High Performance In-memory Caching through

Flexible Fine-grained Services

Yue Cheng', Aayush Gupta and Anna Povzner*, and Ali R. Butt!
TVirginia Tech, £IBM Almaden Research Center

{yuec, butta}@cs.vt.edu, {guptaaa, apovzne } @us.ibm.com

Background System Design

Fine-grained modular architecture

» Each cache instance is a

» In-memory object caches extensively “fat server’ comprising N .l -
used in public/private clouds and web multiple service

. . b . Cache Node 1 Cache Node N
installations abstractions

i »
\ ———’
" P 1

> Low-latency access to data Cachelet type abstracts the N i
> Scalability cache miss service provided to the 4 7
» The state-of-the-art ° ° put clients
> Amazon Web Service Elasticache Distributed object cache Services (query types,

.g., M hed
> Facebook Memcache, TAO (€9 Hemeached) resources allocated: CPU, f/
! Hash Table Structure

> Masstree [EuroSys'12] E j DRAM etc.) are a—— %

Key Space

Cachelets ‘

> Mem(C3 [NSDI'13] Persistent Storage configurable =

Data is stored in relatively
small partitions spanning
multiple cachelets

Motivation \U,

» Most systems adopt monolithic storage models and engineer optimizations Key
on specific workload characteristics or operations such as GET - A

Distributed object (key-value) cache

> The main focus of most optimizations is on performance improvement on Cachelet ID Object key Container ID
one single dimension L J - .

t . Use container

> Large-scale cloud workloads exhibit temporal and spatial shifts , "_ IDtofind service

Routing table] container within

» They either do not or support dynamic membership but with significantly 1 Routingtable/
lookup to map

h |gh Overhea d key to cache node

& A J
Y Y

i . | !
> Cold cache warm-up causes intermittent performance degradation ::Cachelet{l—X} Cachelet (LY} *** |Cachelet {1-2) :
| !

| | |
Service | | Service ! . Service I|

50000 j j . | —— : Partition Cache . container1 | | container 2 | . container N |
| Throughput — | Overall hit ratio -- node

45000 ‘ i 3. Use cachelet ID to
| § § | | : ' 5 find cachelet within
40000 ‘ 5 | the service container
35000
30000 | | : : : : :
25000 f ol
20000 | | e

15000 7””

Accessing cachelets

— Naturally enables smooth warm-up transition!
How?

» Client-side routing to reduce logic complexity of the cache side

Cache hit ratio (%)

O
(0]
n
~
(7))
Q.
£
el
-
Q.
L
(@)
>
@)
S
L
—
el
-
Q0
O

| , | | | | | » Optionally support ordered partitioning in key space (tweaking the
10000 f consistent hashing) for range queries

5000 ' ' ' ' ' | K _ L
500 1000 1500 2000 2500 - » Seamless per-instance resource re-provisioning

Time (sec) > Priority-driven resource multiplexing - high resource utilization

YCSB benchmarking with 10 GB data and caching tier enabled. Systems start up with 4 cache » Low-overhead dynamic membership management

nodes. At sec 340 and 1240, 4 new cache nodes are added in respectively. While warming up, > Data migration in granularity of cachelets - efficiently elastic

0 :
overall throughput reduces up to 41% and performance recovery takes up to 10 min. > Lazy client view update - upon the completion of cachelet migration, old

cache nodes respond with the updated view

The ldea

Major module performance evaluation: Hash table
» The fine-grained modular design within one cache instance

> Partition both data and metadata the independent entities called Cachelet » Experiment setup (point query, client aggregators operating mode for
> Hash table module, B+ tree module, trie module, etc. avoiding network overhead)

> APls (services): > 6 core, 2.67 GHz, 12 GB DRAM
» GET() > Memstore: our lock-free hash table; Mercury: Memcached hash table with

» SET() fine-grained bucket locks; Memcached: original 1.4.13 version
» RANGE SCAN()

» PREFIX MATCH()
» etc... Flexible, customizable, extensible

18

16

sec)

14 |

Memstore -©-
Mercury 4
Memcached - <

Memstore —-©-
Mercury -4 -
Memcached - <

What other benefits can the system get from the

Throughput (million reqs per sec)
Throughput (million reqs per

fine-grained modular design?

Client O Client1... Client M -1

Number of threads Number of threads

(a) GET performance (Zipfian) (b) SET performance (Zipfian)
» Enables seamless

per-instance resource

re-provisioning and Current Status
low-overhead dynamic Cache node Cache node Cache node

membership » Integrate B+ tree and trie module into the system
management Wide spectrum of services » Implement client side simplistic consistent hashing + data migration scheme

» Build different case studies to demonstrate the benefits of our cache

Differentiated services
framework

SoCC’13, 0Oct.1-3 2013, Santa Clara, CA, USA http://research.cs.vt.edu/dssl

