

3 WUKONG DESIGN

In this section, we present the system design of Wukong.
This design is motivated by the observations that existing

Wukong: A Scalable and Locality-Enhanced Framework for Serverless Parallel Computing SoCC ’20, October 19–21, 2020, Virtual Event, USA

User

Client

interface

DAG

generator

…

Initial task executor invokers

…
Subscriber

process

Submit

jobs

Schedule

generator

…

…

…

Become

Invoke Become

Invoke

Serverless task execution and

dynamic scheduling (§ 3.3)

Lambda executor

Interfaces and static scheduler (§ 3.2, § 3.5)

Metadata store

Intermediate KV store

Storage manager (§ 3.4)

Read/write

intermediate

data

Parallelize fan-out,

increment/check

dependency

counters, etc.

Invoke

InvokeSubgraphs

Invocation

Data flow

DAG

Figure 5: Overview of Wukong architecture.

serverless parallel frameworks are slow to scale out and are
bottlenecked by excessive data movement (§2).

3.1 High-Level Design

Figure 5 shows the high-level design of Wukong. The de-
sign consists of three major components: a static schedule
generator which runs on Amazon EC2, a pool of Lambda
Executors, and a storage cluster.

Scheduling in Wukong is decentralized and uses a combi-
nation of static and dynamic scheduling. A static schedule
is a subgraph of the DAG. Each static schedule is assigned
to a separate Executor. An Executor uses dynamic sched-
uling to enforce the data dependencies of the tasks in its
static schedule. An Executor can invoke additional Execu-
tors to increase task parallelism, or cluster tasks to eliminate
any communication delay between them. Executors store
intermediate task results in an elastic in-memory key-value
storage (KVS) cluster (hosted using AWS Fargate [5]; see
§3.4) and job-related metadata (e.g., counters) in a separate
KVS that we call metadata store (MDS).

3.2 Static Scheduling

Wukong users submit a Python computing job to the DAG
generator, which uses the Dask library to convert the job
into a DAG. The Static-Schedule Generator generates static
schedules from the DAG. For a DAGwith𝑛 leaf nodes,𝑛 static
schedules are generated. A static schedule for leaf node L

contains all of the task nodes that are reachable from L and
all of the edges into and out of these nodes. The data for
a task node includes the task’s code and the KVS keys for
the task’s input data. The schedule for L is easily computed
using a depth-first search (DFS) that starts at L. Lambda
Executors notify the static scheduler when a final result

T6

T4

T1 T2

T3

T5

T1 T2

T3

Fan

-out

Fan

-out

T5

T6

T4

Fan-in

Fan-in

Becomes

BecomesE2 invokes
E3

E1 E2

E3

E3

E3

E2

E1

Dynamic

scheduling

Static

schedule 1

Static

schedule 2

(a) Static DAG (b) Dynamic scheduling

Leaf node Leaf node

Figure 6: Static DAG (a) and dynamic scheduling (b).

Wukong’s Executors coordinate in the area inside the

dashed box in (b) using dynamic scheduling. “T1” denotes

Task 1. “E1” denotes Lambda Executor 1.

has been stored in Redis by sending a message to the static
scheduler’s subscribe process. Upon receiving a message, the
static scheduler will download final results and return them
to the user automatically.

Figure 6(a) shows a DAG with two leaf nodes. Figure 6(b)
shows the two static schedules that are generated from the
DAG: Schedule 1 (blue) and Schedule 2 (green).

A static schedule contains three types of operations: task
execution, fan-in and fan-out. To simplify our description,
when DAG task Tx is followed immediately by task Ty, and
Tx (Ty) has no fan-out (fan-in), we add a trivial fan-out oper-
ation between Tx and Ty in the static schedule. This fan-out
operation has one incoming edge from Tx and one outgoing
edge to Ty, i.e., there is no actual fan-out. In Figures 6(a) and
(b), this is the case for DAG tasks T2 and T3.

A fan-in task T may depend on tasks that will be executed
by different Executors, e.g., task T4 in Figure 6. The dynamic
scheduling technique described below ensures that T’s data
dependencies are satisfied and that T is executed by only
one Executor. Note also that a static schedule does not map
its tasks to processors; this mapping is done automatically
by the AWS Lambda platform when an Executor function
instance is invoked with the static schedule and placed on a
VM by AWS Lambda.

3.3 Task Execution & Dynamic Scheduling

Task Execution.Wukong workflow execution starts when
the static scheduler’s Initial-Executor Invokers assign each
static schedule produced by the Static-Schedule Generator
to a separate Executor. Recall that each static schedule be-
gins with one of the leaf node tasks in the DAG. The Initial-
Executor invokes these "leaf node" Executors in parallel. Af-
ter executing its leaf node task, each Executor then executes

SoCC ’20, October 19–21, 2020, Virtual Event, USA Benjamin Carver, Jingyuan Zhang, Ao Wang, Ali Anwar, Panruo Wu, and Yue Cheng

the tasks along a single path through its schedule. An Ex-
ecutor may execute a sequence of tasks before it reaches a
fan-out operation with more than one out edge or it reaches
a fan-in operation. For such a sequence of tasks, there is no

communication required for making the output of the earlier

tasks available to later tasks for input. All intermediate task
outputs are cached in the Executor’s local memory with in-
herently enhanced data locality. Executors also look ahead
to see what data their tasks may need, which allows them to
discard data in their local memory that is no longer needed.

Furthermore, Executors can increase parallelism by sched-
uling and invoking new Executors to execute the task targets
of a fan-out. A group of Executors that reach a common fan-
in node decrease parallelism by scheduling one of them to
execute the fan-in task and the rest to stop. Wukong uses
dynamic scheduling to resolve conflict on the fly. More im-
portantly, this dynamic scheduling of the tasks in an Executor’s

static schedule leads to a decentralized scheduling model that

naturally fits serverless computing, eliminates the need for a

centralized scheduler processes that check data dependencies

and invoke ready tasks with improved scalability.

Dynamic Scheduling for Fan-Out Operations. For fan-
out operations there are two cases:
Case 1: none of the 𝑛 (where 𝑛 > 1) fan-out edges is a fan-in
edge. Then E “becomes” the Executor for one of the fan-out’s
tasks, say T, by executing T, and E “invokes” an Executor for
the other fan-out tasks.
Case 2: one or more of the fan-out edges is also a fan-in
edge. For example, fan-out node 3 in Figure 6(a) has a fan-
out edge that is a fan-in edge to node 4. The selection of a
“becomes” edge for E is based on the immediate availability
of the tasks targeted by the fan-out edges. If no task target’s
dependencies are satisfied then no task target is immediately
available for execution and none of the fan-out edges can be
selected as E’s “becomes” edge (the fan-in edges have fan-in
operations that will be executed next); otherwise, one of the
fan-out edges for the available target tasks is selected as the
“becomes” edge.

An intermediate objects needed for input by an invoked
Executor is passed to the Executor as an argument if the size
of the object is less than the maximum allowed argument
size (256K); otherwise, the object is sent to the Storage Man-
ager, and the associated KVS keys are passed to the invoked
Executors as arguments.

Each of the𝑛−1 Executors invoked by E is assigned a static
schedule that begins with one of the 𝑛−1 fan-out edges. Each
of these (possibly overlapping) static schedules corresponds
to a sub-graph of E’s static schedule. Executor E continues
task execution and scheduling along the remaining fan-out
edge and executes the operation encountered on this edge.
In Figure 6(b), fan-out edges are labeled either “invokes”

or “becomes” to indicate whether the Executor invokes a

new Lambda Executor to execute a fan-out task or executes
the fan-out task itself.

