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1 Introduction & Motivation
More recently, a new paradigm called serverless computing
(Function-as-a-Service or FaaS) has become prevalent, thanks
to container-based virtualization. Serverless computing en-
ables a brand new way of building and scaling applications
and services by breaking the traditionally monolithic server-
based application model into finer-grained functions; devel-
opers can thus focus on the development of function logics
without having to worry about the server or VM management.
While still in its infancy, extant serverless computing infras-
tructure starts to pose a set of issues. The foremost issue is
the significant runtime overhead that hampers its elasticity
and scalability. Simple adoption of container engines such as
Docker [4] incurs significant container startup and runtime
environment setup cost, thus making the serverless platforms
fail to meet the latency and throughput requirement of bursty
workloads.
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Figure 1: Careful HPA parameter tuning yields effective perfor-
mance improvement and agile response to a workload burst.

Issues State-of-the-art open-source FaaS platforms [5, 6, 7]
heavily rely on container orchestration frameworks such
as Kubernetes [3] for container resource scheduling, which
is originally designed for managing long-running applica-
tions [9] such as Memcached. FaaS-based applications de-
mand elastic auto-scaling when workloads are bursty, whereas
Kubernetes’ container scheduling and auto-scaling protocol
is too heavyweight to realize instant resource provisioning.
For example, Kubernetes’ horizontal pod autoscaler (HPA)
first waits for multiple rounds of statistics collection until the
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measured metric (e.g., CPU usage of a certain pod) stabilizes
before enters into the container scaling-out phase where the
number of needed containers is calculated and provisioned.
To demonstrate, we run HPA-managed OpenFaaS on a cluster
of AWS EC2 VMs and issue a highly-concurrent function
workload. As shown in Figure 1, the workload sees reduced re-
sponse time after 40 seconds and stabilizes after 120 seconds,
which is unacceptably long for a short-lived bursty workload.
By carefully tuning the HPA parameters, we observe dra-
matically improved elasticity and quickly-converged function
response time (the response time stabilizes after 20 seconds).
This observation is because reconfigured HPA is more sen-
sible to workload burst, and therefore, makes auto-scaling
decision in a more timely fashion.
2 Designing HyperFaaS
Optimization such as container caching (or pre-warming, by
launching a pool of empty standby containers ready for serv-
ing function requests) can not fundamentally solve the prob-
lem, because bursty workloads can exhaust the container
cache pool quickly, resulting in excessive container provi-
sioning afterward. HPA parameter tuning, on the other hand,
can marginally mitigate the impact of slow auto-scaling to
some extent. However, it pinpoints the root causes of such de-
ficiency and motivates us to rethink the FaaS platform design.
To this end, we propose HyperFaaS—a redesign of the FaaS
platform that supports truly elastic resource scaling with high
resource efficiency. The goal of HyperFaaS is two-fold: (1) to
maximize the resource utilization and efficiency through hier-
archical scheduling and container sharing; and (2) to minimize
performance loss due to highly-concurrent bursty function
workloads via transient resource scaling-up.
Hierarchical Scheduling Within one container, there are
two management modules: (1) an in-container scheduler (ICS)
that routes requests to (2) function workers that serve the func-
tion requests. Each ICS performs periodic metrics monitoring
and proactively exchanges information with a centralized
global scheduler (GS). The ICS keeps the quality-of-service
(QoS) of function request serving in check with pre-defined
resource (CPU/memory) usage watermarks. Whenever the
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Figure 2: Overview of multi-phase auto-scaling scheme: (a): Transient scaling-up offers a temporary solution to mitigate the impact of mild
burst, while waiting for the new containers to be launched from background; (b): Container multiplexing effectively serves wilder burst; (c):
When the scaling-out process is finished, distribute the persisting burst to the new containers.

high watermark is reached, ICS notifies GS to take actions.
Additional requests that would have overwhelmed that partic-
ular container will be bounced back to the GS, which performs
rescheduling by looking for a different set of containers with
available resources. This hierarchical scheduling scheme can
effectively prevent container overwhelming and thus signifi-
cantly improve the average and tail latencies.
Multi-phase Auto-scaling To effectively handle suddenly
bursty workloads, we design a multi-phase "burst-buffer”
styled scaling mechanism, where we follow a "scaling-up then
scaling-out” design choice. A phase-one resource scaling-up
is always applied first, whenever a bursty workload comes,
with the hope that the burst is ephemeral and short-lived, as
shown in Figure 2(a); HyperFaaS triggers the scaling-out
as a last resort if the workload spike persists. Our phase-
two scaling-out policy coordinates with GS to try to locate
containers with available resources to sustain the increased
workload, (Figure 2(b)); if there are not enough free resources,
HyperFaaS enters into phase-three by asynchronously spin-
ning up (via cold-start) more containers in the background,
while phase-one scaling-up is used as a burst buffer to help
form a smooth latency decrease curve (instead of a sudden
jump suffered by existing platforms), as shown in Figure 2(c).
Container Sharing To further complement the above de-
sign decisions, HyperFaaS implements container sharing
through a multi-function based resource multiplexing, with
the goal of improving resource utilization. For this purpose,
we adopt a double-buffering typed approach, where two
function workers are co-existing within one container. Our
container sharing scheme features a carefully-designed and
lightweight function switching protocol that works as follows:
when a container is lightly-loaded, one of two workers is
loaded with function codes serving requests, while the other
worker stays generic without being specialized; workers can
switch between generic (unspecialized) and non-generic (spe-
cialized with source codes of the specific function). When a

burst goes beyond the scaling-up threshold, GS will locate
containers that are currently under-utilized, and specialize the
generic worker for container multiplexing.
Implementation in Progress We are in the progress of im-
plementing a prototype of HyperFaaS. To minimize the over-
head of ICS, we use request streaming and directly pipe data
to the worker without parsing the HTTP headers. The hierar-
chical scheduling and container sharing substrates are under
heavy development. For the evaluation purpose, only CPU
and memory resource will be considered in the first version.
3 Related Work
Extant serverless platforms [2] suffer from containers’ cold
startup and use container caching for performance improve-
ment. SOCK [8] proposes a serverless-optimized container
engine to mitigate the impact of long container latencies.
SAND [1] introduces per-workflow container sharing to opti-
mize performance for workflow-based serverless workloads.
The proposed work shares with these systems the goal of
reducing the container-level costs, but differs in its focus on
resource scheduling.
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