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Abstract

The extreme latency and throughput requirements of mod-

ern web applications are driving the use of distributed in-

memory object caches such as Memcached. While extant

caching systems scale-out seamlessly, their use in the cloud

— with its unique cost and multi-tenancy dynamics —

presents unique opportunities and design challenges.

In this paper, we propose MBal, a high-performance in-

memory object caching framework with adaptive Multi-

phase load Balancing, which supports not only horizontal

(scale-out) but vertical (scale-up) scalability as well. MBal

is able to make efficient use of available resources in the

cloud through its fine-grained, partitioned, lockless design.

This design also lends itself naturally to provide adaptive

load balancing both within a server and across the cache

cluster through an event-driven, multi-phased load balancer.

While individual load balancing approaches are being lever-

aged in in-memory caches, MBal goes beyond the extant

systems and offers a holistic solution wherein the load bal-

ancing model tracks hotspots and applies different strategies

based on imbalance severity – key replication, server-local or

cross-server coordinated data migration. Performance eval-

uation on an 8-core commodity server shows that compared

to a state-of-the-art approach, MBal scales with number of

cores and executes 2.3× and 12× more queries/second for

GET and SET operations, respectively.

1. Introduction

Distributed key-value stores/caches have become the sine

qua non for supporting today’s large-scale web services.

Memcached [6], a prominent in-memory key-value cache,

has an impressive list of users including Facebook, Wikipedia,
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(a) Aggregate throughput.
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(b) Cost of performance.

Figure 1: Aggregated peak throughput and KQPS/$ observed for

different Amazon EC2 cluster configurations. Here, the network

or CPU of Memcached cluster is saturated to achieve the highest

throughput under each configuration for a 95% GET workload.

Twitter and YouTube. It can scale to hundreds of nodes, and

in most cases, services more than 90% of database-backed

queries for high performance I/Os [12, 40, 46].

With the growth of cloud platforms and services, in-

memory caching solutions have also found their way into

both public and private clouds. In fact, cloud service providers

such as Amazon, IBM Cloud and Google App Engine, al-

ready support in-memory caching as a service. Amazon’s

ElastiCache [2] is an automated Memcached deployment

and management service widely used by cloud-scale web

applications, e.g., Airbnb, and TicketLeap.

While the cloud model makes in-memory caching solu-

tions easy to deploy and scale, the pay-as-you-go approach

leads to an important consideration for the cloud tenant:

How do I (the tenant) get the most bang-for-the-buck with

in-memory caching deployment in a shared multi-tenant en-

vironment? To understand the different aspects of this issue,

we need to consider two aspects:

Impact of Resource Provisioning A key promise of the

cloud model is to offer the users choice in terms of resources,

services, performance, cost, tenancy, etc. In order to better

understand the impact of different options in a true multi-

tenant environment, we conducted an experimental study



Instance VCPUs Memory Network Cost

type (cores) (GB) (Gbps) ($/hr)

m1.small 1 1.7 0.1 0.044

m3.medium 1 3.75 0.5 0.07

c3.large 2 3.75 0.6 0.105

m3.xlarge 4 15 0.7 0.28

c3.2xlarge 8 15 1 0.42

c3.8xlarge 32 60 10 1.68

Table 1: Amazon EC2 instance details based on US West – Oregon,

Oct. 10, 2014 [1] (network b/w measured using Netperf).

on Amazon EC2 public cloud. Figure 1 demonstrates the

impact of scaling cluster size on Memcached performance

with respect to different resource types (EC2 instances).

Figure 1(a) shows the impact on raw performance (re-

flected by kilo Queries Per Second (KQPS)), and Figure 1(b)

captures the effective cost of performance by normaliz-

ing the performance with the cost of the corresponding

EC instances (KQPS/$). The figures show that there is a

low return on investment for powerful instances such as

c3.8xlarge compared to relatively cheap instances such as

c3.large. The extreme points behave as expected with the

smaller-capacity instances (m1.small, m3.medium) achiev-

ing much lower throughput compared to larger-capacity in-

stance. However, we observe that the performance of the

three semi-powerful instance types (c3.large, m3.xlarge,

and c3.2xlarge) converges to about 1.1 MQPS (million

QPS) as the cluster size (for each instance type) scales to

20 nodes. We believe that this behavior can be attributed

to constrained network bandwidth because of the following

reasons. (1) Even though these instances have different CPU

capacities (as shown in Table 1), they all have similar net-

work connectivity with an upper bound of 1 Gbps. (2) The

underlying cluster or rack switches might become the bot-

tleneck due to incast congestion [42] under Memcached’s

many-to-many network connection model. (3) Increasing

the number of clients does not change performance. (4) The

server CPUs, as observed, have a lot of free cycles in the

semi-powerful instance types. For example, while CPU uti-

lization in the m1.small setup was close to 100% (bounding

the performance), the c3.2xlarge cluster setup had about

40% free cycles available. (5) Finally, improving network

bandwidth to 10 Gbps (c3.8xlarge), doubles the through-

put. This clearly shows that the performance of these semi-

powerful instances is constrained by the available network

bandwidth. However, even the performance of the most pow-

erful c3.8xlarge instance that we tested, does not scale well

with the increase in resource capacity (and monetary cost).

This may be due to the multi-tenant nature of the public

cloud where tenants or even virtual machines of the same

tenant co-located on a host may indirectly interfere with

each other’s performance.