Since Executor invocations, which are in the form of AWS
Lambda function invocations, incur a high overhead (e.g., in-
voking an AWS Lambda function takes about 50 milliseconds
with the Boto3 AWS Python API), we use a number of dedi-
cated Executor-Invoker processes that are co-located with
the Static Scheduler (Figure 5). When an Executor performs
a fan-out operation, and a large number of new Executors
must be invoked, the Executor delegates the invocations to
the Static Scheduler. The Static Scheduler evenly distributes
task invocation responsibilities among the Invoker processes,
enabling (near-)linear speedup over sequential invocations.
Dynamic Scheduling for Fan-in Operations. If Task Ex-
ecutor E executes a fan-in operation with 𝑛 (where 𝑛 > 1)
in-edges, then E and the 𝑛 − 1 other Executors involved in
this fan-in operation cooperate to see which one of them
will continue their static schedules on the out edge of the
fan-in (e.g., node 4 in Figure 6).
For a fan-in operation executed by E for fan-in task T, E

atomically gets and updates a value in the KVS that tracks the
number of T’s input dependencies that have been satisfied
during execution There are two cases:
Case 1: all of the input dependencies of T have been satisfied.
Then E continues its static schedule by executing T

Case 2: all of the input dependencies of T have not been
satisfied. Then E sends the intermediate object needed by T

to the Storage Manager.
In Figure 6(b), each fan-in task is labeled with the Executor

that executed the task.
Task Clustering. Storing and retrieving large intermedi-
ate objects can be very costly. Wukong implements task
clustering to avoid large object storage.
Task Clustering for Fan-Out Operations. If the output
object of some fan-out task𝑇 executed by Executor E is larger
than a user-defined threshold 𝑡 (e.g., 200 MB), E will try to
cluster the target tasks of T’s fan-out edges, i.e., Ewill execute
the target tasks whose dependencies are satisfied instead of
invoking new Executors for these tasks. For example, the
Executor that executes task C can also execute tasks F and G
to avoid the time and cost of communicating task C’s large
object output to tasks F and G. In cases like this, the fan-out
edges will have multiple edges labeled “becomes”.
Task Clustering for Fan-In Operations. If E executes a
fan-in operation for task T and the input dependencies of
a single task T have not been satisfied, then E sends the
intermediate object needed by T to the Storage Manager. If
this object is large, E then rechecks T’s input dependencies.
If T’s input dependencies became satisfied while the large
intermediate object was being stored, E becomes the Executor
for T, This avoids the communication delay that would have
occurred when T retrieved the large object from storage, but

Wukong: A Scalable and Locality-Enhanced Framework for Serverless Parallel Computing SoCC ’20, October 19–21, 2020, Virtual Event, USA

not the delay that occurs when R stored the object. The delay
that occurred when the large object was stored by E can be
avoided if the storage operation can be delayed until after
T’s input dependencies become satisfied.

Suppose that when Executor E executes the fan-out oper-
ation it identifies multiple fan-out tasks that are also fan-in
tasks and that have input dependencies that are not satisfied.
E will then execute any ready fan-out tasks it finds and delay
the decision about how to handle the fan-out tasks that are
not ready. (There may be many fan-out tasks that are not
also fan-in tasks or that are fan-in tasks with satisfied input
dependencies.)
Delayed I/O. After Executor E executes the ready tasks, E
will recheck whether the input dependencies of the unready
tasks have since become satisfied. If so, the newly ready tasks
can be executed. If at least one unready task becomes ready,
the ready task can be executed and the unready tasks can
be rechecked again, and so on, for a configurable number
of times. Our profiling indicates that it is almost always
better to wait until all of the unready tasks become ready to
avoid the very large communication delay the occurs when
many large objects are stored and retrieved potentially at
the same time. A pattern of simultaneous large object writes
and reads occurred often in the DAG workloads that we
executed. If unready tasks remain when this process stops, E
must send the intermediate objects needed by the unready
tasks to storage; however, as described above, E can possibly
avoid the communication delay associated with retrieving
the objects from storage by checking the unready objects
one more time.

3.4 Storage Management

Wukong’s Storage Cluster is built atop AWS Fargate [5], a
serverless container engine that can be elastically scaled out-
/in. The Storage Cluster includes a number of AWS Fargate
tasks, each of which hosts a Redis instance, and a KV Store
Proxy Service. The KV Store Proxy is executed within an EC2
VM along with an additional instance of Redis used exclu-
sively for storing static schedules and dependency counters.
The user can configure the size of the Fargate cluster to dy-
namically accommodate workloads of different sizes. The
user simply specifies how many nodes they would like, and
Wukong ensures that these nodes are created and available.
The Fargate nodes are used for the storage of intermediate
data generated during a workload’s execution. We opt to use
Redis instead of S3 as Redis can provide both high bandwidth
for large object workloads and high IOPS for small object
workloads [44, 50], whereas S3’s IOPS is throttled. However,
modifying Wukong to use S3 is trivial.

The KV Store Proxy performs various storage operations
on behalf of the Task Executors and the Scheduler. At the

1 def add(x,y):
2 time.sleep(0.5)
3 return x + y
4

5 L = range(8)
6 while len(L) > 1:
7 L = list(map(delayed(add),\
8 L[0::2], L[1::2]))
9

10 L[0].compute()
Figure 7: TR code.

add

add

addadd

add

addadd

Figure 8: TR DAG.

start of a workflow, the Storage Manager receives the work-
flow DAG and the static schedules derived from the DAG
from the Scheduler.
Intermediate and Final Result Storage. Task Executors
publish their intermediate and final task output objects to the
KV Store. Final outputs are relayed to a Subscriber process
in the Scheduler for presentation to the Client.
Small Fan-out Task Invocations.When a Task Executor
performs a fan-out operation that has a small number of
out edges, the Task Executor makes the necessary Executor
invocations itself.
Large Fan-out Task Invocations. When a fan-out has a
number of out edges that is larger than a user-specified
threshold, the Task Executor publishes a message that is
relayed to a Subscriber process in the Storage Manager that
then passes the message on to the Proxy. This message con-
tains an ID that identifies the fan-out’s location in the DAG.
The Proxy uses the DAG and the fan-out ID to identify the
fan-out’s out edges in the DAG. This allows the Proxy, with
the assistance of the Fan-out Invokers in the Storage Man-
ager, to make the necessary Task Executor invocations, in
parallel. The Proxy passes to each Executor its intermediate
inputs (or their key values in the KV Store) and the Execu-
tor’s static schedule.
3.5 Programming Model

Wukong reuses Dask’s Python programming interfaces [12]
(including high-level APIs, such as Dask libraries and data
structures, and low-level APIs, such as Dask.delayed) for
implementing parallel programs. In general, any codewritten
for Dask should execute on Wukong. Figure 7 shows an
example code snippet that implements tree reduction (TR)
(a detailed description of TR is in §4.1). Wukong also reuses
Dask’s DAG generator which translates high-level Python
code into a DAG [11]. Figure 8 depicts the DAG generated
for TR with an 8-element array.

3.6 Fault Tolerance

For fault tolerance, we relied on the automatic retry mecha-
nism of AWS Lambda, which allows for up to two automatic
retries of failed function executions. Investigating better fault
tolerance scheme is part of our future work.

SoCC ’20, October 19–21, 2020, Virtual Event, USA Benjamin Carver, Jingyuan Zhang, Ao Wang, Ali Anwar, Panruo Wu, and Yue Cheng

4 EVALUATION

Implementation. We have implemented Wukong using
roughly 12𝑘 lines of Python code (5, 349 LoC for the AWS
Lambda Executor Runtime, 3, 057 LoC for the Storage Man-
ager, and 3, 577 LoC for the Static Scheduler).We use the Dask
library [9] to generate DAGs to use as the input computation
graph for Wukong.

