
High Performance In-memory Caching through
Flexible Fine-grained Services

Yue Cheng†, Aayush Gupta and Anna Povzner‡, and Ali R. Butt†

†Virginia Tech, ‡IBM Almaden Research Center

{yuec, butta}@cs.vt.edu, {guptaaa, apovzne}@us.ibm.com

Background

I In-memory object caches extensively
used in public/private clouds and web
installations
. Low-latency access to data
. Scalability

I The state-of-the-art
. Amazon Web Service Elasticache
. Facebook Memcache, TAO
. Masstree [EuroSys’12]
. MemC3 [NSDI’13]

Distributed object (key-value) cache

Motivation

I Most systems adopt monolithic storage models and engineer optimizations
on specific workload characteristics or operations such as GET
. The main focus of most optimizations is on performance improvement on

one single dimension
. Large-scale cloud workloads exhibit temporal and spatial shifts

I They either do not or support dynamic membership but with significantly
high overhead
. Cold cache warm-up causes intermittent performance degradation

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 500 1000 1500 2000 2500 3000
 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

C
lie

nt
 th

ro
ug

hp
ut

 (o
ps

/s
ec

)

C
ac

he
 h

it
ra

tio
 (%

)

Time (sec)

Throughput Overall hit ratio

YCSB benchmarking with 10 GB data and caching tier enabled. Systems start up with 4 cache
nodes. At sec 340 and 1240, 4 new cache nodes are added in respectively. While warming up,
overall throughput reduces up to 41% and performance recovery takes up to 10 min.

The Idea

I The fine-grained modular design within one cache instance
. Partition both data and metadata the independent entities called Cachelet
. Hash table module, B+ tree module, trie module, etc.
. APIs (services):

I GET()

I SET()

I RANGE SCAN()

I PREFIX MATCH()

I etc... Flexible, customizable, extensible

What other benefits can the system get from the
fine-grained modular design?

I Enables seamless
per-instance resource
re-provisioning and
low-overhead dynamic
membership
management

Differentiated services

System Design

I Each cache instance is a
“fat server” comprising
multiple service
abstractions

I Cachelet type abstracts the
service provided to the
clients

I Services (query types,
resources allocated: CPU,
DRAM etc.) are
configurable

I Data is stored in relatively
small partitions spanning
multiple cachelets

Fine-grained modular architecture

⇓

Accessing cachelets

⇐ Naturally enables smooth warm-up transition!
How?

I Client-side routing to reduce logic complexity of the cache side
I Optionally support ordered partitioning in key space (tweaking the

consistent hashing) for range queries
I Seamless per-instance resource re-provisioning
. Priority-driven resource multiplexing - high resource utilization

I Low-overhead dynamic membership management
. Data migration in granularity of cachelets - efficiently elastic
. Lazy client view update - upon the completion of cachelet migration, old

cache nodes respond with the updated view

Major module performance evaluation: Hash table

I Experiment setup (point query, client aggregators operating mode for
avoiding network overhead)
. 6 core, 2.67 GHz, 12 GB DRAM
. Memstore: our lock-free hash table; Mercury: Memcached hash table with

fine-grained bucket locks; Memcached: original 1.4.13 version

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut
 (m

ill
io

n
re

qs
 p

er
 s

ec
)

Number of threads

Memstore
Mercury

Memcached

(a) GET performance (Zipfian)

 0

 1

 2

 3

 4

 5

 6

 1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut
 (m

ill
io

n
re

qs
 p

er
 s

ec
)

Number of threads

Memstore
Mercury

Memcached

(b) SET performance (Zipfian)

Current Status

I Integrate B+ tree and trie module into the system
I Implement client side simplistic consistent hashing + data migration scheme
I Build different case studies to demonstrate the benefits of our cache

framework

SoCC’13, Oct.1-3 2013, Santa Clara, CA, USA http://research.cs.vt.edu/dssl