From our experiments, we infer the following. (i) While

cost in the cloud scales linearly with the cluster size, the
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Figure 2: Impact of skewness on the performance of a Memcached

cluster with 20 instances. A larger Zipfian constant implies a more

skewed workload. The workload is 95% GET, generated using

Yahoo! Cloud Serving Benchmark [15] (YCSB) with 12 clients.

performance does not, causing the overall performance-to-

cost efficiency to come down. (ii) Unlike private data cen-

ters where we typically observe large scale-out with pow-

erful machines [12] for in-memory caching tier, cloud ten-

ants are faced with the “problem of plentiful choices” in the

form of different configurations and their impact on work-

loads, when deploying their in-memory caching tier. This in

turn increases the number of variables tenants have to con-

sider while making deployment decisions, and is burden-

some to the extent that tenants typically choose the “easy-

but-inefficient” default parameters. (iii) Our study shows that

tenants may be better served by deploying moderate scale

clusters with just enough CPU and memory capacity to meet

their requirements to get best cost-performance ratio1. This

stresses the need for the caching software to make efficient

use of available resources.

Impact of Load Imbalance Facebook’s memcache work-

load analysis [12] reports high access skew and time vary-

ing request patterns, implying existence of imbalance in

datacenter-scale production deployments. This load imbal-

ance is significantly amplified — by orders of magnitude —

on cloud-based cache deployments, due to a number of rea-

sons including key popularity skewness [40], multi-tenant

resource sharing, and limited network bandwidth.

To quantify the impact of load imbalance, we measured

the throughput and latency of a typical read-intensive work-

load (95% GET) with varying load skewness (represented

by Zipfian constant). Figure 2 shows that the performance

declines as the workload skewness increases (unif repre-

sents uniform load distribution). We observe that hotspots

due to skewness can cause as much as 3× increase in the

99th percentile tail latency and more than 60% degradation

in average per-client throughput. Similar results have been

observed by Hong et al. [23]. Thus, efficient load balanc-

1 Finding the best combination of instance types for cloud workloads is

beyond the scope of this paper and is part of our future work.



ing mechanism in the caching tier is necessary for providing

high performance and efficient resource (CPU, memory) uti-

lization.

Contributions Based on the two requirements of effi-

cient use of resources and handling load imbalance in

cloud-based in-memory cache deployments, we develop

MBal, an in-memory object caching framework that lever-

ages fine-grained data partitioning and adaptive Multi-phase

load Balancing. MBal performs fast, lockless inserts (SET)

and lookups (GET) by partitioning user objects and com-

pute/memory resources into non-overlapping subsets called

cachelets. It quickly detects presence of hotspots in the

workloads and uses an adaptive, multi-phase load balancing

approach to mitigate any load imbalance. The cachelet-based

design of MBal provides a natural abstraction for object mi-

gration both within a server and across servers in a cohesive

manner.

Specifically, we make the following contributions:

1. We evaluate the impact of co-located multi-tenant cloud

environment on cost of performance by conducting ex-

periments on Amazon EC2 based cloud instance. Our ob-

servations stress the need to carefully evaluate the vari-

ous resource assignment choices available to the tenants

and develop simple rules-of-thumb that users can lever-

age for provisioning their memory caching tier.

2. Based on our behavior analysis of Memcached in the

cloud, we design and implement a fine-grained, parti-

tioned, lockless in-memory caching sub-system MBal,

which offers improved performance and natural support

for load balancing.

3. We implement an adaptive load balancer within MBal

that (1) determines the extent of load imbalance, and

(2) uniquely applies local, decentralized as well as glob-

ally coordinated load balancing techniques, to (3) cost-

effectively mitigate hotspots. While some of the load bal-

ancing techniques have been used before, MBal synthe-

sizes the various techniques into a novel holistic system

and automates the application of appropriate load bal-

ancing as needed.

4. We deploy our MBal prototype in a public cloud environ-

ment (Amazon EC2) and validate the design using com-

prehensive experimental evaluation on a 20-node cache

cluster. Our results show that MBal agilely adapts based

on workload behaviors and achieves 35% and 20% im-

provement in tail latency and throughput.

Roadmap The rest of the paper is organized as follows.

We describe the overall design of MBal in §2. §3 presents

our load balancing framework. We evaluate the benefits of

our design in §4, and discuss related work in §5. Finally, we

present our conclusions in §6.

2. MBal Architecture

We design MBal in light of the requirements of cloud-based

deployments – efficient use of available resources and need

for load balancing. Conventional object caches/stores, such

as Memcached [6], use a monolithic storage architecture

where key space sharding is performed at coarse server gran-

ularity while resources within an object server are shared

across threads. This design has good scale-out characteris-

tics, as demonstrated by Memcached deployments with hun-

dreds of servers [3, 40], but is not necessarily resource effi-

cient. For example, a known and crucial problem in Mem-

cached is that it suffers from global lock contention, result-

ing in poor performance on a single server.

To address this issue, MBal performs fine-grained thread-

level resource partitioning, allowing each thread within a

cache server to run as a fully-functional caching unit while

leveraging the benefits of running within a single address

space. While the concept of thread-level resource parti-

tioning has been explored [26, 30, 36], the approach pro-

vides significant benefits for a fast DRAM-based cache.

This allows MBal to not only scale-out to a large number

of cache nodes similar to its contemporary counterparts but

also scale-up its performance by fully exploiting the par-

allelism offered by multi-core architectures. Furthermore,

thread-level resource partitioning provides the ability to per-

form low overhead load balancing.