4.1 Experimental Goals and Methodology

Our evaluation was performed on AWS. The static sched-
uler ran in an r5n.16xlarge EC2 VM. We used a scale-out
Redis cluster (Multi-Redis) as Wukong’s intermediate stor-
age. The Fargate nodes within the storage cluster were each
configured to have 30 GB of memory and 4 vCPUs. For the
Multi-Redis setup, Wukong used 75 nodes for the storage
cluster, as we’ve determined this value to be both performant
and cost-effective for many workloads. The MDS proxy was
co-located on the same r5n.16xlarge VM as a Redis instance
that was used for storing static schedules and dependency
counters. Each Lambda function was allocated 3 GB of mem-
ory and a maximum execution time of seven minutes.
We compared the performance of Wukong against both

Dask distributed (which we refer to simply as “Dask”) and
numpywren [52] / PyWren [42]. We chose to compare our
performance against Dask as both Wukong and Dask use
the exact same input DAG and the same algorithms for their
computations. We compared the end-to-end performance of
Wukong against numpywren, and we compared the scala-
bility of Wukong against PyWren, which is numpywren’s
underlying Lambda execution framework.
We chose to compare Wukong against numpywren be-

cause both are serverless DAG execution frameworks; how-
ever, there are significant differences between Wukong and
numpywren. One difference is thatWukong uses DaskDAGs,
which explicitly encode tasks and their dependencies. Numpy-
wren, on the other hand, uses an implicit DAG representation
for its programs, which are all implemented in the LAmb-
daPACK language for linear algebra [52]. The nodes of the
DAG that represent a LAmbdaPACK program are generated
on-demand (at runtime).

Another difference is that numpywren uses AWS S3 as its
intermediate data store. In order to make the comparison
between Wukong and numpywren more fair, we modified
numpywren to use a single instance of Redis as its interme-
diate object store. We compared this version of numpywren,
which we refer to as “Numpywren Single Redis”, with a mod-
ified version of Wukong that also uses a single instance of
Redis for intermediate data storage. In addition, we com-
pared numpywren S3 against “Wukong Multi-Redis”, which
uses a Fargate Redis cluster for its intermediate object store.
This second comparison was performed in order to show the
optimal performance achieved by each system.

Finally, numpywren only supports linear algebra algo-
rithms and only several of these algorithms are also available
in Dask. As a result, we are limited in which workloads we
can run on both Wukong and numpywren.
To better understand Wukong’s performance, we com-

pared Wukong against 2 different Dask configurations. Both
configurations used the same amount of CPU (2, 000 cores)
and memory (3, 000 GB memory). This was the largest VM
cluster that we could configure. The first configuration con-
sisted of 1, 000 2-core 3GBworkers running on 125 c5.4xlarge
16-core 32 GB VMs. Each VM had eight workers running
on it. The second configuration consisted of 125 workers;
each worker exclusively ran on a c5.4xlarge VM and was
allocated 16 cores and 24 GB memory. The first configura-
tion was selected so that each worker was approximately as
powerful as the AWS Lambda functions used by Wukong; it
represents a worst-case scenario that stresses the Dask sched-
uler with many workers and incurs high communications
due to the lack of data locality, emulating a serverless envi-
ronment with centralized scheduling. The second configura-
tion represents a best-case scenario where the relatively more
powerful workers could process larger data with improved
data locality and significantly reduced communications.

Additionally, we used the exact same input data partitions
for Dask and Wukong. We scaled the problem size for each
benchmark by having each (Dask, Wukong, or numpywren)
worker assigned with (at least) one partition of the input
data. As such, a test used only a fraction of the 2, 000 cores
of the Dask cluster, until the problem size was large enough
to occupy all the resources. The largest number of partitions
(of input data) used during our evaluation was 4, 096 for
16𝑀 TSQR (which will be described shortly). This number
of partitions does not overwhelm either Dask configurations
as TSQR’s DAG features large fan-ins in the middle of the
job. The large fan-ins result in the number of tasks allocated
to each worker decreasing as the workload progresses.

In our evaluation results, each data point is the average of
ten runs. The error bars on the graphs of the results indicate
the biggest and smallest results obtained. Wukong is easy-
to-use as it exposes only two configuration knobs to the end
users—the input partition size and the number of Fargate
nodes. (A sensitivity analysis of these two configuration
knobs is omitted due to space constraint.)

We evaluated the following parallel applications.
Tree Reduction (TR): TR sums the N elements of an array
using a total of 𝑁 − 1 operations performed over multiple
passes. Each pass adds adjacent elements, in parallel, un-
til after 𝑙𝑜𝑔(𝑁) passes only a single element remains. TR
serves as a microbenchmark for evaluating the effect of task
granularity and parallelism on performance. See Figure 7
and Figure 8 for an example of the Python code snippet and
generated DAG.

Wukong: A Scalable and Locality-Enhanced Framework for Serverless Parallel Computing SoCC ’20, October 19–21, 2020, Virtual Event, USA

 0

 2

 4

 6

 8

 10

 12

 14

0 100 250 500

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Delay Amount (milliseconds)

Dask (1000 2C Workers)
Dask (125 16C Workers)

Wukong (Multi−Redis)

Figure 9: TR.

 0

 2

 4

 6

 8

 10

 12

 14

12
8k

25
6k

51
2k

1.
0M

2.
0M

4.
0M

8.
1M

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Problem Size (N x 100)

Dask (1000 2C Workers)
Dask (125 16C Workers)

Wukong (Multi−Redis)

Figure 10: SVD1.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

10
k

25
k

50
k

10
0k

12
8k

19
6k

25
6k

X XE
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Problem Size (N x N)

Dask (1000 2C Workers)
Dask (125 16C Workers)

Wukong (Multi−Redis)

Figure 11: SVD2.

 0
 1
 2
 3
 4
 5
 6
 7
 8

12
8k

25
6k

51
2k

1.
0M

2.
0M

4.
0M

8.
1M

16
.3

M

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
)

Problem Size

Dask (1000 2C Workers)
Dask (125 16C Workers)

Wukong (Multi-Redis)

Figure 12: SVC.

 0

 20

 40

 60

 80

 100

5k 7.5k 10k 15k 25k

900+

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
)

Problem Size (N x N)

Dask (1000 2C Workers)
Dask (125 16C Workers)

Numpywren S3
Numpywren Single−Redis

Wukong Multi−Redis
Wukong Single−Redis

Figure 13: GEMM.

 0.1

 1

 10

 100

 1000

32
.7

k

65
.5

k
13

1k
26

2k
52

4k

1.
0M

2.
0M

4.
1M

8.
3M

16
.7

M

33
.5

M

67
.1

M

X X XX XX

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
)

Problem Size

Figure 14: TSQR (log-scale).

 0.1

 1

 10

 100

 1000

5k 10k 15k 25k

N
u
m

b
e
r

o
f
G

ig
a
b
y
te

s

Wukong GB Read
Wukong GB Written

Numpywren GB Read
Numpywren GB Written

Figure 15: GEMM I/O (log).

 0.01

 0.1

 1

 10

 100

 1000

 10000

1.0M 2.0M 4.1M 8.3M 16.7M

N
u
m

b
e
r

o
f
G

ig
a
b
y
te

s

Figure 16: TSQR I/O (log).

Singular Value Decomposition (SVD):We evaluated two
variants of SVD. The first variant (SVD1) computes the SVD
of a tall skinny matrix. The second variant (SVD2) computes
the SVD of a square (i.e.,𝑛×𝑛) matrix using an approximation
algorithm provided by [40]. Note that Dask’s SVD algorithm
differs considerably from numpywren’s, and thus a direct
comparison between Wukong and numpywren for SVD is
impossible. For reference, Wukong can execute SVD 256𝑘 ×
256𝑘 in 88 seconds on average while [52] reports an average
of 77,828 seconds for the same problem size for SVD.
Support Vector Classification (SVC): SVC is a machine
learning workload. The benchmark we used is publicly avail-
able in the Dask-ML documentation [10].
GeneralMatrixMultiplication (GEMM):GEMMperforms
matrix multiplication, an important component of many lin-
ear algebra algorithms.
Tall-and-Skinny QR Factorization (TSQR): This work-
load performs a QR factorization of a tall skinny matrix.

