
FedAT: A High-Performance and Communication-Efficient
Federated Learning System with Asynchronous Tiers

Zheng Chai

George Mason University

Fairfax, VA, USA

zchai2@gmu.edu

Yujing Chen

George Mason University

Fairfax, VA, USA

ychen37@gmu.edu

Ali Anwar

IBM Research - Almaden

San Jose, CA, USA

ali.anwar2@ibm.com

Liang Zhao

Emory University

Atlanta, GA, USA

liang.zhao@emory.edu

Yue Cheng

George Mason University

Fairfax, VA, USA

yuecheng@gmu.edu

Huzefa Rangwala

George Mason University

Fairfax, VA, USA

rangwala@gmu.edu

Abstract
Federated learning (FL) involves training a model over massive

distributed devices, while keeping the training data localized and

private. This form of collaborative learning exposes new tradeoffs

among model convergence speed, model accuracy, balance across

clients, and communication cost, with new challenges including:

(1) straggler problem—where clients lag due to data or (comput-

ing and network) resource heterogeneity, and (2) communication

bottleneck—where a large number of clients communicate their

local updates to a central server and bottleneck the server. Many

existing FL methods focus on optimizing along only one single

dimension of the tradeoff space. Existing solutions use asynchro-

nous model updating or tiering-based, synchronous mechanisms to

tackle the straggler problem. However, asynchronous methods can

easily create a communication bottleneck, while tiering may intro-

duce biases that favor faster tiers with shorter response latencies.

To address these issues, we present FedAT, a novel Federated
learning system with Asynchronous Tiers under Non-i.i.d. train-
ing data. FedAT synergistically combines synchronous, intra-tier

training and asynchronous, cross-tier training. By bridging the

synchronous and asynchronous training through tiering, FedAT

minimizes the straggler effect with improved convergence speed

and test accuracy. FedAT uses a straggler-aware, weighted aggre-

gation heuristic to steer and balance the training across clients

for further accuracy improvement. FedAT compresses uplink and

downlink communications using an efficient, polyline-encoding-

based compression algorithm, which minimizes the communication

cost. Results show that FedAT improves the prediction performance

by up to 21.09% and reduces the communication cost by up to 8.5×,
compared to state-of-the-art FL methods.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SC ’21, November 14–19, 2021, St. Louis, MO, USA
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8442-1/21/11. . . $15.00

https://doi.org/10.1145/3458817.3476211

CCS Concepts
• Computing methodologies→Multi-agent systems;Neural
networks; Distributed algorithms; Cooperation and coordi-
nation.

Keywords
federated learning, asynchronous distributed learning, communica-

tion efficiency, tiering, weighted aggregation

1 Introduction
The number of intelligent devices, such as smartphones and wear-

able devices, has been rapidly growing in the last few years. Many of

these devices are equipped with various smart sensors and increas-

ingly potent hardware that allow them to collect and process data at

unprecedented scales. With advanced machine learning techniques

and the growth in computation power of these devices, federated

learning (FL) has emerged as a novel machine learning paradigm

that aims to train a statistical model among a large number of edge

device nodes (clients
1
), as opposed to traditional machine learning

training at a centralized location [21, 30]. FL has been used in many

application domains, including predicting human activities [9, 10],

learning sentiment [41], language processing [15, 25, 49], and en-

terprise infrastructures [29].

In a typical FL framework, a shared model is learned from a

federation of distributed clients with the coordination of a server,

and clients do not share data with each other due to security and

privacy reasons [35, 43]. Each client trains a local model using its

(decentralized) local data.

FL often involves a large number of clients, which feature highly

heterogeneous hardware resources (CPU, memory, and network

resources) and Non-i.i.d. (non-independent and identical) data;

that is, the training data distributed across the clients is often non-

uniform, since the data generated by a given client is typically

based on the usage of that particular edge device and would not be

representative of the overall population distribution [26, 30, 39, 53].

The resource and data heterogeneity present unique challenges to

FL algorithms. In addition, with large number of clients, how clients

communicate with server becomes a crucial design choice. Most

existing FL frameworks can be divided into two communication

1
We use “clients” and “devices” interchangeably in the paper.

1

https://doi.org/10.1145/3458817.3476211

SC ’21, November 14–19, 2021, St. Louis, MO, USA Zheng Chai, Yujing Chen, Ali Anwar, Liang Zhao, Yue Cheng, and Huzefa Rangwala

modes: (1) synchronous communication (e.g., Federated Averag-

ing, or FedAvg [30]), or (2) asynchronous communication (e.g.,

FedAsync [48]). When there are stragglers (i.e., slower clients) in

the system, which is common especially at the scale of hundreds of

clients, asynchronous approaches are more robust. However, most

asynchronous implementations suffer communication bottleneck

as all the clients can asynchronously talk to the server, and clients

are limited by their communication bandwidth. Therefore, in this

paper, we focus on two significant challenges of federated learning:

Stragglers. Recent research efforts in synchronous FL assume: i)

no resource or data heterogeneity [36, 39], or ii) all the clients are

available during the whole training process [34, 53]. However, in

practice, clients may come (online) and go (offline) frequently, or lag

due to resource/data heterogeneity (i.e., stragglers). Existing syn-

chronous FL solutions (e.g., Federated Averaging, or FedAvg [30])

synchronously aggregates model updates, where the server has

to wait for the slowest clients, therefore, leading to significantly

prolonged training time.

Communication Bottleneck. To solve the straggler problems in

synchronous FL, asynchronous FL approaches [9, 48] were pro-

posed, where the server can aggregate without waiting for the

straggling clients. Unlike synchronous FL where only a portion

of sampled clients communicate with the server in each training

round, in an asynchronous FL setting, the server communicates

with all the clients asynchronously; therefore, the server can easily

become a communication bottleneck with tens of thousands of

clients updating the model simultaneously.

To overcome the deficiencies described above, we design and

implement FedAT, a novel communication-efficient FL approach

that combines the best of both worlds – synchronous and asyn-

chronous FL training – using a tiering mechanism. In FedAT, the

clients involved in a FL deployment are partitioned into logical

tiers based on their response latency (i.e., the time a client takes

to finish a single round of training). All the logical tiers in FedAT

participate in the global training simultaneously, with each tier

proceeding at its own pace. Clients within a single tier update a

model associated with that particular tier in a synchronous manner,

while each tier, as a logical, coarse-grained, training entity, updates

a global model asynchronously. Faster tiers, with shorter per-round

response latency, drive the global model training to converge faster;

slower tiers get involved in the global training by asynchronously

sending the model updates to the server, so as to further improve

the model’s prediction performance.

Uniformly aggregating the asynchronously updated tier model

into the global model may result in biased training (biased towards

the faster tiers), as more performant tiers tend to update the global

model more frequently than the slower tiers. To solve this issue, we

propose a new weighted aggregation heuristic, which assign higher

weight to slower tiers. Furthermore, to minimize the communica-

tion cost introduced by asynchronous training, FedAT compresses

the model data transferred between the clients and the server using

Encoded Polyline Algorithm. In a nutshell, FedAT synergizes the

four components together, namely, the tiering scheme, asynchro-

nous inter-tier model updating, the weighted aggregation method,

and polyline encoding compression algorithm, to maximize both

the convergence speed and the prediction performance while mini-

mizing communication cost.

We make the following contributions in this paper:

• We design and implement FedAT, a novel, tiered, FL framework,

which updates local model parameters synchronously within

tiers and updates the global model asynchronously across tiers.

• We propose a new optimization objective with a weighted ag-

gregation heuristic, which the FL server uses to speed up the

model convergence and improve the prediction performance by

balancing the model parameters from different tiers.

• Weprovide rigorous, theoretical analysis for our proposedmethod

for both convex and non-convex objectives; our analysis shows

that FedAT has provable convergence guarantee.

• We utilize a lossy compression technique—polyline encoding—to

compress the transferred model data between clients and server

to reduce the communication cost without affecting the model

accuracy.

• We evaluate FedAT extensively on a medium-scale, 100-client

cluster on Chameleon Cloud and a large-scale, 500-client cluster

on AWS EC2. Experimental results on five federated datasets

including CIFAR-10, Fashion-MNIST, Sentiment140, FEMNIST,

and Reddit under an FL benchmarking frameworkLEAF [6] show
that FedAT improves the prediction accuracy by up to 21.09%,

exhibits significantly less accuracy variance during the training,

and reduces the communication cost by up to 8.5× compared to

FedAsync [48].

2 Related Work
2.1 Stragglers in Federated Learning
The main premise of FL has been collective learning using a net-

work of computing devices such as smartphones and tablets. In such

a training environment that cannot be fully controlled, data hetero-

geneity and resource heterogeneity may cause stragglers [8], which

commonly exist in large-scale FL training scenarios [7, 38, 42]. Fur-

thermore, in real-world scenarios, these clients could be frequently

offline due to (computing/network) resource constrains. The as-

sumption made by FedAvg that all clients are available during the

whole training process is not practical.

Synchronous FL Frameworks. Li et al. [26] suggest to select a

smaller ratio of clients for training in each global iteration to allevi-

ate the straggler’s effect, while with more rounds for model con-

vergence. However our experiments in §7.5.1 show that selecting

less number of clients for each round produces lower performance.

Bonawitz et al. [4] proposes a naive clients selection strategy to miti-

gate stragglers, where 130% target number of clients are selected for

each round. With this approach, the slowest 30% is neglected. How-

ever, it comes with more communication cost and potential failure

in handling stragglers when the number of stragglers involved in

some rounds exceed the 30% tolerance. FedProx [24] tackles system

heterogeneity by using distinct local epoch numbers for clients.

However, choosing a perfect local epoch number for each client is

challenging in real-world applications.

TiFL [7] is a tier based FL framework that uses a synchronous,

intra-tier model updating scheme similar to that used in FedAvg.

The adaptive tier selection algorithm that TiFL relies on requires

collecting test accuracies of all clients every certain rounds. This

means higher communication costs and longer training duration.

Our experiments results in §7 show that this algorithm fails to

2

FedAT: A High-Performance and Communication-Efficient Federated Learning System with Asynchronous Tiers SC ’21, November 14–19, 2021, St. Louis, MO, USA

achieve efficient communication given a high level of Non-i.i.d.-

ness with larger number of clients and may result in biased training

and lower accuracy. In real-world scenarios, however, it is possible

that a portion of clients are incorrectly profiled and assigned to

a wrong tier as clients’ response latencies may largely vary from

time to time. FedAT uses TiFL’s tiering approach but differs from

TiFL in that FedAT combines intra-tier synchronous training with

cross-tier asynchronous training to effectively mitigate training

biases. With our new asynchronous mechanism, FedAT can tolerate

mis-tiering caused by mis-profiling and performance variation.

Asynchronous FL Frameworks. Asynchronism is widely used

in distributed systems for shortening overall running time [11, 14,

27, 32]. Asynchronous FL frameworks [9, 28, 48] allow wait-free

communication and computation in order to address the straggler

problem. These asynchronous approaches, however, suffer from

high communication costs as they require much more frequent

communications between clients and the server. Worse, frequent

aggregation on the server side may lead to slow convergence speed.