2.1 Cachelet Design

Typical in-memory object caches use consistent hashing [31]

to map keys (object handles) to cache servers. The shard-

ing process involves mapping subsets of key space to virtual

nodes (VN) and mapping VNs to cache servers. This allows

distributing non-consecutive key hashes to a server. How-

ever, the cache servers are typically unaware of the VNs.

We introduce a new abstraction, cachelets, to enable

server worker threads to manage key space at finer gran-

ularity than a monolithic data structure. A cachelet is a

configurable resource container that encapsulates multiple

VNs and is managed as a separate entity by a single worker

thread. As depicted in Figure 3(a), each worker thread in a

cache server owns one or more cachelets. While the design

permits one-to-one mapping between VNs and cachelets,

typically there can be an order(s) of magnitude more VNs

than cachelets. The choice is based on the client administra-

tor’s desired number of subsets of key space and the speed at

which the load balancing algorithm should converge. To this

end, cachelets help in decoupling metadata management at

the servers/clients and provide resource isolation.

2.2 Lockless Operations

Each cachelet is bound to a single server worker thread that

allocates memory, manages accesses, and maintains meta-

data structures and statistics for the cachelet. This partition-

ing ensures that in MBal, there is no lock contention or syn-
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Figure 3: MBal architecture. Clients use the three-step key-to-thread mapping to route requests to MBal servers. Key replication involves

copying hot keys across servers, whereas both server-local and coordinated migration perform load balancing at cachelet granularity.

chronization overheads across worker threads during inserts

or lookups. Furthermore, this allows MBal to reduce false

sharing by cross-thread resource isolation. The design is also

amenable to and provides a mechanisms to quickly serialize

and migrate data for load balancing (server-local and coordi-

nated migration in Figure 3(a)). In the future, we aim to add

functionality to cachelets such as service differentiation and

server-side code execution [11], which will enable MBal to

support richer services beyond object caching.

2.3 Key-to-Thread Mapping

A naive approach for routing a request for an object to an

appropriate worker thread on a server is to use a server-side

dispatcher thread: A dedicated thread on each MBal server

receives client requests and dispatches the request to an ap-

propriate worker thread based on cachelet ID in the request.

We first implemented our design using this approach and

quickly found the dispatcher thread to be a bottleneck. In-

creasing the number of dispatcher threads reduces the num-

ber of cores available on a server to service requests but does

not improve performance, and thus is impractical.

To avoid this, MBal provides client-side routing capabil-

ity within MBal’s client library, similar to approaches used

in mcrouter [40]. We associate a TCP/UDP port with each

cache server worker thread so that clients can directly in-

teract with workers without any centralized component. As

shown in Figure 3(b), this approach performs “on-the-way-

routing” via a two-level mapping table lookup on the client.

The mapping scheme enables convenient mapping changes

when servers perform cachelet migration. In our implemen-

tation, we overload the field originally reserved for virtual

bucket [7] in Memcached protocol header to hold cachelet

ID. Thus, no client application changes are needed and web

applications can easily work with MBal cache by simply

linking against our Memcached protocol compliant client

library. Finally, assigning a separate network port to each

worker thread on a server is not a concern. This is because

while the number of worker threads depends on user config-

uration, usually it is expected to be the same as the number

of cores on the cache server machine. Note that having too

many worker threads on a server can lead to significant net-

work interrupt overhead due to request overwhelming [40]

as well as cross-socket cache coherence traffic [38]. MBal

also employs cache-conscious bucket lock placement sug-

gested by [21] to reduce additional last-level cache (LLC)

misses. Each bucket lock protecting one hash table bucket

is co-located with that hash table entry that is cache-line-

aligned. This guarantees that a hash table access results in at

most one cache miss.

2.4 Memory Management

MBal employs hierarchical memory management using a

global memory pool and thread-local memory pool managed

using a slab allocator [14, 18]. Each worker thread requests

memory from the global free pool in large chunks (con-

figurable parameter) and adds the memory to its local free

memory pool. New objects are allocated from thread-local

slabs and object deletes return memory to thread’s own pool

for reuse. Furthermore, workers return memory to global

heap to be reused by other threads if global free pool shrinks

below a low threshold (GLOB MEM LOW THRESH) and thread’s

local free pool exceeds a high threshold (THR MEM HIGH THRESH).

Such allocation reduces contention on the global heap during

critical insert/delete paths and localizes memory accesses.

Besides, the approach also provides high throughput when

objects are evicted (deleted) from the cache to create space

for new ones. MBal uses LRU replacement algorithm sim-

ilar to Memcached but aims to provide much better perfor-

mance by reducing lock contention. Additionally, MBal adds



support for Non-Uniform Memory Access (NUMA) aware

memory allocator in the thread-local memory manager.

2.5 Discussion: Multi-threading vs. Multi-instance

An alternative to the multi-threaded approach in MBal is to

use multiple single-threaded cache server instances that can

potentially achieve good resource utilization. Such single-

threaded instances can even be binded to CPU cores to re-

duce the overheads of process context switches. While in-

tuitive, such a multi-instance approach is not the best de-

sign option in our opinion because of the following reasons.

(1) An off-the-shelf multi-instance implementation (e.g., run

multiple single-threaded cache instances) would require ei-

ther static memory allocation or a dynamic per-request mem-

ory allocation (e.g., using malloc()). While the former ap-

proach can lead to resource under-utilization, the latter re-

sults in performance degradation due to overheads of dy-

namic memory allocation. (2) While possible, hierarchical

memory management is costly to implement across address

spaces. A multi-threaded approach allows memory to be eas-

ily rebalanced across worker threads sharing the single ad-

dress space, whereas a multi-instance approach requires us-

ing shared memory (e.g., global heap in shared memory).