4.2 End-to-End Performance Comparison

TR. The size of the array used for TRwas 1024.We also inten-
tionally added a delay to each task of TR. This delay simulates
an increased amount of work performed per task. We var-
ied the amount of delay between 0–500 ms. Figure 9 shows
that both configurations of Dask outperforms Wukong by
a large margin for the base case. This is because Dask uses
TCP to dispatch the 1024/2 = 512 addition tasks to work-
ers, whereas for Wukong the overhead of scaling out to 512
Lambda executors dominates. As we add increasing amounts
of delay to each task, the performance gap between Dask
and Wukong decrease. Once the delay is 250 ms or more,
Wukong executes the workload faster than the 1, 000-worker
Dask cluster, as Wukong uses decentralized scheduling to
rapidly scale out to 512 workers. This experiment shows an
interesting tradeoff between per-task execution time and
serverless scaling cost – Wukong performs best when each

task performs a non-trivial amount of work, as this compen-
sates for the overhead of spinning up additional Lambdas.
SVD. We tested seven problem sizes for both SVD1 and
SVD2 (see Figure 10 and Figure 11). For nearly all problem
sizes,Wukong out-performed the 1, 000-worker Dask cluster,
completing the job anywhere from 62.02% to 69.09% faster
than Dask. This performance difference results from the
benefits of Wukong’s decentralized scheduling techniques,
which greatly reduce the overhead of executing tasks on a
large number of workers. The 1, 000-worker Dask was bot-
tlenecked by its central scheduler due to the increasing load
from the one thousand workers.
The 125-worker Dask cluster consistently outperformed

Wukong. This is because each Dask worker is provisioned
with more resources (i.e., more CPUs, greater network band-
width, a larger amount of RAMperworker, etc.), which signif-
icantly increases data locality and reduces cross-worker com-
munications. More importantly, for SVD2, Wukong was able
to scale to considerably larger problem sizes than what the
1,000-worker Dask cluster was capable of handling (crosses
in Figure 11). The results demonstrate Wukong’s ability to
provide competitive performance with traditional serverful
frameworks, while also scaling effectively for increasingly
large problem sizes. Wukong’s ability to scale effectively
here is largely because of its use of task clustering and de-
layed I/O. These techniques dramatically reduce data move-
ment and ensure all downstream tasks which depend on large
data are executed on the Task Executor that already has the
data in-memory. A quantitative analysis of the benefits of
these techniques is given later in §4.5.
SVC. Figure 12 shows SVC’s performance. As with the previ-
ous benchmark, Dask was able to perform better for smaller
problem sizes; however, when we increased the problem size,
the performance gap between the two frameworks decreased.
As the scale of the problems increased to 4.0𝑀 samples and
beyond, Wukong began to scale more effectively than the
1, 000-worker Dask cluster. The large parallelism of Wukong

SoCC ’20, October 19–21, 2020, Virtual Event, USA Benjamin Carver, Jingyuan Zhang, Ao Wang, Ali Anwar, Panruo Wu, and Yue Cheng

 0.1

 1

 10

 100

 1000

 10000

 100000

12
8k

25
6k

51
2k

1.
0M

2.
0M

4.
0M

8.
1M

C
P

U
 T

im
e
 (

s
e
c
o
n
d
s
)

Problem Size (N x 100)

Wukong
Dask 1000 Worker

Dask 125 Worker

Figure 17: SVD1 CPU time.

 0.0001

 0.001

 0.01

 0.1

 1

12
8k

25
6k

51
2k

1.
0M

2.
0M

4.
0M

8.
1M

C
o
s
t
(U

S
D

)

Problem Size (N x 100)

Wukong Spot
Wukong Non−Spot
Dask 1000 Worker

Dask 125 Worker

Figure 18: SVD1 cost.

enabled the framework to complete the workload in 46.45%
less time; however, the 125-worker Dask cluster executed the
workload roughly 50.56% faster than Wukong. This is likely
due to both the higher network bandwidth and increased
data locality of the Dask workers.
GEMM. Like TR, the results of our GEMM experiments iden-
tify a workload that is difficult to execute in a serverless en-
vironment. As shown in Figure 13, Wukong achieved worse
performance than Dask. This is because GEMM natively re-
quires a number of large data objects to be communicated
between tasks before the computation can begin. Due to the
limited bandwidth available to the intermediate data stor-
age, both Wukong and numpywren experience long delays
during this phase of the workload.
Wukong’s performance greatly exceeded that of both

numpywren configurations for all problem sizes. For the
largest problem size, Wukong (single Redis shard) executed
the workload 89.76% faster than numpywren (single Re-
dis shard). Wukong (with Fargate) was 51.51% faster than
numpywren (with S3) for 15𝑘×15𝑘 matrices becauseWukong
reduced the amount of data read from and written to the
intermediate KVS, and this reduction on I/Os directly trans-
lates to performance improvement. As shown in Figure 15,
Wukong read 49.39% less data than numpywren for the
smallest problem size and 45.24% for the largest; Wukong
reduced the amount of data written by as much as 85% for
the largest problem size.
TSQR. Figure 14 shows that Wukong outperformed both
numpywren (with S3) and numpywren (single Redis shard)
for all problem sizes. For the 4.1𝑀 × 128 matrix, Wukong
(single Redis shard) was executing the workload 68.17×
faster, or in 98.53% less time, than numpywren (single Redis
shard); and Wukong (Fargate) is 9.19× faster, or in 89.11%
less time, than numpywren (S3). Numpywren (single Redis
shard) failed to execute the next larger problem size, and
the largest workload numpywren (S3) was able to execute
was 16.7𝑀 × 128. For this workload, Wukong was 13.36×
faster, executing the workload in 92.51% less time. This again,
is because of the significantly reduced reads and writes.
Wukong’s “become” functionality allowed serial tasks along
a single subgraph path to execute locally on the same Lambda
Executor; whereas numpywren randomly assigned high pri-
ority tasks (which were ready to execute) to any stateless
Lambda executor. As a result, numpywren wrote 16, 027×

 0
 100
 200
 300
 400
 500
 600
 700
 800

 0 100 200 300 400 500 600

(a) CPU usage comparison.

v
C

P
U

s

Time (seconds)

Wukong Fargate
Dask 125 Worker

Dask 1000 Worker

Numpywren Single Redis - 338 Worker
Numpywren Single Redis - 169 Worker
Numpywren Single Redis - 50 Worker

 0
 1
 2
 3
 4
 5
 6
 7
 8

 0 100 200 300 400 500 600

(b) Cost comparison.

C
u
m

u
la

ti
v
e
 C

o
s
t
(U

S
D

)

Time (seconds)

Figure 19: GEMM CPU usage and cost timeline.

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100 120 140

(a) CPU usage comparison.

v
C

P
U

s

Time (seconds)

 0.001

 0.01

 0.1

 1

 10

 0 20 40 60 80 100 120 140

(b) Cost comparison.

C
u
m

u
la

ti
v
e
 C

o
s
t
(U

S
D

)

Time (seconds)

Wukong Fargate
Numpywren Single Redis - 256 Worker
Numpywren Single Redis - 128 Worker

Dask 125 Worker
Dask 1000 Worker

Figure 20: TSQR CPU usage and cost timeline.

more data for the smallest problem size and 15, 631× more
data for the largest problem size, which resulted in dramatic
performance degradation (Figure 16).

4.3 CPU Time and Monetary Cost

Figure 17 presents a comparison between Wukong (Multi-
Redis) and both Dask clusters on their total CPU time (core
seconds) for SVD1. Note that this comparison only considers
cores actively used by Dask for each problem size. Wukong
uses more core seconds than Dask-125 for the first three
problem sizes, as Dask-125 finishes the job significantly faster
than Wukong. For 1.0𝑀 and above, Wukong uses less core
seconds than Dask-125. Dask-1000 incurs the longest CPU
time as it is the slowest of the three. The disparity between
the two frameworks increases as the problem size grows.
Figure 18 presents a comparison of the monetary cost

to execute SVD1 for varying problem sizes. This cost anal-
ysis only considers the Dask VMs actively used for each
given workload size. At first, Wukong is more expensive
than Dask-125. As the problem size increases, the cost of
executing the workload on Wukong increases at a much
slower rate than the cost of running the workload on Dask-
125. By the largest problem size, the price of executing the
workload on Wukong is equal to that of executing the work-
load on Dask-125. Additionally, Wukong achieves faster
performance, lower cost, and more efficient CPU usage than
Dask-1000 using non-spot pricing for all except the smallest
problem size. These results demonstrate Wukong’s pay-per-
use property.