2.2 Communication-Efficient Federated
Optimization

McMahan et al. propose a FL approach called FedAvg [30], where

instead of communicating after every iteration, each client per-

forms multiple iterations of SGD to compute a weight update. By

reducing the communication frequency, FedAvg reduces the com-

munication cost and can work with partial client participation. In

a follow-up work, Konečnỳ et al. [21] propose two approaches to

reduce the uplink communication costs, i.e., structured updates

and sketched updates, combined with probabilistic quantization.

These two approaches, however, are only suitable for i.i.d. settings

in FL. For Non-i.i.d. settings, they can significantly slow down the

convergence speed in terms of SGD iterations.

In the broader realm of communication-efficient distributed deep

learning, a wide variety of methods has been proposed to reduce

the amount of communication during the training process. Chen

et al. [10] propose a layerwise asynchronous update scheme that

updates the parameters of the deep layers less frequently than

those of the shallow layers. Mills et al. [31] adapt FedAvg to use

a distributed form of Adam optimization and compress the up-

loaded parameters. Jeong et al. [17] develop federated distillation

that follows an online version of knowledge distillation to com-

press the model. Reisizadeh et al. [36] present a periodic averaging

and quantization approach to reduce communication costs. How-

ever, these works only target uplink communication compression

and are developed for synchronous frameworks that neglect the

real-world scenario where stragglers are common. In addition to

the above mentioned server-client topology, solving communica-

tion bottlenecks via quantization and compression has also gained

considerable attention in decentralized training [20, 37, 45]. While

such techniques can be used to reduce communication costs in FL,

a decentralized network topology in distributed learning without

a server is fundamentally different and is thus orthogonal to our

approach.

Our proposed communication-efficient federated learning frame-

work combines synchronous and asynchronous updates together

to mitigate the challenge associated with stragglers and improve

model convergence rate. We apply a weighted aggregation strat-

egy on server to improve the model’s prediction performance and

compress both the uplink and downlink communications.

3 Preliminaries: Federated Learning and
FedAvg

FL algorithms involve hundreds to millions of remote devices train-

ing locally on their device-generated data, and collectively train a

global, shared model, under the coordination of a centralized server

serving as an aggregator. In particular, the FL algorithm optimizes

the following objective function:

𝑓 (𝑤) =
𝐾∑
𝑘=1

𝑛𝑘

𝑁
𝐹𝑘 (𝑤), (1)

where 𝐹𝑘 (𝑤) 𝑑𝑒𝑓= 1

𝑛𝑘

∑
𝑖∈D𝑘

ℓ𝑖 (𝑥𝑖 , 𝑦𝑖 ;𝑤), is the local empirical loss

of client 𝑘 , and ℓ𝑖 (𝑥𝑖 , 𝑦𝑖 ;𝑤) is the corresponding loss function for

data sample {𝑥𝑖 , 𝑦𝑖 }. 𝐾 is the total number of devices. D𝑘 for 𝑘 ∈
{1, . . . , 𝐾} denotes data samples stored locally on device 𝑘 . 𝑛𝑘 =

|D𝑘 |, is the number of data samples on device𝑘 ; and𝑁 =
∑𝐾
𝑘=1

|D𝑘 |
is the total number of data samples stored on 𝐾 devices. Assuming

for any 𝑘 ≠ 𝑘
′
, D𝑘

⋂D𝑘
′ = ∅.

The ultimate goal is to find a model 𝑤∗ that minimizes the ob-

jective function:

𝑤∗ = arg min 𝑓 (𝑤). (2)

Algorithm 1: Federated Averaging Training Algorithm

Server: Initialize global weights𝑤0

for each round 𝑡 = 0 to 𝑇 − 1 do
S = (random set of clients)

for each client 𝑘 ∈ S in parallel do
𝑤𝑡+1

𝑘
= 𝑤𝑡

𝑘
− 𝜂∇ℎ(𝑤𝑡)

𝑁 =
∑ |S |
𝑘=1

𝑛𝑘

𝑤𝑡+1 =
∑ |S |
𝑘=1

𝑛𝑘
𝑁

·𝑤𝑡+1

𝑘

FedAvg [30] is a commonly used method to solve the optimiza-

tion problem defined in Equation 2 in a non-convex setting with a

synchronous update fashion. This method runs by randomly sam-

pling a subset of clients with a certain probability at each round;

each selected client performs 𝐸 epochs of training locally on its own

data using an optimizer such as stochastic gradient descent (SGD).

The detailed process of FedAvg is shown in Algorithm 1. This kind

of local update methods enable flexible and efficient communication

compared to traditional mini-batch methods [44, 46, 50].

In a typical real-world scenario, the data stored across devices

follow a non-i.i.d. distribution. Although FedAvg can work with

partial client participation at each training round, training on Non-

i.i.d. data may lead each client towards its local optimal model as

opposed to achieving a global optimal one.

In addition, slow clients (stragglers), which perform local training

at a relatively slower speed (due to weaker computing resources

and/or larger local data size), may have poor prediction perfor-

mance due to less training, and thus may prevent the shared model

from converging to a global optimal solution. Therefore, solving

3

SC ’21, November 14–19, 2021, St. Louis, MO, USA Zheng Chai, Yujing Chen, Ali Anwar, Liang Zhao, Yue Cheng, and Huzefa Rangwala

Clients

…

…

…

…

t! t" t#t$ t%

Server

"#$%&

"#$%$

"#$%"

'&'()*
&* ,

… , '&'()+
&*

Aggregation

,*+

Aggregation

,*,

Aggregation

,*-,*.

,&-

'&'()*
&* ,

'&'()-
&- ,…

'&'()*
&. ,

'&'()-
&- , …

'&'()*
&. ,

… , '&'()+
&/

,*/

Aggregation

Compression

Compression

Compression

Compression

deCom deCom deCom deCom

Tiering Module

timeline

Figure 1: Overview of FedAT. 𝑡𝑖𝑒𝑟1, ..., 𝑡𝑖𝑒𝑟𝑀 are 𝑀 tiers, and
𝑤𝑡
𝑡𝑖𝑒𝑟1

, ...,𝑤𝑡
𝑡𝑖𝑒𝑟𝑀

are their according weights, respectively.
deCom denotes the decompression process of clients’ models
in a certain tier on the server.

Equation 2 in this synchronous manner can implicitly introduce

high variance in prediction performance given the existence of

straggling clients. To better evaluate the robustness of FL training

with stragglers, we define new metrics as a measure of the straggler

tolerance level in a typical FL setup.

Definition 3.1. (Robust training with straggling clients). For two
trained models 𝑤 and 𝑤 ′

, we say that model 𝑤 is more robust

against straggling clients than model𝑤 ′
, if (1) model𝑤 converges

faster than model 𝑤 ′
; (2) the test accuracy of model 𝑤 for the 𝐾

clients, {𝑃1, ..., 𝑃𝐾 }, exhibits lower variance than that of model𝑤 ′

for the same set of 𝐾 clients (where 𝑃𝑐 represents the test accuracy

of the model𝑤 over the testing data for client 𝑐), and (3) model𝑤

has better prediction performance than model𝑤 ′
.

As discussed in the previous sections, the existence of strag-

glers causes longer training times and prevent the model from

converging to the optimal solution. The rational of using these

three metrics, namely, convergence speed, accuracy variance, and

prediction accuracy, as a means to quantify the robustness of a FL

approach against stragglers, is that: (1) stragglers not only cause

slow convergence speed, but also a loss in prediction performance,

and (2) existing literature fail to comprehensively consider all these

aspects [7, 9, 10, 17, 48].

4 FedAT: Federated Learning with
Asynchronous Tiers

FedAT consists of three main components: (1) a centralized server

for global model synchronization; (2) a group of clients that are log-

ically partitioned into different performance tiers; and (3) a tiering

module that profiles clients’ training performance and performs

client tiering based on the response latency of each client.

We next illustrate the FL training process of FedAT (as depicted in

Figure 1 and listed in Algorithm 2). The tiering module profiles and

partitions the involved clients into𝑀 tiers based on their response

latencies: {𝑡𝑖𝑒𝑟1, 𝑡𝑖𝑒𝑟2, ..., 𝑡𝑖𝑒𝑟𝑀 }, where 𝑡𝑖𝑒𝑟1 is the fastest tier and

𝑡𝑖𝑒𝑟𝑀 is the slowest tier. The server maintains a list of𝑀 models,

{𝑤𝑡
𝑡𝑖𝑒𝑟1

, ...,𝑤𝑡
𝑡𝑖𝑒𝑟𝑀

}, one for each tier, reflecting the most updated

view of per-tier local models, at a certain round 𝑡 . Correspondingly,

the server also maintains a global model𝑤 that gets asynchronously

updated from𝑀 tiers.

Each tier performs synchronous update process, a fraction of

clients (S) are selected randomly and compute the gradient of the

loss on their local data, then send the compressed weights to the

server for a synchronous and update the tier model on server.

Figure 1 shows an example of the intra-tier synchronous and

cross-tier asynchronous training process. At time 𝑡1, the clients

in 𝑡𝑖𝑒𝑟1 quickly finish their local training, compress their trained

models and send to the server. The server then performs the follow-

ing steps: (1) decompresses the local models received from 𝑡𝑖𝑒𝑟1,

(2) applies synchronous update to the received models of 𝑡𝑖𝑒𝑟1 and

get𝑤
𝑡1
𝑡𝑖𝑒𝑟1

(highlighted in red color in Figure 1), and (3) aggregates

the latest updates sent from all the tiers (including 𝑡𝑖𝑒𝑟1) using a

weighted average aggregation method (see §4.2), to generate a new

global model𝑤𝑡1 .

At time 𝑡2, the last client of 𝑡𝑖𝑒𝑟2 finishes its local training and

sends the compressed model to the server. The server follows the

same procedure as 𝑡𝑖𝑒𝑟1 to get a new global model 𝑤𝑡2 . Then the

server sends the latest global model𝑤𝑡2 to the next ready tier (in

this example 𝑡𝑖𝑒𝑟1) and starts the next round. Note that a tier in

FedAT directly interacts with the server to update the global model

whenever it finishes a round of local training, thus forming an

asynchronous, cross-tier process.
Since clients are partitioned into tiers based on their response

latencies and the tiers asynchronously update the global mode,

stragglers may not become a performance bottleneck that would

otherwise slow down the global training progress. However, as the

server interacts more frequently with the faster tiers than with

the relatively slower ones, this would inevitably lead to biases

towards the faster tiers. To address this issue, we introduce a new

objective onto the server-side optimization, which uses a weighted

aggregation strategy to more fairly balance the mode updating

processes from different tiers.

4.1 Training at Local Clients
As mentioned in §3, for training with Non-i.i.d. data, frequent local

updates may potentially cause the local models to diverge due to the

varying updating frequency of different tiers and the underlying

data heterogeneity. We add a constraint term to the local subprob-

lem by restricting the local updates to be closer to the global model.