Such sharing of memory across processes is undesirable,

especially for writes and non-cache-line-aligned reads, as

each such operation may suffer a TLB flush per process

instead of just one in the multi-threaded case. (3) Multi-

instance approach entails costly communication through ei-

ther shared memory or inter-process communication, which

is more expensive compared to MBal’s inter-thread com-

munication for server-local cachelet migration. (4) Recent

works, e.g., from Twitter [4], have shown that multi-instance

deployment makes cluster management more difficult. For

example, in a cluster where each machine is provisioned

with four instances, the multi-instance deployment quadru-

ples management cost such as global monitoring. (5) Finally,

emerging cloud operating systems [33, 39] are optimized for

multi-threaded applications with some, such as OSv [33],

supporting a single address space per virtual machine. Con-

sequently, we have designed MBal while considering all the

benefits of multi-threaded approach, as well as future porta-

bility of the system.

3. Multi-Phase Load Balancing

MBal offers an adaptive load balancing approach that com-

prises different phases, each with its unique efficacy and

cost. In the following, we describe these load balancing

mechanisms and the design choices therein.

3.1 Cluster-Wide Multi-Phase Cost/Benefit Analyzer

A distributed in-memory object cache can be load balanced

using a number of techniques, such as key replication and

data migration. However, each technique has a unique cost

associated with it, thus requiring careful analysis to choose
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Figure 4: The state transitions of the MBal load balancer at each

server.

what technique to employ and when. The more expensive

approaches typically yield better load balancing. However,

such a heavy-weight approach, e.g., cross-server data migra-

tion, may not always be justified if the system is imbalanced

due to a small set of hot keys. Consequently, the load bal-

ancer should consider current workload in deciding what ap-

proach to use so as to ensure high efficiency.

MBal employs an event-driven multi-phase load balancer,

where each phase corresponds to a series of decision mak-

ing processes triggered by event(s) based on key access pat-

terns. A phase may also be triggered and executed simulta-

neously with another lower-priority phase. For example, if

the configurable high replication watermark (REPLhigh) is

exceeded, a worker may lower its priority on key replica-

tion by reducing the key sampling rate and thus the repli-

cation overhead. The worker may then simultaneously enter

another phase, e.g., server-local cachelet migration. The goal

is to generate load balancing plans that are fast and econom-

ical, yet effective for a given workload. MBal implements

three phases: (1) key replication; (2) server-local cachelet

migration; and (3) coordinated cachelet migration. While

the first two phases are locally implemented at each MBal

server providing quick solutions for ephemeral hotspots, the

third phase involves a centralized coordinator to address

any longer-term persistent load imbalances. Table 2 lists the

salient properties of each of the phases, and describes the

associated costs and benefits that we consider in MBal. The

techniques used in each of the MBal phases are beginning to

be employed in different existing systems, but individually

and in an ad hoc fashion. The novelty of MBal lies in the

coherent synthesis of the various load balancing techniques

into a holistic design that offers an automated end-to-end

system.

Figure 4 shows the state machine for seamlessly transi-

tioning between the different phases of our load balancer.

Each MBal server monitors the state of local workers by

keeping track of both: (1) object access metrics (reads and



Phase Key/Object replication (§3.2) Server-local cachelet migration (§3.3) Coordinated cachelet migration (§3.4)

Action replicate hot keys across servers migrate/swap cachelet(s) within a server migrate/swap cachelet(s) across servers

Features fine-grained (object/kv-pair) coarse-grained (cachelet/partition) coarse-grained (cachelet/partition)

proportional sampling integer linear programming (ILP) integer linear programming (ILP)

temporary (lease-based) temporary (lease-based) permanent

Benefit fast fix for a few hot keys fast fix for hot cachelet(s) global load balancing

Limitations home server bottleneck (for hot key writes) local optimization resource consumption

scalability for large hotspots convergence time

medium low high

Cost extra metadata (key-level) extra metadata (local cachelet-level) extra metadata (global cachelet-level)

extra space (duplicates) cross-server bulk data transfer

Table 2: Summary of load balancing phases of MBal. Note that cost levels (low/medium/high) represent relative costs with respect to

space/performance overhead.

writes) via sampling; and (2) cachelet popularity through

access rates. These statistics are collected periodically (us-

ing configurable epochs) and are used to perform an on-

line cost/benefit analysis to trigger appropriate load balanc-

ing phases. Rebalancing is triggered only if the imbalance

persists across a configurable epoch dependent number, four

in our implementation, of consecutive epochs. This helps to

prevent unnecessary load balancing activity while allowing

MBal to adapt to workload behavior shifts.

The collected information is then used to reason about

the following key design questions for each load balancing

phase of MBal: (1) Why is the phase necessary? (2) When

is the phase triggered and what operations are undertaken?

(3) What are the costs and benefits of the phase?

3.2 Phase 1: Key Replication

Replication of key/object offers a fine-grained mechanism

to mitigate load imbalance caused by a few extremely hot

keys. This is a quick fix for short ephemeral hotspots without

requiring expensive cross-server data movement.