Figure 19 shows a comparison between various configura-
tions of Wukong Single Redis, Dask, and numpywren Single
Redis on the number of vCPUs and cumulative cost used
during GEMM 25𝑘 × 25𝑘 . These configurations include both

Wukong: A Scalable and Locality-Enhanced Framework for Serverless Parallel Computing SoCC ’20, October 19–21, 2020, Virtual Event, USA

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

250 500 1000

(i) No-op

T
im

e
 (

s
e
c
o
n
d
s
)

Lambdas

Wukong (Num)PyWren Omniscient

 0

 5

 10

 15

 20

 25

250 500 1000

(j) Sleep (100 ms)

T
im

e
 (

s
e
c
o
n
d
s
)

Lambdas

 0

 5

 10

 15

 20

 25

 30

 35

250 500 1000

(k) Sleep (250 ms)

T
im

e
 (

s
e
c
o
n
d
s
)

Lambdas

 5
 10
 15
 20
 25
 30
 35
 40
 45

250 500 1000

(l) Sleep (500 ms)

T
im

e
 (

s
e
c
o
n
d
s
)

Lambdas

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

250 500 1000

(e) No-op

T
im

e
 (

s
e
c
o
n
d
s
)

Lambdas

 0

 5

 10

 15

 20

 25

250 500 1000

(f) Sleep (100 ms)

T
im

e
 (

s
e
c
o
n
d
s
)

Lambdas

 0

 5

 10

 15

 20

 25

 30

250 500 1000

(g) Sleep (250 ms)

T
im

e
 (

s
e
c
o
n
d
s
)

Lambdas

 0

 5

 10

 15

 20

 25

 30

250 500 1000

(h) Sleep (500 ms)

T
im

e
 (

s
e
c
o
n
d
s
)

Lambdas

 0

 20

 40

 60

 80

 100

 120

1000 2000 5000 10000

(a) No-op

T
im

e
 (

s
e
c
o
n
d
s
)

Lambdas

 0

 20

 40

 60

 80

 100

 120

1000 2000 5000 10000

(b) Sleep (100 ms)

T
im

e
 (

s
e
c
o
n
d
s
)

Lambdas

 0

 20

 40

 60

 80

 100

 120

1000 2000 5000 10000

(c) Sleep (250 ms)

T
im

e
 (

s
e
c
o
n
d
s
)

Lambdas

 0

 20

 40

 60

 80

 100

 120

1000 2000 5000 10000

(d) Sleep (500 ms)

T
im

e
 (

s
e
c
o
n
d
s
)

Lambdas

Figure 21: Figure 21(a)-(d) – strong scaling: time (Y-axis) to execute 10, 000 tasks over 𝑁 Lambda executors (X-axis). Figure 21(e)-

(h) –weak scaling: time to execute 10 tasks per Lambda. Figure 21(i)-(l) – serverless scaling: time to execute𝑁 task on𝑁 Lambda.

For each row, plots are for (from left to right) tasks of 0, 100, 250, and 500 ms.

Dask configurations and three configurations of numpywren
Single Redis. By design, numpywren allows users to specify
the initial4 number of Lambda executors (workers) for a job.
We configured numpywren to use 50, 169, and 338 workers.
Numpywren-169 was selected because the maximum concur-
rency achieved by Wukong during this workload was 169
Lambdas. We tested a scaled-out version of numpywren that
used twice as many starting workers (338) as well as a scaled-
down version using 50 workers. Notably, numpywren-50 was
the fastest configuration, followed by numpywren-169 and
finally numpywren-338. This suggests that increasing the
number of numpywren’s parallelism significantly increases
contention, possibly at the framework’s central queue or
scheduler, leading to performance degradation.
Wukong was both cheaper and used less vCPUs during

the execution of the workload than all three numpywren con-
figurations. Specifically, Wukong was 33.47% cheaper and
77.57% faster than the best-performing numpywren configu-
ration. More importantly, Wukong is autonomous and does
not require users to explicitly tune the parallelism, which
improves the usability.

4One can configure the starting number of executors, a maximum number
of executors, and the policy used to scale the number of executors dynami-
cally during execution. We opted to select the default scaling policy for all
numpywren runs.

Similarly, Figure 20 shows a comparison for TSQR 4.0𝑀 .
The first configuration of numpywren used 128 workers
while the second used 256 workers. These are based on the
number of leaf tasks in Wukong’s workload (512), though
we found that using 512 numpywren workers resulted in
worse performance. Wukong used less CPU resources and
was significantly cheaper than all other frameworks. It also
out-performed all other frameworks except for Dask-125.
Specifically, Wukong completed the workload in 87.41% less
time and 92.96% more cheaply than the best-performing
numpywren configuration (i.e., 14.22× cheaper and 7.94×
faster). Lastly, while Wukong did not out-perform Dask-125,
Wukong was 95.67% cheaper than Dask-1000 and 45.70%
cheaper than Dask-125 for this workload. Wukong did not
reach more than 106 vCPUs during the workload’s execution
as many of the leaf tasks performed only a small amount of
work before writing their data to the KVS and exiting. That
is, by the time additional leaf tasks are scheduled, previously-
invoked leaf tasks were already finishing their execution,
forming a scheduling pipeline.
4.4 Elastic Scaling

We next evaluate Wukong’s scalability on traditional strong
/ weaking scaling and serverless scaling metrics, and com-
pare it against (Num)-PyWren. The maximum concurrency
we got from Amazon was 5, 000 concurrent Lambdas. In this
experiment, for both (Num)-PyWren and Wukong, all the

SoCC ’20, October 19–21, 2020, Virtual Event, USA Benjamin Carver, Jingyuan Zhang, Ao Wang, Ali Anwar, Panruo Wu, and Yue Cheng

0 200 400 600 800 1000

Enabled

Disabled

Time (seconds)

Redis I/O

Invoking Tasks

Serialization/Deserialization

Task Execution

Publishing Redis Pub/Sub
Messages

Figure 22: SVD2 50k x 50k aggregated execution time break-

down with and without task clustering and delay I/O.

executors in the Lambda pool got warmed up before accept-
ing task requests, eliminating the cold start concerns. The
Lambda pool scaled from zero.
Strong Scaling. For strong scaling, we varied the number
of Lambdas to be launched to execute 10, 000 tasks. In order
to simulate workloads with various computation loads, we
added a delay of 100 ms, 250 ms, and finally 500 ms to each
task. Each test was repeated three times.

Figure 21(a)–(d) show that, in all cases, Wukong exhibited
near-ideal strong scaling behavior, scaling significantly bet-
ter than (Num)-PyWren in all cases, thereby demonstrating
the effectiveness of our decentralized scheduling mechanism.
It was not until the 500 ms delay case that (Num)-PyWren
exhibited a downward trend in execution time as the number
of Lambda executors scaled. This is because: 1) 500-ms tasks
tend to run longer, and 2) with more Lambda executors and
a fixed total amount of tasks, each Lambda gets assigned less
number of tasks.
Weak Scaling. For weak scaling, we executed ten tasks per
worker and varied the number of Lambda executors from
250 to 1, 000. As shown in Figure 21(e)–(h), Wukong exhib-
ited near-ideal weak scaling behavior for all sleep delays and
worker configurations. Notably, thanks to the decentralized
scheduling, Wukong was able to scale to 1, 000 Lambda ex-
ecutors much more effectively than (Num)PyWren, which
experienced increasingly large delays as the number of Lamb-
das increased.
Serverless Scaling. Finally, we test serverless scaling – ex-
ecuting 𝑁 tasks on 𝑁 Lambda executors, with each Lambda
effectively executing one single task. Figure 21(i)–(l) plots
the results. We observe that (Num)-PyWren took an increas-
ing amount of time to finish executing 𝑁 tasks on 𝑁 Lamb-
das, and executing 10, 000 tasks took almost two minutes. In
contrast, Wukong rapidly scales out to 10, 000 tasks in few
seconds, almost approaching the behavior of an omniscient
serverless execution framework. This again demonstrates
the efficacy of Wukong’s decentralized scheduling.