4

FedAT: A High-Performance and Communication-Efficient Federated Learning System with Asynchronous Tiers SC ’21, November 14–19, 2021, St. Louis, MO, USA

Thus, following [24, 52], instead of just minimizing the local func-

tion 𝐹𝑘 , client 𝑘 applies an update with the constraint using the

following surrogate objective ℎ𝑘 :

ℎ𝑘 (𝑤𝑘) = 𝐹𝑘 (𝑤𝑘) +
𝜆

2

| |𝑤𝑘 −𝑤 | |2, (3)

where 𝑤𝑘 , 𝑤 are the local model of client 𝑘 and server model,

respectively.

We use 𝑓𝑡𝑖𝑒𝑟𝑚 (𝑤) as the weighted average of the models from the

selected clients within 𝑡𝑖𝑒𝑟𝑚 . Assuming at round 𝑡 , 𝑡𝑖𝑒𝑟𝑚 happens

to be in communication with the server, we have the update of

𝑓𝑡𝑖𝑒𝑟𝑚 (𝑤) as follows:

𝑓𝑡𝑖𝑒𝑟𝑚 (𝑤) =
|S𝑡 |∑
𝑘=1

𝑛𝑘

𝑁𝑐
ℎ𝑘 (𝑤𝑘)

=

|S𝑡 |∑
𝑘=1

𝑛𝑘

𝑁𝑐
(𝐹𝑘 (𝑤𝑘) +

𝜆

2

| |𝑤𝑘 −𝑤 | |2) .

(4)

where S𝑡 , |S𝑡 |, and 𝑁𝑐 denote a subset of randomly selected clients

in 𝑡𝑖𝑒𝑟𝑚 , the number of selected clients in 𝑡𝑖𝑒𝑟𝑚 , and the total

number of data samples in S𝑡 , respectively.
The constraint term addresses the issue of Non-i.i.d. by restrict-

ing the local updates to be closer to the global model. In the ideal

situation, with 𝜆 = 0, and all clients share the same latency, thus

we get one tier and FedAT becomes FedAvg.

4.2 Cross-Tier Weighted Aggregation
A straightforward idea to achieve unbiased, more balanced training

is to assign relatively higher weights to slower tiers that update

less frequently, so that the global model would not bias towards the

faster tiers. To this end, FedAT uses a new cross-tier, weighted ag-

gregation heuristic, which dynamically adjusts the relative weights

assigned to each tier based on the number of times a tier has updated

the global mode. The goal of the weighted aggregation heuristic is

to help the global training converge faster.

Assuming there are𝑀 tiers, the number of updates from each tier

till now is𝑇𝑡𝑖𝑒𝑟1
,𝑇𝑡𝑖𝑒𝑟2

, ...,𝑇𝑡𝑖𝑒𝑟𝑀 , respectively, and the total number

of updates from all the tiers till now is𝑇𝑡𝑖𝑒𝑟1
+𝑇𝑡𝑖𝑒𝑟2

+ ...+𝑇𝑡𝑖𝑒𝑟𝑀 = 𝑇 ,

we define the objective function of FedAT as:

𝑓 (𝑤) =
𝑀∑
𝑚=1

𝑇𝑡𝑖𝑒𝑟 (𝑀+1−𝑚)

𝑇
𝑓𝑡𝑖𝑒𝑟𝑚 (𝑤), (5)

where

𝑇𝑡𝑖𝑒𝑟 (𝑀+1−𝑚)
𝑇

is the relativeweight of 𝑡𝑖𝑒𝑟𝑚 , and

∑𝑀
𝑚=1

𝑇𝑡𝑖𝑒𝑟 (𝑀+1−𝑚)
𝑇

= 1. To understand the heuristic, a relatively slower tier with a tier

number 𝑚 would get assigned a relatively larger weight value,

𝑇𝑡𝑖𝑒𝑟 (𝑀+1−𝑚)
𝑇

, as 𝑀 + 1 −𝑚 corresponds to a relatively faster tier,

𝑡𝑖𝑒𝑟 (𝑀+1−𝑚) , whose historical updating frequency 𝑇𝑡𝑖𝑒𝑟 (𝑀+1−𝑚) is

expected to be higher. In this way, FedAT can dynamically steer

and balance the global model training, avoid potential bias towards

a subset of faster tiers, and effectively improve the convergence

rate. The approach of FedAT is detailed in Algorithm 2.

Algorithm 2: FedAT’s Training Process
Input:𝑤𝑡𝑖𝑒𝑟𝑚 , 𝑡 , 𝑇 and 𝑇𝑡𝑖𝑒𝑟𝑚 .𝑤𝑡𝑖𝑒𝑟𝑚 denotes the weights

of Tier𝑚. 𝑡 represents the global round 𝑡 . 𝑇 is the

maximum global rounds. 𝑇𝑡𝑖𝑒𝑟𝑚 is the number of

updates of tier𝑚

Server: Initialize𝑤𝑡𝑖𝑒𝑟1
,𝑤𝑡𝑖𝑒𝑟2

...𝑤𝑡𝑖𝑒𝑟𝑀 to𝑤𝑡0 . Initialize

𝑡,𝑇𝑡𝑖𝑒𝑟1
...𝑇𝑡𝑖𝑒𝑟𝑀 to 0

for each tier m ∈ 𝑀 in parallel do
while 𝑡 < 𝑇 do

𝑤𝑡 =WeightedAverage(𝑤𝑡𝑖𝑒𝑟1
,𝑤𝑡𝑖𝑒𝑟2

...𝑤𝑡𝑖𝑒𝑟𝑀)

S𝑚 = (random set of clients from tier𝑚)

for each client 𝑘 ∈ S𝑚 in parallel do
𝑛𝑘 = |D𝑘 |
𝑤𝑡+1

𝑘
= 𝑤𝑡

𝑘
− 𝜂∇ℎ(𝑤𝑡)

𝑁𝑐 =
∑ |S𝑚 |
𝑘=1

𝑛𝑘

𝑤𝑡𝑖𝑒𝑟𝑚 =
∑ |S𝑚 |
𝑘=1

𝑛𝑘
𝑁𝑐

·𝑤𝑡+1

𝑘
𝑇𝑡𝑖𝑒𝑟𝑚 = 𝑇𝑡𝑖𝑒𝑟𝑚 + 1

𝑡 = 𝑡 + 1

function WeightedAverage(𝑤𝑡𝑖𝑒𝑟1
,𝑤𝑡𝑖𝑒𝑟2

...𝑤𝑡𝑖𝑒𝑟𝑀)

if 𝑡 == 0 then
return𝑤𝑡0

else

return
∑𝑀
𝑚=1

𝑇𝑡𝑖𝑒𝑟 (𝑀+1−𝑚)
𝑇

·𝑤𝑡𝑖𝑒𝑟𝑚

4.3 Compression, Marshalling, and
Unmarshalling

Previous work on communication-efficient FL mentioned in §2 al-

most exclusively consider i.i.d. data distribution among the clients,

which is not practical in real-world scenarios of FL, where the

client data typically follows a Non-i.i.d. distribution [30]. As studied

in [39], many compression methods [3, 40] suffer from slow con-

vergence rates in the Non-i.i.d. cases. Non-i.i.d. often introduces di-

vergence of model weights collected from resource-heterogeneous

clients. Due to such divergence, some lossy compression methods

such as quantization and dequantization [51] may inevitably lead

to huge errors and reduce global performance. Furthermore, as

asynchronous FL methods aggregate more frequently than syn-

chronous FL methods, highly frequent updates drastically amplify

such divergence, and result in a poor global performance. Therefore,

with frequent communications in asynchronous FL approaches, it

is crucial to select a compression technique that can efficiently

reduce the communication cost while effectively guaranteeing a

fast convergence to the optimal solution.

To this end, we design a simple yet effective compression scheme

based on Encoded Polyline Algorithm
2
(or polyline encoding).

Polyline encoding is a lossy compression algorithm that converts

a rounded binary value into a series of character codes for ASCII

characters using the base64 encoding scheme. It can be configured

to maintain a configurable precision by rounding the value to a spec-

ified decimal place. With the appropriate precision, the model could

achieve the largest communication saving and minor performance

loss. Our experiments show that it can achieve a high compression

2
https://developers.google.com/maps/documentation/utilities/polylinealgorithm

5

https://developers.google.com/maps/documentation/utilities/polylinealgorithm

SC ’21, November 14–19, 2021, St. Louis, MO, USA Zheng Chai, Yujing Chen, Ali Anwar, Liang Zhao, Yue Cheng, and Huzefa Rangwala

ratio of up to 3.5× under the FL communication scenarios. (We eval-

uate the effectiveness of compression in §7.2.) FedAT compresses

both the uplink and downlink communications. The process is as

follow: (1) FedAT flattens (marshalling) the weights of each layer

to get a list of decimal values. (2) Then, using polyline encoding,

every decimal value in the list gets converted into a compressed

ASCII string; along with the compressed weights, the dimensions

of the weights of each layer is transmitted as well. (3) When the

server/clients receive the compressed weights, a decompression

process is performed, and then the decompressed weights are re-

shaped back (unmarshalling) to the original dimensions based on

the dimension information received.

5 Convergence Analysis
In this section, we show that FedAT converges to the global opti-

mal solution for both strongly convex and non-convex functions

on Non-i.i.d. data in theory. It is consistent with our experiments

results shown in Figure 3. First, we introduce the definitions and

assumptions as follows.

Definition 5.1. (Smoothness) The function 𝑓 has Lipschitz contin-

uous gradients with constant 𝐿 > 0 (in other words, 𝑓 is L-smooth)
if ∀𝑥1, 𝑥2,

𝑓 (𝑥1) − 𝑓 (𝑥2) ≤ ⟨∇𝑓 (𝑥2), 𝑥1 − 𝑥2⟩ +
𝐿

2

| |𝑥1 − 𝑥2 | |2 . (6)

Definition 5.2. (Strong convexity) The function 𝑓 is 𝜇-strongly
convex with 𝜇 > 0 if ∀𝑥1, 𝑥2,

𝑓 (𝑥1) − 𝑓 (𝑥2) ≥ ⟨∇𝑓 (𝑥2), 𝑥1 − 𝑥2⟩ +
𝜇

2

| |𝑥1 − 𝑥2 | |2 . (7)

Definition 5.3 has been made by the work [24].

Definition 5.3. (𝛾-inexactness) For a function ℎ(𝑤) = 𝐹 (𝑤) +
𝜆
2
| |𝑤−𝑤0 | |2, and𝛾 ∈ [0, 1].𝑤∗

is a𝛾-inexact solution formin𝑤 ℎ(𝑤)
if | |∇ℎ(𝑤∗) | | ≤ 𝛾 | |∇ℎ(𝑤0) | |, where ∇ℎ(𝑤) = ∇𝐹 (𝑤) + 𝜆(𝑤 −𝑤0).

According to [23], this definition aims to allow flexible perfor-

mance of local clients in each communication round, such that

each of the local objectives can be solved inexactly. The amount of

local computation vs. communication can be tuned by adjusting

the number of local iterations, i.e., more local iterations indicates

more exact local solutions.

Further, we make the following assumptions on the objective

functions:

Assumption 5.1. The central objective 𝑓 (𝑤) is bounded, i.e.,min 𝑓 (𝑤) =
𝑓 (𝑤∗) > −∞.