Our key replication implementation is derived from

mechanisms used in SPORE [23]. Specifically, we develop

our proportional sampling technique for tracking hot keys

at worker granularity based on SPORE’s use of access fre-

quency and recency. Each worker has a list of other servers

(and hence other workers) in the MBal cluster. A worker

with a hot key (home worker) randomly selects another

server as a shadow server, and replicates the hot key to one

of the associated workers on the shadow server. Depending

on the hotness of a key, multiple replicas of the key can

be created to multiple shadow servers. Since the replicated

keys do not belong to any of the cachelets of the associated

shadow servers’ workers, these workers index the replicated

keys using a separate (small) replica hash table. Using a sep-

arate hash table also enables shadow workers to exclude the

replicated keys from being further replicated.

Upon accessing a replicated key at the home worker, a

client is informed about the location of the replicas. The

client can then choose any one of the replicas, which will

then be used to handle all of the client’s future read re-

quests for that key. Writes are always performed at the home

worker. Similarly as in SPORE [23], we support both syn-

chronous and asynchronous updates. Synchronous updates

have a performance overhead in the critical path, while asyn-

chronous updates offer only eventual consistency that may

result in stale reads for some clients. We leave the selection

to the users based on their application needs. Furthermore,

each replicated key is associated with a lease that can be re-

newed if the key continues to be hot or retired automatically

on lease expiration. Thus, the key replication phase provides

only temporary mitigation of a hotspot as the home workers

for keys remain fixed.

While key replication is effective in handling short ephemeral

hotspots consisting of a few keys, the approach requires

both clients and MBal workers to maintain extra state of

replicated keys (key locations, leases etc.). Replication also

entails the using expensive DRAM for storing duplicate

data. The approach also does not alleviate write-hot key

based hotspots in write-intensive workloads [46]. This is be-

cause all writes are performed through a key’s home worker

making the home a bottleneck. To handle these limitations,

multi-phased load balancer in MBal triggers other phases if

the number of replicated hot keys crosses REPLhigh or if

hotspots due to write-intensive workloads are observed.

3.3 Phase 2: Server-Local Cachelet Migration

Mitigating hotspots that consists of a large number of hot

keys spanning one or more cachelets entails redistribution

of the cachelets across different workers. Phase 2 represents

first of the two phases of MBal, which involve such mi-

gration of cachelets. In this phase, MBal attempts to han-

dle load imbalance at a server by triggering redistribution of

cachelets to other workers running locally within the server.

As shown by the state machine in Figure 4, Phase 2 is

triggered when there is high load imbalance between local

workers (measured by absolute deviation (dev)) i.e., there

exists idle or lightly-loaded local workers that can accom-

modate more load by swapping or migrating cachelets from

the overloaded workers. MBal uses Algorithm 1 to bring

down the load on the overloaded workers within an ac-

ceptable range, while not overwhelming the other lightly-

loaded workers. The algorithm uses Integer Linear Pro-



Algorithm 1: Server-local cachelet migration.

Input: no: number of overloaded workers,

nt: total number of local workers,

Setsrc: set of source workers (local),

Setdest: set of destination workers (local),

SERV ER LOADthresh: server overload threshold (e.g., 75%)

Output: Cachelet migration schedule {m}
begin

iter ← 0
while True do

if no/nt > SERV ER LOADthresh then
trigger Phase3
return NULL

if no == 1 then
{m} ←SolveLP1(Setsrc)

else if no ≥ 2 then
{m} ←SolveLP2(Setsrc, Setdest)

iter ← iter + 1
if {m} == NULL then

iter == MAX ITER ? return Greedy(Setsrc ,Setdest ) : continue

else
break

return {m}

Notation Description

Xk
ij 1 if cachelet k is migrated from worker i to worker j,

0 otherwise

Tj maximum permissible load on worker j2

Li
j load of cachelet i on worker j

L∗j total load on worker j

Lavg average load of all workers

M i
j memory consumed by cachelet i on worker j

M∗j total memory consumed by worker j

Mj total memory capacity of worker j

S set of workers involved in Phase 2

Sdest set of workers of destination cache involved in Phase 3

N number of workers

Table 3: Notations for the ILP model used in Phase 2 and Phase 3

of MBal load balancer.

gramming (ILP) to compute an optimal migration sched-

ule. We also ensure that the server itself is not overloaded

(SERV ER LOADthresh is exceeded) before triggering

Phase 2, and if so, Phase 3 is triggered instead. If ILP is not

able to converge, a simple greedy algorithm will be executed

eventually to reduce the dev.

We define two different objective functions in our linear

programming model for Phase 2. The goal of the first func-

tion is to minimize the number of migration operations with

a fixed source (home) worker, while that of the second func-

tion is to minimize the load deviation across all workers.

Specifically, objective (1) is to

2 We compute this experimentally based on Amazon EC2 instance type, and

the value is the same for all workers across servers.

minimize
∑

i

∑
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where a is the index of the fixed source worker thread.

Objective (2) is to

minimize
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∑
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ijL
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Both objectives are subject to the following constraints:

∀i, ∀j ∈ S : Xij = 0 or 1 , (6)

∀i ∈ S : 0 ≤
∑

j∈S\i

Xij ≤ 1 . (7)

Table 3 describes the notations used for representing the

above models. Constraints 2 and 3 are used to restrict the

load after migration on the source and destination workers

under a permissible limit (Tj), respectively. Similarly, con-

straint 5 restricts the load for each worker involved in op-

timizing objective (2). Both objectives share constraints 6

and 7, implying that migration decisions are binary and a

cachelet on a particular source worker can only be migrated

to one destination worker. Objective (1) is used when only

a single worker is overloaded on a MBal server, and objec-

tive (2) is used for all other cases. Given the long compu-

tation time required by objective (2) to finish, we relax the

objective by dividing the optimization phase into multiple

iterations. In each iteration, the algorithm picks at most two

overloaded threads as sources and two lightly-loaded ones

as destinations. This heuristic shortens the search space for

ILP, ensuring it does not affect overall cache performance

and still provide good load balance (shown in §4.2).