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

Baseline +Multi-Redis
Cluster

+Task
Clustering

+Delayed I/O

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Figure 23: Contributions of optimizations to Wukong’s per-

formance of SVD2.

4.5 Factor Analysis

Task Clustering and Delay I/O. Finally, we look at the
impact of task clustering and delaying I/O on Wukong’s
performance. Clustering and delay I/O prevent tasks with
large intermediate data from writing their data to Redis.
Instead, these tasks attempt to execute downstream tasks
locally. Any downstream tasks that cannot immediately be
executed because their dependencies are not satisfied are
put into a queue. The dependencies of the queued tasks are
routinely rechecked until the dependencies are satisfied or
a maximum delay time is reached. By delaying I/O, more
tasks can be clustered and expensive network I/Os data can
be avoided, decreasing the workload runtime dramatically.

Figure 22 displays two aggregations of time for the activ-
ities performed for SVD2. In both cases, “publishing mes-
sages”, “task execution”, and “serialization/deserialization”
each took roughly the same amount of time (in aggregate);
however, the difference between the times for task invocation
and especially Redis I/O is significant. With the two opti-
mizations disabled, task invocations and Redis I/O made up
an aggregate 14.80 and 565.21 seconds, respectively. When
the optimizations were enabled, task invocation took an ag-
gregate 2.05 seconds while Redis I/O took just 20.36 seconds.
There is 7.21× more aggregate time spent invoking tasks
and 27.76× more aggregate network I/O performed with
clustering disabled.
We analyze Wukong’s performance by breaking down

the performance gap between a baseline and Wukong with
all optimizations enabled (Figure 23). The use of the Fargate
multi-Redis storage cluster results in a 20.85% performance
improvement over using AWS ElastiCache for intermedi-
ate data storage. When using Fargate, the I/O performed
during the workload is spread across a large number of Re-
dis instances, resulting in reduced network contention and
consequently reduced I/O latency. (Using a large number
of ElastiCache instances is cost prohibitive.) When cluster-
ing (without delayed I/O) is enabled, performance improves
by another 48.82% as a significant amount of large object
I/Os is eliminated. Finally, enabling delayed I/O results in

Wukong: A Scalable and Locality-Enhanced Framework for Serverless Parallel Computing SoCC ’20, October 19–21, 2020, Virtual Event, USA

a 46.21% improvement relative to the use of clustering and
Fargate alone. Overall, Wukong is 4.6× faster when all opti-
mizations are used, demonstrating the effectiveness of these
techniques.

5 RELATEDWORK

Researchers have identified new stateful parallel applica-
tions for serverless computing. These efforts have lead to
serverless parallel computing frameworks [6, 16, 25, 28, 30,
36, 37, 41, 42, 50, 52], which have been built using methods
2 and 3 describes in §1. However, none of them explicitly
addresses the data locality issue of stateful serverless parallel
applications. Wukong goes beyond existing work with a
novel locality-aware decentralized scheduling approach for
complex DAG jobs.

funcX [32] is an open FaaS platform that enables high per-
formance “serverless supercomputing” over existing HPC
infrastructures. Wukong is orthagonal to funcX and should
be portable to existing commercial and open-source FaaS
platforms [4, 8, 15, 19, 35]. Porting Wukong to other server-
less platforms is part of our future work.
SAND [24] is a serverless platform that increases data

locality by running some or all of the functions/tasks for a
givenworkloadwithin the same container on the same server,
but as separate processes.Wukong is a serverless application
framework that increases data locality by executing multiple
dependent tasks in the sameWukong Executor function, and
hence in the same process, container, and server. Thus, SAND
improves data locality in the serverless platform layer, while
Wukong improves locality in the application framework
layer running atop the serverless platform.
InfiniCache [53] is a distributed memory cache that ex-

ploits the memory of serverless functions for object caching.
Wukong complements InfiniCache in that Wukong can
use InfiniCache to cache intermediate data.

General-purpose serverless orchestration frameworks in-
clude AWS Step Functions [6], Azure Durable Functions [7],
Fission Workflows [14], and HyperFlow [16, 47]. But these
frameworks are not well-suited for supporting large, complex
jobs, because they require manual workflow configurations
(e.g., JSON) [46].

A large body of research has explored distributed sched-
uling [27, 29, 48, 49, 51]. However, these solutions all target
serverful scheduling with serverful deployment specific op-
timization objectives. Wukong targets serverless computing
and takes advantage of the massive parallelism of serverless
computing for high efficiency.

6 DISCUSSION AND LESSONS

Wukong is not intended to replace established, serverful pro-
cessing frameworks such as Spark [54] and TensorFlow [23].
Rather, because Wukong is less powerful but easier to use

than these serverful frameworks, Wukong targets users
who lack a strong CS background, but who work on lighter-
weight and smaller computing-related problems, in areas
such as data analytics and machine learning, particularly
those whose solutions can be implemented using numerical
Python libraries.
Our initial attempt to port Dask to a serverless platform

was unsuccessful due to the poor performance of the re-
sulting framework [31]. There were several major bottle-
necks in this original design. For one, the use of a centralized
scheduler to assign tasks to Lambda executors was too slow
for all but the smallest workloads. Specifically, the central-
ized scheduler was unable to process thousands of concur-
rent network connections with Lambda executors. Addition-
ally, the centralized scheduler struggled to rapidly invoke
Lambda functions when scaling out for large workloads. Fi-
nally, Lambda executors spent an overwhelming majority
of their time reading and writing intermediate data. [31]
presents a preliminary study about these performance bot-
tlenecks.
To address these performance issues, we developed our

decentralized scheduling technique. While this technique
significantly improved performance, there were still bottle-
necks due to a lack of data locality. Specifically, reading and
writing very large intermediate objects dominated end-to-
end execution time, particularly for workloads such as SVD.
To address these bottlenecks, we developed task clustering
and delayed I/O. Though these techniques have been used in
serverful contexts [29, 45], they had never been utilized in a
serverless context. With the addition of these two techniques,
large object reads and writes were eliminated, which greatly
improved performance and resource utilization.

7 CONCLUSION

We have presented Wukong, a new serverless parallel com-
puting framework that uses locality-enhanced, decentral-
ized scheduling (atop AWS Lambda), task clustering, and de-
layed I/O to achieve high performance, near-ideal scalability,
and data locality while being cost-effective. Our evaluation
demonstrates the effectiveness of decentralized scheduling,
task clustering, and delayed I/O in reducing both the execu-
tion time and cost of executing workloads. Further, we have
shown that Wukong exhibits near-ideal scaling behavior,
reduces the execution time by as much as 98.53% compared
to numpywren, and reduces network I/O by multiple orders
of magnitude. Finally, Wukong can reduce costs by upwards
of 92.96% and 95.67% compared to numpywren and Dask,
respectively.

Wukong’s source code is available at:
https://mason-leap-lab.github.io/Wukong.

https://mason-leap-lab.github.io/Wukong

SoCC ’20, October 19–21, 2020, Virtual Event, USA Benjamin Carver, Jingyuan Zhang, Ao Wang, Ali Anwar, Panruo Wu, and Yue Cheng

ACKNOWLEDGMENTS

We are grateful to the anonymous reviewers for their valu-
able comments and suggestions that improved the paper.
This work is sponsored in part by NSF grants CCF-1919075,
CCF-1919113, OAC-2007976, George Mason University, an
AWS Cloud Research Grant, and Google Cloud Platform Re-
search Credits.

REFERENCES

[1] [n.d.]. 2018 Serverless Community Survey: huge growth in server-
less usage. https://serverless.com/blog/2018-serverless-community-
survey-huge-growth-usage/.

[2] [n.d.]. Alibaba Cluster Trace Program (New 2018 Version.
https://github.com/alibaba/clusterdata/blob/master/cluster-trace-
v2018/trace_2018.md.