Assumption 5.2. The expected squared norm of stochastic gradi-
ents is uniformly bounded, i.e., there exists a scalar 𝐺 , such that
E| |∇𝐹 (𝑤𝑡) | |2 ≤ 𝐺2, all 𝑡 = 0, ...,𝑇 − 1.

Assumption 5.3. With 𝑔𝑡 (𝑤𝑡) (𝑔𝑡 =
∑𝑚
𝑘=1

𝑛𝑘
𝑁𝑐

∇ℎ𝑘 (𝑤𝑡)) as the
averaged gradients from a certain tier with𝑚 clients, there exists a
scalar 𝜎 > 0 such that ∇𝑓 (𝑤𝑡)⊤E(𝑔𝑡 (𝑤𝑡)) ≥ 𝜎 | |∇𝑓 (𝑤𝑡) | |2.

Assumption 5.1 is easy to satisfy as there exists a minimum value

for the central objective 𝑓 (𝑤). The conditions in Assumption 5.2

on the variance of stochastic gradients is customary. While this is

a much weaker assumption compared to the one that uniformly

bounds the expected norm of the stochastic gradient. Assumption

5.3 ensure that the gradient of local tier 𝑔𝑡 is an estimation of

∇𝑓 (𝑤𝑡). And as 𝜎 = 1, we have 𝑔𝑡 as the unbiased estimation of

∇𝑓 (𝑤𝑡).
To convey our proof clearly, we first introduce and prove certain

useful lemmas.

Lemma 5.1. With Definition 5.3, the local functions ℎ(·) are 𝛾-
inexact. For aggregated tier model 𝑔𝑡 (𝑤𝑡), we have

E| |𝑔𝑡 (𝑤𝑡) | |2 ≤ 𝛾2𝐺2𝑐2, (8)

where 𝑐 is the total number of clients within the given tier.

Lemma 5.2. If 𝑓 (𝑤) is 𝜇-strongly convex, then with Definition 5.2,
we have:

2𝜇 (𝑓 (𝑤𝑡) − 𝑓 (𝑤∗)) ≤ ||∇𝑓 (𝑤𝑡) | |2 . (9)

We show that the averaged model of local tier is bounded in

Lemma 5.1. The detailed proof is in Appendix A.1. While the proof

of Lemma 5.2 is supported by the literature [5, 33], we also provide

a detailed proof in Appendix A.2.

Theorem 5.1. Suppose that the central objective function 𝑓 (𝑤) is L-
smooth and 𝜇-strongly convex. The local functions ℎ(·) are 𝛾-inexact.
Let Assumption 5.2 and Assumption 5.3 hold. After 𝑇 global updates
on the server, FedAT converges to a global optimum𝑤∗:

E[𝑓 (𝑤𝑇) − 𝑓 (𝑤∗)]

= (1 − 2𝜇𝐵𝜂𝜎)𝑇 (𝑓 (𝑤0) − 𝑓 (𝑤∗)) +
𝐿

2

𝜂2𝛾2𝐵2𝐺2𝑐2,
(10)

where 𝑐 is the total number of clients within one tier, and 𝐵 =
𝑇𝑡𝑖𝑒𝑟 (𝑀+1−𝑚)

𝑇
≤ 1.

We direct the reader to Appendix A.3 for a detailed proof. The

convergence bound in Theorem 5.1 depends on the local constrain

𝜇, weighted parameter 𝐵 and learning rate 𝜂. Note that 𝐵 varies

in each global iteration because the update number of each tier

changes at every global iteration.

Theorem 5.2. Suppose that the central objective function 𝑓 (𝑤) is
L-smooth and non-convex. The local functions ℎ(·) are 𝛾-inexact. Let
Assumption 5.1, Assumption 5.2 and Assumption 5.3 hold, then after
𝑇 global updates we have:

𝑇−1∑
𝑡=0

𝐵E[| |∇𝑓 (𝑤𝑡) | |2]

≤ 𝑓 (𝑤0) − 𝑓 (𝑤∗)
𝜂𝜎

+ 𝐿

2𝜎
𝑇 2𝜂𝛾2𝐵𝐺2𝑐2,

(11)

where 𝑐 is the total number of clients within one tier, and 𝐵 =
𝑇𝑡𝑖𝑒𝑟 (𝑀+1−𝑚)

𝑇
≤ 1.

6 Experimental Setting
Federated Datasets.We evaluate FedAT using five different fed-

erated datasets and an FL benchmarking framework LEAF [6] on

both convex and non-convex models described as follows:

• CIFAR-10: The CIFAR-10 [22] dataset consists of 60, 000 32 × 32

colour images in 10 classes, with 6000 images per class. There

are 50, 000 training images and 10, 000 test images. We partition

6

FedAT: A High-Performance and Communication-Efficient Federated Learning System with Asynchronous Tiers SC ’21, November 14–19, 2021, St. Louis, MO, USA

the dataset into 100 clients and follow the same Non-i.i.d. setting

of CIFAR-10 as [30].

• Fashion-MNIST: Fashion-MNIST [47] is a dataset that contains a

training set of 60, 000 examples and a test set of 10, 000 examples.

Each example is a 28×28 grayscale image, associated with a label

from 10 classes. We use the same number of clients and Non-i.i.d.

setting as CIFAR-10.

• Sentiment140: Sentiment140 [12] is a text dataset that contains

1, 600, 000 tweets, and the tweets are labeled with one of negative,

neutral and positive. Each twitter account corresponds to a client.

• FEMNIST: FEMNIST [6] is an image dataset that consists of

805, 263 samples. There are a total of 62 classes, where all the

samples are distributed to 3, 550 clients with inherent data het-

erogeneity and Non-i.i.d.-ness.

• Reddit: Reddit [6] is a text dataset that contains processed com-

ments posted on Reddit in December 2017. It has a total of

56, 587, 343 samples collected from 1, 660, 820 Reddit users.

FL Methods. We compare FedAT against five synchronous and

asynchronous FL methods:

• FedAvg [30]: A baseline synchronous FL method proposed by

McMahan et al. At each round, a certain ratio of total clients are

randomly selected for training, the server aggregates the weights

received from selected clients in an average manner.

• TiFL [7]: A synchronous FL method that partitions training

clients into different tiers based on their responding latency.

For each round, one tier is selected according to a novel adap-

tive selection strategy which is related to the test accuracies of

all tiers, then certain number of clients in that tier are selected

for training. The aggregation method of TiFL is adopted from

FedAvg.

• FedProx [24]: A synchronous FL method that claims to handle

stragglers due to system heterogeneity across all clients by apply-

ing different local epochs for clients. Also FedProx adds proximal

term to the objective on the clients for improving performance

and smoothing the training curve.

• FedAsync [48]: A baseline asynchronous FLmethod usingweighted

averaging to update the server model. Different from previous

synchronous FL methods, all clients train concurrently, when

the server receives weights from any client, the weights are

weighted averaged with current global weights to get the latest

global weights, then communicate to all available clients at that

time for training.

• ASO-Fed [9]: An asynchronous FL framework designed for online

data. Unlike FedAsync, ASO-Fed adds local constraints on the

client side. ASO-Fed maintains a copy of weights for each client

on the server side, and it calculates global weights by averaging

all the copies. Note that we compare ASO-Fed against FedAT on

a large-scale, 500-client cluster on FEMNIST (§7.4).

7 Evaluation
Implementation and Setup. We have implemented FedAT and

the comparison FL methods all in TensorFlow [2]. For all the exper-

iments except FEMNIST and Reddit, we simulate a FL setup using

a 192-core cluster on Chameleon Cloud [1, 18], which consists of

three bare-metal servers, each with a 64-core Intel
®

Xeon
®

Gold

6242 CPU, and 192 GB main memory; we deploy the FL server

exclusively on one server, and all clients on the other two servers,

where each client gets assigned one CPU core. We evaluate 100

clients in Chameleon Cloud tests.

For experiments on FEMNIST and Reddit, we deploy the FL

server exclusively on one c5.24xlarge virtual machine (VM) in-

stance (96 vCPUs and 192 GB memory) on AWS and 500 partici-

pating clients on a large-scale, 100-VM cluster, where each VM is a

c5.2xlarge instance with 8 vCPUs and 16 GB memory.

FedAT is configured to use Precision 4 as the precision of

the compressor (§7.2.2) throughout the evaluation for CIFAR-10,

Fashion-MNIST and Sentiment140.

Models.We train a convolutional neural network (CNN) on CIFAR-

10 and Fashion-MNIST. The network architecture includes three

convolutional layers, each with 32, 64 and 64 filters, followed by two

fully connected layers with units of 64 and 10. For Sentiment140, we

train a logistic regression model to evaluate the model performance

under a convex setting. For the FEMNIST dataset, we train a similar

CNN that classifies images. For the Reddit dataset, we train an

LSTM model [16]. The LSTM model starts with an embedding layer

with an input dimension of 10, 000 and an output dimension of

128, followed by an LSTM layer with a dropout rate of 0.1, a batch

normalization layer and a dense layer with 10, 000 units.

Hyperparameters.We randomly split each client’s local data into

an 80% training set and a 20% testing set. For intra-tier synchronous

training, we adopt the same sampling scheme as FedAvg: sampling

clients (within a particular tier) randomly at each round. We use

Adam [19] as the local solver and set the local constrain parameter

𝜆 as 0.4. For each dataset, we tune the learning rate for FedAvg

using the following configuration: local epoch 𝐸 = 3, batch size = 10;

we use the same learning rate for the other five FL methods. We

set the number of randomly selected clients as 10 for FedAvg, TiFL,

FedProx, and FedAT on all datasets.

Simulating Different Performance Tiers. Clients in FL are typ-

ically edge devices, and their computing power and network con-

nection may not be stable; hence simply assigning a fixed amount

of resources is not sufficient to reflect the real situation. Therefore,

we assign 1 CPU for each client during the whole training process

and add random delays to the computations conducted by clients;

the added random delay is to simulate different levels of straggler

effects that are caused by weaker computing powers and intermit-

tent network connections in a real-world FL setup. We first evenly

divide all the clients into 5 parts, then randomly assign delays of 0𝑠 ,

0 ∼ 5𝑠 , 6 ∼ 10𝑠 , 11 ∼ 15𝑠 , and 20 ∼ 30𝑠 to the clients in each part at

every round, respectively. Each part is called one tier. To guarantee

fair comparison, each client, once selected, would follow a fixed,

pseudo-random mini-batch schedule. The same strategy is applied

to all the FL methods that we test (including FedAT’s intra-tier

synchronous training). Furthermore, to simulate unstable network

connections, for all the tests that we run, we randomly select 10

“unstable” clients, which would drop out at any time during the

training process. Once the client drops out, it will not come back

and rejoin the training process again.

7.1 Prediction Performance
Table 1 presents the results of the prediction performance and the

variance of the test accuracy on all the datasets. We report the

7

SC ’21, November 14–19, 2021, St. Louis, MO, USA Zheng Chai, Yujing Chen, Ali Anwar, Liang Zhao, Yue Cheng, and Huzefa Rangwala

Table 1: Comparison of prediction performance and variance to baseline approaches. #class indicates the number of labels (i.e.,
classes) each client has. The Accuracy rows show the best prediction accuracy that each FL approach reaches after each model
converges. The Norm.Var. rows show the average variance of test accuracy among all clients, normalized to that of FedAT. We
show FedAT’s absolute variance values (Abs.Var.). We show the absolute values for FedAT’s accuracy variance. impr.(a) and
impr.(b) are the accuracy improvement of FedAT compared with the best and worst baseline FL method, respectively. The best
performance results are highlighted in bold font.