MBal adopts a seamless server-local cachelet migration

mechanism that incurs near-zero cost. Since each cache

server partitions resources into cachelets that are explicitly

managed by dedicated worker threads, server-local migra-

tion from one worker to another requires no data copying

or transfer overheads (all workers are part of the same sin-

gle address space). Only the owner worker of the cachelet

is changed. Similarly as in Phase 1, we use a lease-based

timeout for migrated cachelets, which means that a migrated

cachelet is returned to its original home worker when the

associated hotspot no longer persists. This helps address

ephemeral hotspots, while allowing for the cachelets to be

restored to their home workers with negligible overhead.



Clients are informed of migrated cachelets whenever the

home worker receives any requests about the cachelets.

Since we use leases, clients cache the home worker informa-

tion and update the associated mappings to the new worker.

Using the cached home worker information, clients can re-

store the original mapping after the lease expires.

While Phase 2 provides a lightweight mechanism to mit-

igate load imbalance within a server, its utility is limited

by the very nature of its local optimization goals. For cases

with server-wide hotspots and to provide long-term rebal-

ancing of cachelets across MBal cluster, coordinated migra-

tion management is required.

3.4 Phase 3: Coordinated Cachelet Migration

An overloaded cache server or lack of an available local

worker that can handle a migrated cachelet implies that

Phase 2 cannot find a viable load balancing solution, thus

Phase 3 is triggered. In MBal’s Phase 3, cachelets from one

cache server are offloaded to one or more lightly-loaded

servers in the cluster.

Algorithm 2: Coordinated cachelet migration.

Input: Global cache server stats array: VS ,

input source worker: src,

IMBthresh: Imbalance threshold

Output: Cachelet migration schedule VM

begin

iter ← 0

while dev(LOAD(src), LOAD(Sdest)) > IMBthresh

&& iter < MAX ITER do

Sdest ← min(VS) // get minimum loaded server

Vtemp ← SolveLP(src, Sdest)

if Vtemp == NULL then

Vtemp ← Greedy(src, Sdest)

VM ← VM ∪ Vtemp

iter ← iter + 1

if all cluster is hot or src still too hot then
return NULL // add new cache servers to scale out

return VM

Under Phase 3, an overloaded worker (src) notifies the

centralized coordinator to trigger load balancing across

cache servers. The coordinator periodically fetches statistics

from all cluster workers including cachelet-level informa-

tion about request arrival rate (load), amount of data stored

(memory consumption), and read/write ratio.

Algorithm 2 then utilizes these statistics to choose a target

server (Sdest) with the lowest load to redistribute cachelets

from the source overloaded worker to the target’s workers.

The output of the algorithm is a list of migration commands

each specifying a cachelet ID and the address of a corre-

sponding destination worker thread to which the cachelet

should be migrated. The commands are then executed by the

workers involved in the migration.

During each iteration, the algorithm selects the most

lightly-loaded destination server and creates a candidate list

of cachelets to migrate using an ILP routine whose objec-

tive is to minimize the gap between the load of source and

destination workers using Equation 8 as follows:

minimize
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where a is the index of the source worker thread, and

S′ = Sdest ∪ a.

Similar to Phase 2’s ILP, constraint 9 bounds the load

on any worker below a pre-specified permissible limit (Ti).

However, unlike Phase 2, data is actually transferred across

servers in Phase 3 coordinated migration. Thus, we need to

ensure that the destination server has enough memory capac-

ity to hold the migrated cachelets without causing extrane-

ous evictions. To this end, constraints 10 and 11 ensure that

the memory availability of the source and destination work-

ers is not exceeded.

Moreover, if the ILP does not converge, – in rare cases,

e.g., when the choice of a destination server is restricted

in each iteration, it may not be possible to satisfy both

the memory and load constraints – we employ a simple

greedy solution to reduce as much load as possible from the

overloaded worker.

MBal maintains consistency during migration by adopt-

ing a low-overhead Write-Invalidate protocol. We employ a

special migrator thread on each cache server for this purpose.

Instead of migrating the entire cachelet in a single atomic

operation, we migrate the tuples belonging to the selected

cachelet on a per-bucket basis. We use hash table based in-

dexes for cachelets. While keys in a bucket are being mi-

grated, the affected worker continues serving client requests

for the other buckets. Only the requests for the bucket under

migration are queued. Any UPDATE requests to existing keys

that have already been migrated result in invalidation in both

the destination (home after migration) and the source (home

before migration) hash table. The INSERT requests for new

items are treated as NULL operations and are directly sent to

backend store. This causes no correctness problems because

MBal like Memcached is a read-only, write through cache

and has no dirty data. The GET requests are serviced for the

data that is valid in the source hash table. Once the migra-

tion is complete, the source worker thread informs the coor-

dinator about the change in the cachelet mapping. In our de-



sign, the clients exchange periodic heartbeat messages with

the coordinator, and any change in cachelet mapping infor-

mation is communicated to the clients by the coordinator

as a response to these messages. The mapping change in-

formation only needs to be stored at the coordinator for a

maximum configurable period that is slightly longer than the

clients’ polling period. This has two benefits: (1) it guaran-

tees that all clients will eventually see the mapping changes

within a short period of time; and (2) the coordinator is es-

sentially stateless and only has to maintain the state informa-

tion for a short time (during migration of a cachelet). Hence,

after all active clients have updated their mapping tables, the

coordinator informs the source worker thread to delete any

metadata about its ownership of the transferred cachelets.