[3] [n.d.]. Apache Hadoop. https://hadoop.apache.org/.
[4] [n.d.]. Apache OpenWhisk: Open Source Serverless Cloud Platform.

https://openwhisk.apache.org/.
[5] [n.d.]. AWS Fargate: Serverless compute for containers. https:

//aws.amazon.com/fargate/.
[6] [n.d.]. AWS Step Functions. https://aws.amazon.com/step-functions/.
[7] [n.d.]. Azure Durable Functions Overview. https:

//docs.microsoft.com/en-us/azure/azure-functions/durable/durable-
functions-overview?tabs=csharp.

[8] [n.d.]. Azure Functions. https://azure.microsoft.com/en-us/services/
functions/.

[9] [n.d.]. Dask: Scalable Analytics in Python. https://dask.org/.
[10] [n.d.]. Dask: Scalable Machine Learning in Python. https://dask-

ml.readthedocs.io/en/latest/#.
[11] [n.d.]. Dask Task Graphs. https://docs.dask.org/en/latest/graphs.html.
[12] [n.d.]. Dask User Interfaces. https://docs.dask.org/en/latest/user-

interfaces.html.
[13] [n.d.]. Developing Convex Optimization Algorithms in Dask parallel:

math is fun. https://matthewrocklin.com/blog/work/2017/03/22/dask-
glm-1.

[14] [n.d.]. Fission Workflows. https://github.com/fission/fission-
workflows.

[15] [n.d.]. Google Cloud Functions. https://cloud.google.com/functions/.
[16] [n.d.]. HyperFlow: a scientific workflow execution engine. https:

//github.com/hyperflow-wms/hyperflow.
[17] [n.d.]. kubernetes: Production-Grade Container Orchestration. https:

//kubernetes.io/.
[18] [n.d.]. MPI Forum. https://www.mpi-forum.org/.
[19] [n.d.]. OpenFaaS: Serverless Functions, Made Simple. https://www.

openfaas.com/.
[20] [n.d.]. Scikit-learn Support Vector Machines. https://scikit-learn.org/

stable/modules/svm.html#svm-classification.
[21] [n.d.]. Serverless: Build and run applications without thinking about

servers. https://aws.amazon.com/serverless/.
[22] [n.d.]. Serverless: Cold Start War. https://mikhail.io/2018/08/

serverless-cold-start-war/.
[23] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan,
Pete Warden, MartinWicke, Yuan Yu, and Xiaoqiang Zheng. 2016. Ten-
sorFlow: A System for Large-Scale Machine Learning. In 12th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 16).
USENIX Association, Savannah, GA, 265–283. https://www.usenix.
org/conference/osdi16/technical-sessions/presentation/abadi

[24] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus
Satzke, Andre Beck, Paarijaat Aditya, and Volker Hilt. 2018. {SAND}:
Towards High-Performance Serverless Computing. (2018), 923–935.
https://www.usenix.org/conference/atc18/presentation/akkus

[25] Lixiang Ao, Liz Izhikevich, Geoffrey M. Voelker, and George Porter.
[n.d.]. Sprocket: A Serverless Video Processing Framework. In ACM

SoCC ’18.
[26] Krste Asanović, Ras Bodik, Bryan Christopher Catanzaro,

Joseph James Gebis, Parry Husbands, Kurt Keutzer, David A.
Patterson, William Lester Plishker, John Shalf, Samuel Webb Williams,
and Katherine A. Yelick. 2006. The Landscape of Parallel Computing

Research: A View from Berkeley. Technical Report UCB/EECS-2006-
183. EECS Department, University of California, Berkeley. http:
//www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html

[27] Yadu Babuji, Anna Woodard, Zhuozhao Li, Daniel S. Katz, Ben Clifford,
Rohan Kumar, Lukasz Lacinski, Ryan Chard, Justin M. Wozniak, Ian
Foster, Michael Wilde, and Kyle Chard. [n.d.]. Parsl: Pervasive Parallel
Programming in Python. In ACM HPDC ’19.

[28] Daniel Barcelona-Pons, Marc Sánchez-Artigas, Gerard París, Pierre
Sutra, and Pedro García-López. [n.d.]. On the FaaS Track: Building
Stateful Distributed Applications with Serverless Architectures. In
ACM Middleware ’19.

[29] George Bosilca, Aurelien Bouteiller, Anthony Danalis, Thomas Her-
ault, Pierre Lemarinier, and Jack Dongarra. 2012. DAGuE: A Generic
Distributed DAG Engine for High Performance Computing. Parallel
Comput. 38, 1-2 (Jan. 2012), 37–51. https://doi.org/10.1016/j.parco.
2011.10.003

[30] Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew Zhang, and
Randy Katz. 2019. Cirrus: A Serverless Framework for End-to-end ML
Workflows. In Proceedings of the ACM Symposium on Cloud Computing

(Santa Cruz, CA, USA) (SoCC ’19). ACM, New York, NY, USA, 13–24.
https://doi.org/10.1145/3357223.3362711

[31] Benjamin Carver, Jingyuan Zhang, Ao Wang, and Yue Cheng. 2019. In
Search of a Fast and Efficient Serverless DAG Engine. In 2019 IEEE/ACM
Fourth International Parallel Data Systems Workshop (PDSW). 1–10.

[32] Ryan Chard, Yadu Babuji, Zhuozhao Li, Tyler Skluzacek, Anna
Woodard, Ben Blaiszik, Ian Foster, and Kyle Chard. 2020. FuncX:
A Federated Function Serving Fabric for Science. In Proceedings of

the 29th International Symposium on High-Performance Parallel and

Distributed Computing (Stockholm, Sweden) (HPDC ’20). Associa-
tion for Computing Machinery, New York, NY, USA, 65–76. https:
//doi.org/10.1145/3369583.3392683

[33] Corinna Cortes and Vladimir Vapnik. 1995. Support-Vector Networks.
Mach. Learn. 20, 3 (Sept. 1995), 273–297. https://doi.org/10.1023/A:
1022627411411

[34] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified
Data Processing on Large Clusters. Commun. ACM 51, 1 (Jan. 2008),
107–113. https://doi.org/10.1145/1327452.1327492

[35] Fission. [n.d.]. Serverless Functions for Kubernetes. https://fission.io/.
[36] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatter-

jee, Christos Kozyrakis, Matei Zaharia, and Keith Winstein. [n.d.].
From Laptop to Lambda: Outsourcing Everyday Jobs to Thousands of
Transient Functional Containers. In USENIX ATC 19.

[37] Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett, Karthikeyan Vasuki
Balasubramaniam, William Zeng, Rahul Bhalerao, Anirudh Sivaraman,
George Porter, and Keith Winstein. [n.d.]. Encoding, Fast and Slow:
Low-Latency Video Processing Using Thousands of Tiny Threads. In
USENIX NSDI 17.

[38] Jim Gray. 1985. Why Do Computers Stop And What Can Be Done
About It?