Dataset(#class)

CIFAR-10 Fashion-MNIST

Sentiment140

#2 #4 #6 #8 i.i.d. #2

TiFL Accuracy 0.527 0.615 0.654 0.655 0.685 0.859 0.739

Norm. Var. 1.26 2.79 1.33 1.3 2.12 1.29 2.75

FedAvg Accuracy 0.547 0.628 0.654 0.667 0.686 0.842 0.741

Norm. Var. 2 5.07 4.33 3.1 4.23 1.86 3.72

FedProx Accuracy 0.509 0.609 0.624 0.650 0.669 0.831 0.742

Norm. Var. 1.261 6.75 3.981 2.22 2.992 2.243 3.89

FedAsync Accuracy 0.480 0.541 0.531 0.561 0.567 0.795 0.740

Norm. Var. 2 3.93 2.08 1.54 2.69 2 5.69

FedAT

Accuracy 0.591 0.633 0.673 0.681 0.701 0.873 0.748
Abs. Var. 0.0042 0.0014 0.0012 0.001 0.00052 0.007 2.67e−5

impr.(a) 7.44% 0.79% 2.82% 2.05% 2.13% 1.6% 0.93%

impr.(b) 18.78% 14.53% 21.09% 17.62% 19.11% 8.93% 1.2%

FedAT TiFL FedAvg FedProx FedAsync

0 1000 2000 3000 4000 5000 6000
Time(s)

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 A
cc

ur
ac

y

FedAt TiFL FedAvg FedProx
Target accuracy: 0.47

0

10000

Ti
m

e(
s)

1308.48

8205.29 8722.45 8926.66

(a) CNN @ CIFAR-10.

0 2000 4000 6000 8000
Time(s)

0.2

0.4

0.6

0.8

Te
st

 A
cc

ur
ac

y

FedAT TiFL FedAvg FedProx
Target accuracy: 0.76

0

5000

Ti
m

e(
s)

1457.41 2593.86 3753.45
6038.38

(b) CNN @ Fashion-MNIST.

0 500 1000 1500 2000 2500 3000
Time(s)

0.66

0.68

0.70

0.72

0.74

0.76

Te
st

 A
cc

ur
ac

y

FedAT TiFL FedAvg FedAsyncFedProx
Target accuracy: 0.735

0

1000

Ti
m

e(
s)

178.48

783.33
1144.37

232.9

979.9

(c) Logistic @ Sentiment140.

Figure 2: Performance comparison of different FL methods on 2-class Non-i.i.d. CIFAR-10, Fashion-MNIST, and Sentiment140
datasets. Above (test accuracy timeline curves): The results are average-smoothed for every 40 global rounds. Bottom (bar
charts): the time it takes for each evaluated FL methods to reach a target accuracy of 𝑁% as specified in the X-axis’ labels.
(Note that FedAsync is not able to reach the target accuracy for CIFAR-10 and Fashion-MNIST, thus is omitted.)

best test accuracy after each training process converges within a

global iteration budget. For the 2-class CIFAR-10 dataset, FedAT

outperforms the best baseline FL method, FedAvg, by 7.44%, and

the worst baseline method, FedAsync, by 18.78%. Using the same

tiering scheme as TiFL, FedAT achieves consistently higher accu-

racy than TiFL for all the experiments. This is because: (1) the local

constraint forces local models to be closer to the server model, and

(2) FedAT’s new weighted aggregation heuristic can more effec-

tively engage the straggling clients from the slower tiers, leading

to better prediction performance (we evaluate the effectiveness of

our weighted aggregation method in §7.3). FedAvg has the closest

prediction performance as TiFL, because they both follow the same

synchronous updating strategy. FedAsync, on the other hand, per-

forms the worst, as it simply aggregates weights from one client at

a round and has no effective way to deal with stragglers. The perfor-

mance difference can also be clearly noticed from the convergence

timeline graphs shown in Figure 2. FedAT converges faster towards

the optimal solution than all other three compared methods on

both the non-convex and convex objectives.

7.1.1 Impact of Non-i.i.d. Level. The models’ convergence behav-

iors are sensitive to the degree of Non-i.i.d. of the data distribution

across clients. Table 1 shows that, for the CIFAR-10 dataset, the test

8

FedAT: A High-Performance and Communication-Efficient Federated Learning System with Asynchronous Tiers SC ’21, November 14–19, 2021, St. Louis, MO, USA

FedAT TiFL FedAvg FedProx FedAsync

0 1000 2000 3000 4000 5000 6000
Time(s)

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 A
cc

ur
ac

y

(a) CIFAR-10 Non-i.i.d. (4).

0 1000 2000 3000 4000 5000 6000
Time(s)

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 A
cc

ur
ac

y

(b) CIFAR-10 Non-i.i.d. (6).

0 1000 2000 3000 4000 5000 6000
Time(s)

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 A
cc

ur
ac

y

(c) CIFAR-10 Non-i.i.d. (8).

0 1000 2000 3000 4000 5000 6000
Time(s)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

(d) CIFAR-10 i.i.d.

Figure 3: Convergence speed comparison on CIFAR-10 over different level of Non-i.i.d.-ness. The results are average-smoothed
for every 40 global rounds.

FedAT TiFL FedAvg FedProx FedAsync

107 108 109 1010

Upload bytes

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 A
cc

ur
ac

y

(a) CIFAR-10.

107 108 109 1010

Upload bytes

0.2

0.4

0.6

0.8

Te
st

 A
cc

ur
ac

y

(b) Fashion-MNIST.

106 107 108 109

Upload bytes
0.70

0.71

0.72

0.73

0.74

0.75

Te
st

 A
cc

ur
ac

y

(c) Sentiment140.

Figure 4: Test accuracy as a function of the cumulative amounts of data uploaded from clients to the server for 2-class Non-i.i.d.
datasets. The performance curves are average-smoothed for every 40 global rounds. The X-axis is in log-scale.

Table 2: Amounts of data (MB) transferred between clients
and server to achieve the target accuracy on all datasets with
2-class Non-i.i.d. case. –means that the FLmethod is not able
to achieve the accuracy target within the iteration budget.
The best results are highlighted in bold font.

Method

CIFAR-10 Fashion-MNIST Sentiment140

(acc. = 0.50) (acc. = 0.79) (acc. = 0.73)

FedAvg 1828.54 1048.25 16.71

TiFL 2140.71 1041.98 17.20

FedProx − 2169.95 18.42

FedAsync − 9895.53 82.27

FedAT 1675.82 1041.54 16.41

accuracy increases as the degree of Non-i.i.d. decreases (i.e., the

number of classes per client increases); accordingly, the variance

of the test accuracy decreases as the degree of Non-i.i.d. decreases

(i.e., the data is more evenly shuffled and each client covers all the

classes). Figure 2(a) (the timeline charts above) and 3 together show

a sensitivity analysis of the convergence rate as a function of the

Non-i.i.d. (from two classes per client, to 8 classes per client, to

the i.i.d. case), on the CIFAR-10 dataset. We observe that FedAT

outperforms all the other four FL methods with higher prediction

performance across all different Non-i.i.d. levels. The most distinct

performance gap between FedAT and the other FL methods can

be observed in the 2-class Non-i.i.d. case, where each individual

client holds only 2 classes of data. Notably, FedAT improves the

prediction performance by as much as 8.04% compared to FedAvg.

7.1.2 Robustness to Stragglers. As defined in in Definition 3.1, the

robustness of a FLmethod against stragglers can be quantified using

the variance on the prediction performance and the convergence

speed. Table 1 shows that FedAT has consistently the lowest accu-

racy variance across all experiments. FedAvg observes significantly

higher accuracy variance, which are 1.86-5.07× higher than that

of FedAT. This is due to the compound effect of both synchronous

training and stragglers – synchronous training determines that

during each round only a subset of clients can get involved to con-

tribute to the global training, while the straggling clients are more

likely to have a less accurate model when they next get selected

(since they receive less training) by the server for training, thus

causing huge accuracy fluctuation of the global model.

The bar charts in Figure 2 presents a comparison of the training

time it takes for each FL method to achieve a target test accuracy.

For example, as shown in Figure 2(a) (bar chart at bottom), to reach

an accuracy of 47% for the CIFAR-10 CNN model, TiFL, FedAvg

and FedProx spend 5.27×, 5.67× and 5.82× longer time than Fe-

dAT. Fashion-MNIST show a similar trend. For Sentiment140, TiFL,

9

SC ’21, November 14–19, 2021, St. Louis, MO, USA Zheng Chai, Yujing Chen, Ali Anwar, Liang Zhao, Yue Cheng, and Huzefa Rangwala

0 2500 5000 7500 10000 12500 15000
Time(s)

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 A
cc

ur
ac

y

Precision 3
Precision 4
Precision 5
Precision 6
No Compression

(a) Test accuracy.

108 109 1010

Upload bytes

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 A
cc

ur
ac

y

Precision 3
Precision 4
Precision 5
Precision 6
No Compression

(b) Uploaded data vs. accuracy (the X-axis

is in log-scale).

Figure 5: Impact of FedAT’s compression precision on the
prediction performance and the communication cost, for
the CIFAR-10 Non-i.i.d. 2-class dataset. All results are plot-
ted with the average of every 40 global rounds.

FedAvg, FedProx and FedAsync take 3.39×, 5.41×, 4.49× and 0.3×
longer time than FedAT, respectively.

7.2 Communication Efficiency
7.2.1 Communication Cost. We next evaluate the network commu-

nication cost of FedAT in terms of the amount of data transferred

via network. Table 2 shows the amounts of data transferred between

the clients and the server (i.e., counting both model uploading and

downloading) in order to achieve the target accuracy. FedAsync

incurs the highest communication cost – about 9.5× of FedAT, and

is not able to reach the target prediction performance. This confirms

that severe communication bottleneck problem exists in asynchro-

nous FL methods, where the server simply communicates with all

the clients. FedAvg and TiFL have similar communication cost as

they both use the same synchronous updating mechanism. FedAT

incurs the lowest communication cost with compression technique

and the proposed weighted aggregation on server.

Figure 4 further compares the uploaded bytes (from clients to

the server) needed to reach a certain test accuracy. To achieve a rel-

atively higher accuracy, FedAT needs fewer bytes than all the other

three FL methods. More importantly, to achieve the same predic-

tion performance for the CIFAR-10 2-class Non-i.i.d. dataset, FedAT

requires up to 1.28× less data uploaded to the server, again demon-

strating the efficiency and effectiveness of the model compression

method used by FedAT.