As evident by the design discussion, Phase 3 is the most

expensive load balancing mechanisms employed by MBal.

It serves as a last resort and is only activated when the

first two phases cannot effectively mitigate the impact of

load imbalance and hotspots persist. While the coordinator

does not play a role during normal operation, admittedly,

it can become a bottleneck for servicing the migration re-

quests, especially if a large number of servers in the cluster

are overloaded simultaneously (implying a need for adding

more servers in the cluster, which is beyond the scope of

the paper). Also, a failure of the coordinator during periods

of imbalance can cause hotspots to persist or cache servers

to maintain migration state longer (until the coordinator is

brought back up). While not part of this work, we plan to

exploit numerous existing projects [25, 41] in this domain to

augment our coordinator design to provide more robust fault

tolerance for Phase 3.

3.5 Discussion

While the techniques presented in this Section are applicable

in any (physical or virtualized) deployment of in-memory

caching clusters, use of virtualized infrastructure in the cloud

is likely to demonstrate higher load imbalance and perfor-

mance fluctuations due to the factors such as resource shar-

ing across multiple tenants, compute/memory resource over-

subscription, etc. Hence, MBal focuses on providing a robust

in-memory caching framework for the cloud without directly

dealing with multi-tenancy and resource allocation issues,

which are beyond a cloud tenant’s control.

4. Evaluation

MBal uses a partitioned lockless hash table as its core data

structure. We support the widely used Memcached proto-

col (with API to support GET, SET, etc.). To this end, we

extend libmemcached [5] and SpyMemcached [10] to sup-

port client-side key-to-thread mapping. The central coordi-

nator is written in Python and uses Memcached protocol

(pylibmc [8]).

We present the evaluation of MBal using a local testbed

and a 20-node cluster on Amazon EC2 (c3.large). We eval-

uate the cache performance on 8-core and 32-core physical

commodity servers, examine individual phases of MBal, and

finally study the end-to-end system performance on a cloud

cluster.

4.1 MBal Performance: Normal Operation

In our first set of experiments, we evaluate our design

choices in building a lockless key-value cache (§2). We

also compare the performance of MBal with existing sys-

tems such as Memcached (v1.4.19), Mercury [21] and their

variants. Unless otherwise stated, we perform all tests on a

dual-socket, 8-core 2.5 GHz machine with 10 Gbps Ether-

net and 64 GB DRAM. Also, we enabled 2 MB hugepage

support in our tests to reduce TLB misses.

Microbenchmark Performance To highlight the bottle-

necks inherent in the designs of different key-value caches,

we perform our next tests on a single machine. Here, each

worker thread generates its own load, and there are no re-

mote clients and thus no network traffic. First, we use two

workloads, one with GET-only and the other with SET-only

requests. We use a 5 GB cache, the size of which is larger

than the working set of the workloads (≈ 1150 MB), thus

avoiding cache replacement and its effects on the results.

Each workload performs a total of 32 million operations

using fixed-size key-value pairs (10 B keys and 20 B val-

ues)3. For the GET workload, we pre-load the cache with 40

million key-value pairs, while the SET workload operates

without pre-loading. The key access probability is uniformly

distributed in both workloads. For fair comparison, we set

the thread-local memory buffer to be the same size (256 MB)

in both MBal and Mercury.

Figure 5(a) and Figure 5(b) show the throughput in terms

of 106 QPS (MQPS) for the three systems. We observe that

MBal’s performance scales as the number of threads in-

creases for both GET and SET workloads. Mercury, which

uses fine-grained bucket locking, performs better than Mem-

cached that suffers from synchronization overheads due to

its coarse-grained locks. However, Mercury is not able to

match the throughput of MBal due to MBal’s end-to-end

lockless design that removes most synchronization bottle-

necks and allows independent resource management for

each thread. Thus, for the GET workload with six threads,

MBal is able to service about 2.3× more queries than Mer-

cury, as threads in Mercury still contend for bucket-level

locks.

In case of SET operations, whenever a key-value pair is

overwritten, the old memory object has to be freed (pushed

to a free pool). Under MBal, we garbage-collect this mem-

ory back to the thread-local free memory pool (recall that

MBal transfers memory from thread-local to global free

pool in bulk only under the conditions discussed in §2.4).

In contrast, Mercury pushes the freed memory back into the

3 Our experiments with different (larger/smaller) key and value sizes show

similar trends, hence are omitted due to space constraints.
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Figure 5: Microbenchmark performance.
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Figure 7: Complete MBal system performance under varying GET/SET ratios. For multi-instance Memcached (Multi-inst Mc), the

number of threads represents number of instances, i.e., there is one worker thread per instance.

global memory pool similarly as in Memcached. This intro-

duces another synchronization overhead for write-dominant

workloads in addition to the lock contention on the hash

table. Thus, by mitigating both of these aspects, MBal is

able to provide about 12× more throughput on the insert

path for the eight workers case. In order to evaluate the

impact of NUMA-based multi socket machines on cache

performance, we also perform experiments on MBal with

NUMA-awareness disabled. Under an 8-thread setup, MBal

with NUMA-awareness achieves about 15% and 18% higher

throughput for GET and SET operations, respectively, com-

pared to MBal with no NUMA support (MBal no numa). The

scaling trends and the widening performance gap between

the studied systems as concurrency is increased (Figure 5)

shows the benefits of MBal’s lockless design and memory

management policies.