[39] Jing Guo, Zihao Chang, Sa Wang, Haiyang Ding, Yihui Feng, Liang
Mao, and Yungang Bao. [n.d.]. Who Limits the Resource Efficiency of

https://serverless.com/blog/2018-serverless-community-survey-huge-growth-usage/
https://serverless.com/blog/2018-serverless-community-survey-huge-growth-usage/
https://github.com/alibaba/clusterdata/blob/master/cluster-trace-v2018/trace_2018.md
https://github.com/alibaba/clusterdata/blob/master/cluster-trace-v2018/trace_2018.md
https://hadoop.apache.org/
https://openwhisk.apache.org/
https://aws.amazon.com/fargate/
https://aws.amazon.com/fargate/
https://aws.amazon.com/step-functions/
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview?tabs=csharp
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview?tabs=csharp
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview?tabs=csharp
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://dask.org/
https://dask-ml.readthedocs.io/en/latest/##
https://dask-ml.readthedocs.io/en/latest/##
https://docs.dask.org/en/latest/graphs.html
https://docs.dask.org/en/latest/user-interfaces.html
https://docs.dask.org/en/latest/user-interfaces.html
https://matthewrocklin.com/blog/work/2017/03/22/dask-glm-1
https://matthewrocklin.com/blog/work/2017/03/22/dask-glm-1
https://github.com/fission/fission-workflows
https://github.com/fission/fission-workflows
https://cloud.google.com/functions/
https://github.com/hyperflow-wms/hyperflow
https://github.com/hyperflow-wms/hyperflow
https://kubernetes.io/
https://kubernetes.io/
https://www.mpi-forum.org/
https://www.openfaas.com/
https://www.openfaas.com/
https://scikit-learn.org/stable/modules/svm.html##svm-classification
https://scikit-learn.org/stable/modules/svm.html##svm-classification
https://aws.amazon.com/serverless/
https://mikhail.io/2018/08/serverless-cold-start-war/
https://mikhail.io/2018/08/serverless-cold-start-war/
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/atc18/presentation/akkus
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
https://doi.org/10.1016/j.parco.2011.10.003
https://doi.org/10.1016/j.parco.2011.10.003
https://doi.org/10.1145/3357223.3362711
https://doi.org/10.1145/3369583.3392683
https://doi.org/10.1145/3369583.3392683
https://doi.org/10.1023/A:1022627411411
https://doi.org/10.1023/A:1022627411411
https://doi.org/10.1145/1327452.1327492
https://fission.io/

Wukong: A Scalable and Locality-Enhanced Framework for Serverless Parallel Computing SoCC ’20, October 19–21, 2020, Virtual Event, USA

My Datacenter: An Analysis of Alibaba Datacenter Traces. In ACm

IWQoS ’19.
[40] Nathan Halko, Per-Gunnar Martinsson, and Joel A. Tropp. [n.d.]. Find-

ing structure with randomness: Probabilistic algorithms for construct-
ing approximate matrix decompositions. ([n. d.]). arXiv:0909.4061
http://arxiv.org/abs/0909.4061

[41] V. Ishakian, V. Muthusamy, and A. Slominski. 2018. Serving Deep
Learning Models in a Serverless Platform. In 2018 IEEE International

Conference on Cloud Engineering (IC2E). 257–262. https://doi.org/10.
1109/IC2E.2018.00052

[42] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Ben-
jamin Recht. [n.d.]. Occupy the Cloud: Distributed Computing for the
99%. In ACM SoCC ’17.

[43] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai,
Anurag Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Menezes Car-
reira, Karl Krauth, Neeraja Yadwadkar, Joseph Gonzalez, Raluca Ada
Popa, Ion Stoica, and David A. Patterson. 2019. Cloud Programming

Simplified: A Berkeley View on Serverless Computing. Technical Report.
[44] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas

Pfefferle, and Christos Kozyrakis. 2018. Pocket: Elastic Ephemeral Stor-
age for Serverless Analytics. In 13th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 18). USENIX Association,
Carlsbad, CA, 427–444. https://www.usenix.org/conference/osdi18/
presentation/klimovic

[45] Yu-Kwong Kwok and Ishfaq Ahmad. 1999. Static Scheduling Algo-
rithms for Allocating Directed Task Graphs to Multiprocessors. ACM
Comput. Surv. (1999).

[46] Pedro García López, Marc Sánchez-Artigas, Gerard París,
Daniel Barcelona Pons, Álvaro Ruiz Ollobarren, and David Ar-
royo Pinto. [n.d.]. Comparison of FaaS Orchestration Systems. ([n. d.]),
148–153. https://doi.org/10.1109/UCC-Companion.2018.00049
arXiv:1807.11248

[47] Maciej Malawski, Adam Gajek, Adam Zima, Bartosz Balis, and Kamil
Figiela. 2017. Serverless execution of scientific workflows: Experiments
with HyperFlow, AWS Lambda and Google Cloud Functions. Future
Generation Computer Systems (Nov. 2017). https://doi.org/10.1016/j.
future.2017.10.029

[48] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov,
Richard Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul,
Michael I. Jordan, and Ion Stoica. 2018. Ray: A Distributed Framework
for Emerging AI Applications. In 13th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 18). USENIX Association,
Carlsbad, CA, 561–577. https://www.usenix.org/conference/osdi18/
presentation/moritz

[49] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and Ion Stoica. [n.d.].
Sparrow: Distributed, Low Latency Scheduling. In ACM SOSP ’13.

[50] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. [n.d.]. Shuffling,
Fast and Slow: Scalable Analytics on Serverless Infrastructure. In
USENIX NSDI 19.

[51] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and
John Wilkes. 2013. Omega: Flexible, Scalable Schedulers for Large
Compute Clusters. In Proceedings of the 8th ACM European Conference

on Computer Systems (Prague, Czech Republic) (EuroSys ’13). ACM,
NewYork, NY, USA, 351–364. https://doi.org/10.1145/2465351.2465386

[52] Vaishaal Shankar, Karl Krauth, Qifan Pu, Eric Jonas, Shivaram
Venkataraman, Ion Stoica, Benjamin Recht, and Jonathan Ragan-
Kelley. 2018. numpywren: serverless linear algebra. arXiv preprint

arXiv:1810.09679 (2018).
[53] Ao Wang, Jingyuan Zhang, Xiaolong Ma, Ali Anwar, Lukas Rupprecht,

Dimitrios Skourtis, Vasily Tarasov, Feng Yan, and Yue Cheng. 2020.
InfiniCache: Exploiting Ephemeral Serverless Functions to Build a Cost-
Effective Memory Cache. In 18th USENIX Conference on File and Storage

Technologies (FAST 20). USENIX Association, Santa Clara, CA, 267–281.
https://www.usenix.org/conference/fast20/presentation/wang-ao

[54] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauly, Michael J. Franklin, Scott Shenker, and
Ion Stoica. [n.d.]. Resilient Distributed Datasets: A Fault-Tolerant
Abstraction for In-Memory Cluster Computing. In USENIX NSDI 12.

[55] Kaihua Zhu, Hao Wang, Hongjie Bai, Jian Li, Zhihuan Qiu,
Hang Cui, and Edward Y. Chang. 2008. Parallelizing Support
Vector Machines on Distributed Computers. In Advances in

Neural Information Processing Systems 20, J. C. Platt, D. Koller,
Y. Singer, and S. T. Roweis (Eds.). Curran Associates, Inc., 257–
264. http://papers.nips.cc/paper/3202-parallelizing-support-vector-
machines-on-distributed-computers.pdf

https://arxiv.org/abs/0909.4061
http://arxiv.org/abs/0909.4061
https://doi.org/10.1109/IC2E.2018.00052
https://doi.org/10.1109/IC2E.2018.00052
https://www.usenix.org/conference/osdi18/presentation/klimovic
https://www.usenix.org/conference/osdi18/presentation/klimovic
https://doi.org/10.1109/UCC-Companion.2018.00049
https://arxiv.org/abs/1807.11248
https://doi.org/10.1016/j.future.2017.10.029
https://doi.org/10.1016/j.future.2017.10.029
https://www.usenix.org/conference/osdi18/presentation/moritz
https://www.usenix.org/conference/osdi18/presentation/moritz
https://doi.org/10.1145/2465351.2465386
https://www.usenix.org/conference/fast20/presentation/wang-ao
http://papers.nips.cc/paper/3202-parallelizing-support-vector-machines-on-distributed-computers.pdf
http://papers.nips.cc/paper/3202-parallelizing-support-vector-machines-on-distributed-computers.pdf

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Why Serverless?
	2.2 Challenges

	3 Wukong Design
	3.1 High-Level Design
	3.2 Static Scheduling
	3.3 Task Execution & Dynamic Scheduling
	3.4 Storage Management
	3.5 Programming Model
	3.6 Fault Tolerance

	4 Evaluation
	4.1 Experimental Goals and Methodology
	4.2 End-to-End Performance Comparison
	4.3 CPU Time and Monetary Cost
	4.4 Elastic Scaling
	4.5 Factor Analysis

	5 Related Work
	6 Discussion and Lessons
	7 Conclusion
	References