7.2.2 The Accuracy vs. Communication-Cost Tradeoff. Next, we ex-
plore the accuracy vs. communication-cost tradeoff by varying the

precision of FedAT’s compressor. Precision 3 (i.e., a precision of

three decimal places) leads to the worst prediction performance, as

shown in Figure 5. This is because compressing the model by keep-

ing only three digits after the decimal loses much information that

is needed to converge the model; as a result, more training rounds,

and more data communication, are needed in order to achieve a

desirable accuracy. Precision 4 is robust enough to strike a balance

between the prediction performance and communication efficiency.

Precision 4 approaches the optimal accuracy achieved when no

compression is used (Figure 5(a)), while effectively reducing the

amount of data uploaded by 36.41% and 67.3% (given the same tar-

get accuracy of 50%) compared to Precision 6 and No Compression,

respectively (Figure 5(b)). FedAT achieves a compression ratio (i.e.,

CIFAR-10 Fashion-MNIST Sentiment1400.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Te
st

 a
cc

ur
ac

y

0.591

0.873

0.748

0.568

0.861

0.724

Weighted
Uniform

Figure 6: Comparison of FedAT’s weighted aggregation
heuristic vs. a uniform baseline that assigns uniform
weights when aggregating models from different tiers.

0 50 100 150 200 250 300 350
Time(s)

0.2

0.4

0.6

0.8

Te
st

 A
cc

ur
ac

y

FedAT
TiFL
FedAvg
FedProx
FedAsync
ASO-Fed

(a) Accuracy over time.

107 108 109 1010

Upload bytes

0.2

0.4

0.6

0.8

Te
st

 A
cc

ur
ac

y

FedAT
TiFL
FedAvg
FedProx
FedAsync
ASO-Fed

(b) Accuracy over uploaded bytes.

Figure 7: Prediction accuracy of FEMNIST as a function of
training time (a) and cumulative amount of data uploaded
from clients to the server (b).

the ratio of the data size after compression and before compression)

up to 3.5× overall. FedAT is configured to use Precision 4 as the

default compression configuration in all the other experiments.

7.3 Effectiveness of Weighted Aggregation
We validate the effectiveness of our weighted aggregation heuristic.

Weighted aggregation assigns more weight to the tiers that partici-

pate in the global training less frequently to prevent training bias

towards the faster tiers. As shown in Figure 6, the weighted aggre-

gation heuristic improves the best test accuracy by 1.39% to 4.05%,

compared to the baseline case, for the three datasets, demonstrating

the effectiveness of the proposed approach.

7.4 Large-Scale Training
In this test, we conduct large-scale experiments on the FEMNIST

and Reddit datasets with 500 participating clients deployed on 100

c5.2xlarge AWS EC2 VMs.

As shown in Figure 7(a), FedAT achieves the highest accuracy at

the early stage of the training process, while maintaining at least

1.2% higher accuracy than state-of-the-art synchronous methods,

FedProx and TiFL. The two asynchronous FL methods, FedAsync

and ASO-Fed, still perform worse than other synchronous methods.

10

FedAT: A High-Performance and Communication-Efficient Federated Learning System with Asynchronous Tiers SC ’21, November 14–19, 2021, St. Louis, MO, USA

0 500 1000 1500
Time(s)

0.25

0.26

0.27

0.28

0.29

0.30

Te
st

 A
cc

ur
ac

y

FedAT
TiFL
FedProx

(a) Accuracy over time.

0 500 1000 1500 2000
Time(s)

6

7

8

9

Te
st

 L
os

s

FedAT
TiFL
FedProx

(b) Loss over time.

Figure 8: Prediction accuracy (a) and loss (b) of Reddit as a
function of training time.

FedAT TiFL FedAvg FedProx

2 5 10 15
Number of clients

0.40

0.45

0.50

0.55

0.60

Te
st

 A
cc

ur
ac

y

(a) CIFAR-10 Non-i.i.d.(2).

2 5 10 15
Number of clients

0.738

0.740

0.742

0.744

0.746

0.748

Te
st

 A
cc

ur
ac

y

(b) Sentiment140.

Figure 9: Prediction accuracy of CIFAR-10 (left) and Senti-
ment140 (right) as a function of the number of participating
clients in one iteration. This test compares FedAT against
three other FL methods (FedAvg, TiFL, FedProx), which all
feature synchronous updating.

In addition, FedAsync and ASO-Fed see much higher communica-

tion cost than that of FedAT.

Although FedAT incurs higher communication cost than the

synchronous FL methods at the early training stage due to asyn-

chronous, cross-tier training, FedAT eventually achieves similar

communication efficiency as the synchronous methods when these

synchronous methods reach the highest prediction accuracy. This

is because, with more frequent model update between tiers and the

server, FedAT converges faster than synchronous baselines.

Figure 8 shows the prediction accuracy and loss on the Reddit

dataset. Asynchronous FL baselines (FedAsync and ASO-Fed) have

much lower prediction performance with no convergence trend

on the Reddit dataset, therefore we omit their results in this test.

We compare FedAT with TiFL and FedProx, which perform the

best among all baseline FL methods. As shown in Figure 8, we

observe similar learning trend for the three frameworks, but FedAT

has better prediction performance. Figure 8(b) shows that FedAT

achieves the lowest loss during the whole training process.

7.5 Sensitivity Analysis
7.5.1 Impact of Client Participation Level. We next conduct a sen-

sitivity study to quantify the impact of client participation level

on the training accuracy. In a real-world situation, for the commu-

nication efficiency consideration, it is often desirable to have as

few clients as possible that participate in each global iteration. In

0 100 200 300 400
Time(s)

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 A
cc

ur
ac

y

Uniform
Slow
Medium
Fast

Figure 10: Comparison of prediction accuracy over time on
FEMNIST under different configurations of client distribu-
tion across tiers.

FedAvg, if a non-representative subset of clients is selected, the

optimization process can deviate away from the minimum, which

might lead to catastrophic forgetting [13]. Although TiFL adopts

the same tiering strategy as FedAT, TiFL achieves a similar perfor-

mance as FedAvg. This is because, as discussed in §2.1, TiFL uses the

same synchronous update scheme as FedAvg, and tiering inevitably

slows down the convergence speed but may not affect the final

prediction accuracy when the training eventually converges.

We observe in Figure 9 that reducing the level of client partici-

pation has negative effect on all of the four FL methods. FedAT is

robust in the non-i.i.d. case, where the prediction accuracy slightly

decreases when the number of client participation decreases. While

partial participation may reduce the convergence speed of FedAT ,

the optimization can still achieve an optimal solution with the local

constraint term. FedAT suffers much less from a reduced participa-

tion level than FedAvg and TiFL. Even in the extreme case where

only 2 out of 100 clients participate in each round of training, Fe-

dAT still achieves 14.47%, 14.28% and 16.93% higher accuracy than

FedAvg, TiFL, and FedProx on CIFAR-10, respectively. This is be-

cause the asynchronous, cross-tier training allows more clients to

contribute to the global model, thus increasing the test accuracy

on all clients.

7.5.2 Impact of Number of Clients in Tiers. We next evaluate the

robustness and resilience of FedAT to changing number of clients in

different tiers. We partition a total of 500 clients to five performance

tiers, where each tier either has good resources or less amount of

training data. Specially, we test the following four configurations:

Uniform: the baseline configuration that assigns the same number

of clients to each tier with a distribution of 100/100/100/100/100.

Slow: where the slowest tiers (i.e., Tier 5) has the largest number of

clients with a distribution of 50/50/100/100/200. Medium: where

the medium tier (i.e., Tier 3) gets the largest number of clients with

a distribution of 50/100/200/100/50. Fast: where the fastest tier
(i.e., Tier 1) has the largest number of clients with a distribution of

200/100/100/50/50. As shown in Figure 10, all the four partition

configurations eventually converge with close prediction perfor-

mance, thanks to FedAT’s hybrid, synchronous, intra-tier training

and asynchronous, cross-tier training strategy. Slow and Medium
11

SC ’21, November 14–19, 2021, St. Louis, MO, USA Zheng Chai, Yujing Chen, Ali Anwar, Liang Zhao, Yue Cheng, and Huzefa Rangwala

converges slightly faster than Fast, since clients in Fast configura-
tion either have good resources or less amount of data. As a result,

training for the same number of rounds yield less accurate model

in Fast configuration as we are training on overall less amount of

data. The results indicate that varying the tier sizes would affect

the convergence speed marginally but would not impact the model

performance eventually when the training converges.

8 Conclusion
We have presented FedAT, a new FL method that maximizes the pre-

diction performance and minimizes the communication cost using

a tiered, hybrid synchronous-asynchronous training mechanism.

FedAT cohesively synthesizes the following modules: (1) a tiering

strategy to handle stragglers; (2) an asynchronous scheme to update

the global model among tiers for enhanced prediction performance;

(3) a novel, weighted aggregation heuristic that the FL server uses

to balance the model parameters from heterogeneous, straggling

tiers; and (4) a polyline-encoding-based compression algorithm to

minimize the communication cost. We have provided rigorous the-

oretical analysis for our proposed method for two general classes

of convex and non-convex losses. We show that FedAT has prov-

able model performance guarantee. Our evaluation has empirically

validated our theoretical analysis, and demonstrates that FedAT

achieves the highest prediction performance, converges the fastest,

and is communication-efficient, compared to state-of-the-art FL

methods.

Acknowledgments
We are grateful to the anonymous reviewers for their valuable

feedback and suggestions that improved the paper. This work is

sponsored in part by the National Science Foundation (NSF) un-

der CCF-1919075, CCF-1919113, CMMI-2134689, IIS-1755850, CNS-

1841520, IIS-2007716, OAC-2007976, IIS-1942594, IIS-1907805, a Jef-

fress Memorial Trust Award, Amazon Research Award, NVIDIA

GPU Grant, and Design Knowledge Company (subcontract number:

10827.002.120.04). Part of the results presented in this paper were

obtained using the Chameleon testbed supported by NSF.

References
[1] Chameleon Cloud: A configurable experimental environment for large-scale

cloud research. https://www.chameleoncloud.org/.

[2] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M.,

Ghemawat, S., Irving, G., Isard, M., et al. Tensorflow: A system for large-scale

machine learning. In 12th {USENIX} symposium on operating systems design and
implementation ({OSDI} 16) (2016), pp. 265–283.

[3] Bernstein, J., Wang, Y.-X., Azizzadenesheli, K., and Anandkumar, A.

signsgd: Compressed optimisation for non-convex problems. arXiv preprint
arXiv:1802.04434 (2018).

[4] Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D., Ingerman, A., Ivanov,

V., Kiddon, C., Konecny, J., Mazzocchi, S., McMahan, H. B., et al. Towards

federated learning at scale: System design. arXiv preprint arXiv:1902.01046 (2019).
[5] Bottou, L., Curtis, F. E., and Nocedal, J. Optimization methods for large-scale

machine learning. Siam Review 60, 2 (2018), 223–311.
[6] Caldas, S., Duddu, S. M. K., Wu, P., Li, T., Konečnỳ, J., McMahan, H. B., Smith,

V., and Talwalkar, A. Leaf: A benchmark for federated settings. arXiv preprint
arXiv:1812.01097 (2018).

[7] Chai, Z., Ali, A., Zawad, S., Truex, S., Anwar, A., Baracaldo, N., Zhou, Y.,

Ludwig, H., Yan, F., and Cheng, Y. Tifl: A tier-based federated learning system.

