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Background System Design

Fine-grained modular architecture

» Each cache instance is a

» In-memory object caches extensively “fat server’ comprising N .l -
used in public/private clouds and web multiple service
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Data is stored in relatively
small partitions spanning
multiple cachelets

Motivation \U,

» Most systems adopt monolithic storage models and engineer optimizations Key
on specific workload characteristics or operations such as GET - A

Distributed object (key-value) cache

> The main focus of most optimizations is on performance improvement on Cachelet ID Object key Container ID
one single dimension L J - .

t . Use container

> Large-scale cloud workloads exhibit temporal and spatial shifts , "\_ IDtofind service

Routing table ] container within

» They either do not or support dynamic membership but with significantly 1 Routingtable/
lookup to map
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Accessing cachelets

— Naturally enables smooth warm-up transition!
How?

» Client-side routing to reduce logic complexity of the cache side

Cache hit ratio (%)
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| , | | | | | » Optionally support ordered partitioning in key space (tweaking the
10000 f consistent hashing) for range queries
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500 1000 1500 2000 2500 - » Seamless per-instance resource re-provisioning

Time (sec) > Priority-driven resource multiplexing - high resource utilization

YCSB benchmarking with 10 GB data and caching tier enabled. Systems start up with 4 cache » Low-overhead dynamic membership management

nodes. At sec 340 and 1240, 4 new cache nodes are added in respectively. While warming up, > Data migration in granularity of cachelets - efficiently elastic

0 :
overall throughput reduces up to 41% and performance recovery takes up to 10 min. > Lazy client view update - upon the completion of cachelet migration, old

cache nodes respond with the updated view

The ldea

Major module performance evaluation: Hash table
» The fine-grained modular design within one cache instance

> Partition both data and metadata the independent entities called Cachelet » Experiment setup (point query, client aggregators operating mode for
> Hash table module, B+ tree module, trie module, etc. avoiding network overhead)

> APls (services): > 6 core, 2.67 GHz, 12 GB DRAM
» GET() > Memstore: our lock-free hash table; Mercury: Memcached hash table with

» SET() fine-grained bucket locks; Memcached: original 1.4.13 version
» RANGE SCAN()

» PREFIX MATCH()
» etc... Flexible, customizable, extensible
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What other benefits can the system get from the

Throughput (million reqs per sec)
Throughput (million reqs per

fine-grained modular design?

Client O Client1... Client M -1

Number of threads Number of threads

(a) GET performance (Zipfian) (b) SET performance (Zipfian)
» Enables seamless

per-instance resource

re-provisioning and Current Status
low-overhead dynamic Cache node Cache node Cache node

membership » Integrate B+ tree and trie module into the system
management Wide spectrum of services » Implement client side simplistic consistent hashing + data migration scheme

» Build different case studies to demonstrate the benefits of our cache

Differentiated services
framework
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