In Proceedings of the 29th International Symposium on High-Performance Parallel
and Distributed Computing (HPDC) (2020), p. 125–136.

[8] Chai, Z., Fayyaz, H., Fayyaz, Z., Anwar, A., Zhou, Y., Baracaldo, N., Ludwig, H.,

and Cheng, Y. Towards taming the resource and data heterogeneity in federated

learning. In 2019 {USENIX} Conference on Operational Machine Learning (OpML
19) (2019), pp. 19–21.

[9] Chen, Y., Ning, Y., and Rangwala, H. Asynchronous online federated learning

for edge devices. arXiv preprint arXiv:1911.02134 (2019).
[10] Chen, Y., Sun, X., and Jin, Y. Communication-efficient federated deep learning

with layerwise asynchronousmodel update and temporally weighted aggregation.

IEEE Transactions on Neural Networks and Learning Systems (2019).
[11] Fan, W., Lu, P., Yu, W., Xu, J., Yin, Q., Luo, X., Zhou, J., and Jin, R. Adaptive

asynchronous parallelization of graph algorithms. ACM Transactions on Database
Systems (TODS) 45, 2 (2020), 1–45.

[12] Go, A., Bhayani, R., and Huang, L. Twitter sentiment classification using distant

supervision. CS224N project report, Stanford 1, 12 (2009), 2009.
[13] Goodfellow, I. J., Mirza, M., Xiao, D., Courville, A., and Bengio, Y. An em-

pirical investigation of catastrophic forgetting in gradient-based neural networks.

arXiv preprint arXiv:1312.6211 (2013).
[14] Han, M., and Daudjee, K. Giraph unchained: Barrierless asynchronous parallel

execution in pregel-like graph processing systems. Proceedings of the VLDB
Endowment 8, 9 (2015), 950–961.

[15] Hard, A., Rao, K., Mathews, R., Ramaswamy, S., Beaufays, F., Augenstein,

S., Eichner, H., Kiddon, C., and Ramage, D. Federated learning for mobile

keyboard prediction. arXiv preprint arXiv:1811.03604 (2018).
[16] Hochreiter, S., and Schmidhuber, J. Long short-term memory. Neural Comput.

9, 8 (Nov. 1997), 1735–1780.
[17] Jeong, E., Oh, S., Kim, H., Park, J., Bennis, M., and Kim, S.-L. Communication-

efficient on-device machine learning: Federated distillation and augmentation

under non-iid private data. arXiv preprint arXiv:1811.11479 (2018).
[18] Keahey, K., Anderson, J., Zhen, Z., Riteau, P., Ruth, P., Stanzione, D., Cevik,

M., Colleran, J., Gunawi, H. S., Hammock, C., Mambretti, J., Barnes, A.,

Halbach, F., Rocha, A., and Stubbs, J. Lessons learned from the chameleon

testbed. In Proceedings of the 2020 USENIX Annual Technical Conference (USENIX
ATC ’20). USENIX Association, July 2020.

[19] Kingma, D. P., and Ba, J. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980 (2014).

[20] Koloskova, A., Stich, S. U., and Jaggi, M. Decentralized stochastic optimiza-

tion and gossip algorithms with compressed communication. arXiv preprint
arXiv:1902.00340 (2019).

[21] Konečnỳ, J., McMahan, H. B., Yu, F. X., Richtárik, P., Suresh, A. T., and Bacon,

D. Federated learning: Strategies for improving communication efficiency. arXiv
preprint arXiv:1610.05492 (2016).

[22] Krizhevsky, A., Hinton, G., et al. Learning multiple layers of features from

tiny images.

[23] Li, T., Sahu, A. K., Talwalkar, A., and Smith, V. Federated learning: Challenges,

methods, and future directions. IEEE Signal Processing Magazine 37, 3 (2020).
[24] Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A., and Smith, V. Fed-

erated optimization in heterogeneous networks. arXiv preprint arXiv:1812.06127
(2018).

[25] Li, T., Sanjabi, M., Beirami, A., and Smith, V. Fair resource allocation in

federated learning. In International Conference on Learning Representations (2019).
[26] Li, X., Huang, K., Yang, W., Wang, S., and Zhang, Z. On the convergence of

fedavg on non-iid data. In International Conference on Learning Representations
(2019).

[27] Lian, X., Zhang, W., Zhang, C., and Liu, J. Asynchronous decentralized parallel

stochastic gradient descent. In International Conference on Machine Learning
(2018), PMLR, pp. 3043–3052.

[28] Lu, Y., Huang, X., Dai, Y., Maharjan, S., and Zhang, Y. Differentially private

asynchronous federated learning for mobile edge computing in urban informatics.

IEEE Transactions on Industrial Informatics 16, 3 (2019), 2134–2143.
[29] Ludwig, H., Baracaldo, N., Thomas, G., Zhou, Y., Anwar, A., Rajamoni, S.,

Ong, Y., Radhakrishnan, J., Verma, A., Sinn, M., et al. Ibm federated learning:

an enterprise framework white paper v0. 1. arXiv preprint arXiv:2007.10987
(2020).

[30] McMahan, B., Moore, E., Ramage, D., Hampson, S., and y Arcas, B. A.

Communication-efficient learning of deep networks from decentralized data.

In Artificial Intelligence and Statistics (2017), pp. 1273–1282.
[31] Mills, J., Hu, J., and Min, G. Communication-efficient federated learning for

wireless edge intelligence in iot. IEEE Internet of Things Journal (2019).
[32] Mnih, V., Badia, A. P., Mirza,M., Graves, A., Lillicrap, T., Harley, T., Silver, D.,

and Kavukcuoglu, K. Asynchronous methods for deep reinforcement learning.

In International conference on machine learning (2016), pp. 1928–1937.

[33] Nesterov, Y. Introductory lectures on convex optimization: A basic course, vol. 87.
Springer Science & Business Media, 2013.

[34] Nishio, T., and Yonetani, R. Client selection for federated learning with hetero-

geneous resources in mobile edge. In ICC 2019-2019 IEEE International Conference
on Communications (ICC) (2019), IEEE, pp. 1–7.

[35] O’herrin, J. K., Fost, N., and Kudsk, K. A. Health insurance portability ac-

countability act (hipaa) regulations: effect on medical record research. Annals of
surgery 239, 6 (2004), 772.

[36] Reisizadeh, A., Mokhtari, A., Hassani, H., Jadbabaie, A., and Pedarsani,

12

https://www.chameleoncloud.org/

FedAT: A High-Performance and Communication-Efficient Federated Learning System with Asynchronous Tiers SC ’21, November 14–19, 2021, St. Louis, MO, USA

R. Fedpaq: A communication-efficient federated learning method with periodic

averaging and quantization. In International Conference on Artificial Intelligence
and Statistics (2020), pp. 2021–2031.

[37] Reisizadeh, A., Mokhtari, A., Hassani, H., and Pedarsani, R. An exact quan-

tized decentralized gradient descent algorithm. IEEE Transactions on Signal
Processing 67, 19 (2019), 4934–4947.

[38] Reisizadeh, A., Tziotis, I., Hassani, H., Mokhtari, A., and Pedarsani, R.

Straggler-resilient federated learning: Leveraging the interplay between statistical

accuracy and system heterogeneity, 2020.

[39] Sattler, F., Wiedemann, S., Müller, K.-R., and Samek, W. Robust and

communication-efficient federated learning from non-iid data. IEEE transac-
tions on neural networks and learning systems (2019).

[40] Sattler, F., Wiedemann, S., Müller, K.-R., and Samek, W. Sparse binary

compression: Towards distributed deep learning with minimal communication.

In 2019 International Joint Conference on Neural Networks (IJCNN) (2019), IEEE.
[41] Smith, V., Chiang, C.-K., Sanjabi, M., and Talwalkar, A. S. Federated multi-

task learning. In Advances in Neural Information Processing Systems (2017),
pp. 4424–4434.

[42] Smith, V., Chiang, C.-K., Sanjabi, M., and Talwalkar, A. S. Federatedmulti-task

learning. In Advances in Neural Information Processing Systems (2017), I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,

Eds., vol. 30, Curran Associates, Inc.

[43] Tankard, C. What the gdpr means for businesses. Network Security 2016.
[44] Wang, J., and Joshi, G. Cooperative sgd: A unified framework for the de-

sign and analysis of communication-efficient sgd algorithms. arXiv preprint
arXiv:1808.07576 (2018).

[45] Wang, J., Sahu, A. K., Yang, Z., Joshi, G., and Kar, S. Matcha: Speeding

up decentralized sgd via matching decomposition sampling. arXiv preprint
arXiv:1905.09435 (2019).

[46] Woodworth, B. E., Wang, J., Smith, A., McMahan, B., and Srebro, N. Graph

oracle models, lower bounds, and gaps for parallel stochastic optimization. In

Advances in neural information processing systems (2018), pp. 8496–8506.
[47] Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a novel image dataset

for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747
(2017).

[48] Xie, C., Koyejo, S., and Gupta, I. Asynchronous federated optimization. arXiv
preprint arXiv:1903.03934 (2019).

[49] Yang, T., Andrew, G., Eichner, H., Sun, H., Li, W., Kong, N., Ramage, D., and

Beaufays, F. Applied federated learning: Improving google keyboard query

suggestions. arXiv preprint arXiv:1812.02903 (2018).
[50] Yu, H., Yang, S., and Zhu, S. Parallel restarted sgd for non-convex optimization

with faster convergence and less communication. arXiv preprint arXiv:1807.06629
2, 4 (2018), 7.

[51] Zhang, C., Li, S., Xia, J., Wang, W., Yan, F., and Liu, Y. Batchcrypt: Efficient

homomorphic encryption for cross-silo federated learning. In 2020 USENIX
Annual Technical Conference (USENIX ATC 20) (July 2020), USENIX Association.

[52] Zhang, S., Choromanska, A., and LeCun, Y. Deep learning with elastic averag-

ing sgd. arXiv preprint arXiv:1412.6651 (2014).
[53] Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., and Chandra, V. Federated learning

with non-iid data. arXiv preprint arXiv:1806.00582 (2018).

13

SC ’21, November 14–19, 2021, St. Louis, MO, USA Zheng Chai, Yujing Chen, Ali Anwar, Liang Zhao, Yue Cheng, and Huzefa Rangwala

Appendix

A Theoretical Analysis of FedAT
We analyze FedAT in the setting of both convex and non-convex situations in this section.

Recall that𝑤𝑡 is the model parameters of the server maintained at the 𝑡-th round. Let 𝑔𝑡 (𝑤𝑡) =
∑𝑐
𝑘=1

𝑛𝑘
𝑁𝑐

∇ℎ𝑘 (𝑤𝑡), in which, 𝑁𝑐 is the

total number of data samples across all 𝑐 clients at tier𝑚. Therefore,𝑤𝑡+1 = 𝑤𝑡 −
𝑇𝑡𝑖𝑒𝑟 (𝑀+1−𝑚)

𝑇
𝜂𝑔𝑡 (𝑤𝑡).

A.1 Proof of Lemma 5.1
To prove Theorem 5.1, we first introduce two Lemmas.

Proof. Using the notion of 𝛾-inexactness for each local objective. We have

∇ℎ𝑘 (𝑤𝑡) = 𝐹𝑘 (𝑤𝑡) + 𝜆(𝑤𝑡 −𝑤0) (12)

| |∇ℎ𝑘 (𝑤𝑡) | | ≤ 𝛾 | |∇𝐹𝑘 (𝑤𝑡) | | (13)

With 𝑔𝑡 (𝑤𝑡) =
∑𝑐
𝑘=1

𝑛𝑘
𝑁𝑐

∇ℎ𝑘 (𝑤𝑡), we can get

| |𝑔𝑡 (𝑤𝑡) | |2 =
1

𝑁 2

𝑐

| |𝑛1∇ℎ1 (𝑤𝑡) + 𝑛2∇ℎ2 (𝑤𝑡)+, ..., +𝑛𝑐∇ℎ𝑐 (𝑤𝑡) | |2

≤ 1

𝑁 2

𝑐

· 𝑁 2

𝑐 | |∇ℎ1 (𝑤𝑡) + ∇ℎ2 (𝑤𝑡)+, ..., +∇ℎ𝑐 (𝑤𝑡) | |2

≤ 𝑚2 | |∇ℎ𝑘∗ (𝑤𝑡) | |2 (𝑘∗ = arg max

𝑘
∇ℎ𝑘 (𝑤𝑡))

≤ 𝑚2𝛾2 | |∇𝐹𝑘∗ (𝑤𝑡) | |2 (𝑤𝑖𝑡ℎ 𝐸𝑞.(13))

(14)

Take expectation of both sides and with Assumption 5.2, we have

E| |𝑔𝑡 (𝑤𝑡) | |2 ≤ 𝑚2𝛾2E| |∇𝐹𝑘∗ (𝑤𝑡) | |2

≤ 𝛾2𝐺2𝑐2
(15)

□

A.2 Proof of Lemma 5.2
Proof. 𝑓 (𝑤) is 𝜇-strongly convex, we can get:

𝑓 (𝑤 ′) − 𝑓 (𝑤𝑡) ≥ ⟨∇𝑓 (𝑤𝑡),𝑤 ′ −𝑤𝑡 ⟩ + 𝜇

2

| |𝑤 ′ −𝑤𝑡 | |2, (16)

Let us define Γ(𝑤 ′) such that:

Γ(𝑤 ′) = 𝑓 (𝑤𝑡) + ⟨∇𝑓 (𝑤𝑡),𝑤 ′ −𝑤𝑡 ⟩ + 𝜇

2

| |𝑤 ′ −𝑤𝑡 | |2, (17)

Γ(𝑤 ′) is a quadratic function of𝑤 ′
, then it has minimal value when ∇Γ(𝑤 ′) = ∇𝑓 (𝑤𝑡) + 𝜇 (𝑤 ′ −𝑤𝑡) = 0. Then the minimal value of Γ(𝑤 ′)

is obtained when𝑤 ′ = 𝑤𝑡 − ∇𝑓 (𝑤𝑡)
𝜇 , which is:

Γmin = 𝑓 (𝑤𝑡) − ||∇𝑓 (𝑤𝑡) | |2
2𝜇

, (18)

For 𝑓 (𝑤) is 𝜇-strongly convex, we can complete the proof:

𝑓 (𝑤∗) ≥ Γ(𝑤∗) ≥ Γmin = 𝑓 (𝑤𝑡) − ||∇𝑓 (𝑤𝑡) | |2
2𝜇

, (19)

2𝜇 (𝑓 (𝑤𝑡) − 𝑓 (𝑤∗)) ≤ ||∇𝑓 (𝑤𝑡) | |2 . (20)

□

14

FedAT: A High-Performance and Communication-Efficient Federated Learning System with Asynchronous Tiers SC ’21, November 14–19, 2021, St. Louis, MO, USA

A.3 Proof of Theorem 5.1
Proof. Now we start to prove the convergence of Theorem 5.1. With Definition 5.1 we can get:

𝑓 (𝑤𝑡+1) − 𝑓 (𝑤𝑡)

≤ ⟨∇𝑓 (𝑤𝑡),𝑤𝑡+1 −𝑤𝑡 ⟩ + 𝐿
2

| |𝑤𝑡+1 −𝑤𝑡 | |2 (𝑓 (·) 𝑖𝑠 L-smooth)

= −∇𝑓 (𝑤𝑡)⊤
𝑇𝑡𝑖𝑒𝑟 (𝑀+1−𝑚)

𝑇
𝜂𝑔𝑡 (𝑤𝑡) +

𝐿𝜂2

2

𝑇 2

𝑡𝑖𝑒𝑟 (𝑀+1−𝑚)

𝑇 2
| |𝑔𝑡 (𝑤𝑡) | |2 (𝑤𝑡+1 = 𝑤𝑡 −

𝑇𝑡𝑖𝑒𝑟 (𝑀+1−𝑚)

𝑇
𝜂𝑔𝑡 (𝑤𝑡))

(21)

Let 𝐵 =
𝑇𝑡𝑖𝑒𝑟 (𝑀+1−𝑚)

𝑇
. Then with Lemma 5.1, we can update Equation 21 as

E[𝑓 (𝑤𝑡+1)] − 𝑓 (𝑤𝑡)

≤ −∇𝑓 (𝑤𝑡)⊤𝐵𝜂E[𝑔𝑡 (𝑤𝑡)] +
𝐿

2

𝜂2𝐵2E| |𝑔𝑡 (𝑤𝑡) | |2

≤ −∇𝑓 (𝑤𝑡)⊤𝐵𝜂E[𝑔𝑡 (𝑤𝑡)] +
𝐿

2

𝜂2𝛾2𝐵2𝐺2𝑐2

(22)

Then from Assumption 5.3, we have

E[𝑓 (𝑤𝑡+1)] − 𝑓 (𝑤𝑡)

≤ −𝐵𝜂𝜎 | |∇𝑓 (𝑤𝑡) | |2 + 𝐿
2

𝜂2𝛾2𝐵2𝐺2𝑐2

(23)

Then with Lemma 5.2, Equation (23) can be updated as

E[𝑓 (𝑤𝑡+1)] − 𝑓 (𝑤𝑡)

≤ −2𝜇𝐵𝜂𝜎 (𝑓 (𝑤𝑡) − 𝑓 (𝑤∗)) +
𝐿

2

𝜂2𝛾2𝐵2𝐺2𝑐2

(24)

By subtracting 𝑓 (𝑤∗) from both sides and moving 𝑓 (𝑤𝑡) from left to right, we get

E[𝑓 (𝑤𝑡+1)] − 𝑓 (𝑤∗)

≤ −2𝜇𝐵𝜂𝜎 (𝑓 (𝑤𝑡) − 𝑓 (𝑤∗)) + (𝑓 (𝑤𝑡) − 𝑓 (𝑤∗)) +
𝐿

2

𝜂2𝛾2𝐵2𝐺2𝑐2

= (1 − 2𝜇𝐵𝜂𝜎) (𝑓 (𝑤𝑡) − 𝑓 (𝑤∗)) +
𝐿

2

𝜂2𝛾2𝐵2𝐺2𝑐2

(25)

Taking the whole expectations and rearranging (25), we obtain

E[𝑓 (𝑤𝑡+1) − 𝑓 (𝑤∗)]

≤ (1 − 2𝜇𝐵𝜂𝜎)E[(𝑓 (𝑤𝑡) − 𝑓 (𝑤∗))] +
𝐿

2

𝜂2𝛾2𝐵2𝐺2𝑐2

(26)

subtracting
𝐿𝜂𝛾2𝐵𝐺2𝑚2

4𝜇𝜎 from both sides, we have

E[𝑓 (𝑤𝑡+1) − 𝑓 (𝑤∗)] −
𝐿𝜂𝛾2𝐵𝐺2𝑐2

4𝜇𝜎

≤ (1 − 2𝜇𝐵𝜂𝜎) (E[(𝑓 (𝑤𝑡) − 𝑓 (𝑤∗))] −
𝐿𝜂𝛾2𝐵𝐺2𝑐2

4𝜇𝜎
)

(27)

The left side of (27) is a geometric series with common ratio 1− 2𝜇𝐵𝜂𝜎 , when 𝑡 + 1 = 𝑇 , we get Equation (10), then we complete the proof. □

A.4 Proof of Theorem 5.2
Proof. Take expectation at both sides of Equation (23), we have

E[𝑓 (𝑤𝑡+1)] − E[𝑓 (𝑤𝑡)]

≤ −𝐵𝜂𝜎E[| |∇𝑓 (𝑤𝑡) | |2] +
𝐿

2

𝜂2𝛾2𝐵2𝐺2𝑐2

(28)

Then sum Equation (28) at both sides over global iteration 𝑇 . We have

E[𝑓 (𝑤𝑡+1)] − 𝑓 (𝑤0)

≤
𝑇−1∑
𝑡=0

−𝐵𝜂𝜎E[| |∇𝑓 (𝑤𝑡) | |2] +
𝐿

2

𝑇 2𝜂2𝛾2𝐵2𝐺2𝑐2

(29)

15

SC ’21, November 14–19, 2021, St. Louis, MO, USA Zheng Chai, Yujing Chen, Ali Anwar, Liang Zhao, Yue Cheng, and Huzefa Rangwala

As min 𝑓 (𝑤𝑡) = 𝑓 (𝑤∗) ≤ E[𝑓 (𝑤𝑡+1)], then we have

𝑓 (𝑤∗) ≤ 𝑓 (𝑤0) −
𝑇−1∑
𝑡=0

𝐵𝜂𝜎E[| |∇𝑓 (𝑤𝑡) | |2]

+ 𝐿
2

𝑇 2𝜂2𝛾2𝐵2𝐺2𝑐2

(30)

Rearrange (30) we can get

𝑇−1∑
𝑡=0

𝐵E[| |∇𝑓 (𝑤𝑡) | |2]

≤ 𝑓 (𝑤0) − 𝑓 (𝑤∗)
𝐵𝜂𝜎

+ 𝐿

2𝜎
𝑇 2𝜂𝛾2𝐵𝐺2𝑐2

(31)

Then we complete the proof. □

16

	Abstract
	1 Introduction
	2 Related Work
	2.1 Stragglers in Federated Learning
	2.2 Communication-Efficient Federated Optimization

	3 Preliminaries: Federated Learning and FedAvg
	4 FedAT: Federated Learning with Asynchronous Tiers
	4.1 Training at Local Clients
	4.2 Cross-Tier Weighted Aggregation
	4.3 Compression, Marshalling, and Unmarshalling

	5 Convergence Analysis
	6 Experimental Setting
	7 Evaluation
	7.1 Prediction Performance
	7.2 Communication Efficiency
	7.3 Effectiveness of Weighted Aggregation
	7.4 Large-Scale Training
	7.5 Sensitivity Analysis

	8 Conclusion
	References
	A Theoretical Analysis of FedAT
	A.1 Proof of Lemma 5.1
	A.2 Proof of Lemma 5.2
	A.3 Proof of Theorem 5.1
	A.4 Proof of Theorem 5.2