Finally, we run a write-intensive workload on a 1 GB

cache that is smaller than the working set, where about 15%

GETs miss in the cache. Each miss triggers a SET to insert.

Figure 6 shows that MBal with thread-local memory pools

achieves about 5 MQPS. On the other hand, MBal with only

global memory pool (MBal global lru) achieves similar

performance to Mercury and Memcached, i.e., 0.5 MQPS,

which is about an order of magnitude lower than MBal with

thread-local pools (MBal thread-local lru).

Complete Cache System Performance To test end-to-end

client/server performance under MBal, we use a setup of five

machines (1 server, 4 clients) with the same configuration as

in §4.1. To amortize network overheads, we use MultiGET

by batching 100 GETs. We use workloads generated by

YCSB [15] using varying GET/SET ratios. Each workload

consists of 8 million unique key-value pairs (10 B key and

20 B value) with 16 million operations generated using Zip-

fian key popularity distribution (Zipfian constant: 0.99). This

setup helps us simulate real-world scenarios with skewed ac-

cess patterns [12]. Each worker maintains 16 cachelets.

As shown in Figure 7, not only does MBal’s performance

scale with the number of worker threads for read-intensive

workloads, it is also able to scale performance across work-

loads that are write intensive. For example, for a workload

with 25% writes (Figure 7(b)), MBal with 8 threads outper-

forms both Memcached and Mercury by a factor of 4.7 and

2.3, respectively. MBal can scale up to the number of cores

in the system (8 cores) for all workloads, while Memcached

fails to scale with increased concurrency. This shows that

as interconnects become faster, the design choices of Mem-

cached will start to affect overall performance and MBal of-

fers a viable alternative.

Impact of Dynamic Memory Allocation During our tests,

we found that for Memcached to scale, we need to run mul-

tiple single-threaded instances (Multi-inst Mc). However,

in our opinion, not only is such a deployment/design qual-

itatively inferior (§2.5), but as shown in Figure 8, it incurs

significant overhead. For example, 8-instance Multi-inst

Mc(malloc) achieves 8% less QPS on average (with value

sizes ranging from 32 B to 1024 B) compared to Multi-inst

Mc(static) due to the overhead of malloc. This overhead

increases to 13% when we replace our optimized MBal slab
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Figure 9: MBal scalability on a dual-socket, 32-core, 2 GHz ma-

chine. Workloads (16 B key, 32 B value) are generated from three

32-core machines in a LAN with 10 GbE interconnect, using

memaslap with MultiGET enabled. Each workload runs for 60 sec-

onds. The Y-axis shows per-core throughput; note the horizontal

line shows ideal scalability.

allocator with malloc. For multi-threaded MBal, jemalloc

does not scale due to lock contention.

Scalability on Many-core Machine Figure 9 demonstrates

the scalability of MBal on a many-core machine. For both

read-intensive (90% GET) and write-intensive (50% GET)

workloads MBal achieves 18.6× and 17.2× the one-core

performance, respectively, for 32 cores. The factors that limit

the single-machine scalability are kernel packet processing

and network interface interrupt handling. This is observed as

a large fraction of CPU cycles being spent in system mode

and servicing of soft IRQs4. As observed, both Memcached

and Mercury do not scale well for write-intensive workload

due to cache lock contention.

4 There are a number of existing works [28, 29] that we can leverage to

further improve the multi-core scalability.

4.2 MBal Performance: Load Balancer

Experimental Setup We perform our next set of tests on a

real Amazon EC2 cluster with 20 c3.large instances acting

as cache servers. Clients are run on a separate cluster with up

to 36 c3.2xlarge instances—that are in the same availability

zone us-west-2b—as the cache servers. We provision both

the client and server cluster instances on shared-tenant hard-

ware. Similarly, the central coordinator of MBal’s Phase 3

is run on a separate c3.2xlarge instance, also in the same

availability zone as the servers and clients.

4.2.1 Performance of Individual Phases

Workloads The workloads are generated using YCSB and

consists of 20 million unique key-value tuples (24 B keys

and 64 B values). Each client process generates 10 million

operations using the Zipfian distribution (Zipfian constant =

0.99). The workload is read-intensive with 95% GETs and

5% SETs. We run one YCSB process using 16 threads per

client, and then increase the number of clients until the cache

servers are fully saturated.

Phase 1: Key Replication Here, we only enable Phase 1

of MBal, and use a key sampling rate of 5%. Figure 10

depicts the average 99th percentile read tail latency and

aggregated throughput trade-off observed under our work-

load on different system setups. Memcached, Mercury, and

MBal (w/o load balancer) represent the three setups of

Memcached, Mercury, and MBal, respectively. MBal (Unif)

shows the scenario with uniform workload (under MBal) and

provides an upper bound for the studied metrics. We ob-

serve that without key replication support, MBal achieves

only about 5% and 2% higher maximum throughput com-

pared to the corresponding case with the same number of

clients for Memcached and Mercury, respectively. This is

because scaling-out the caches with associated virtualization

overhead diminishes the benefits of vertical (scale-up) scala-

bility on each individual server. However, when hot keys are

replicated to one shadow server in MBal (P1) (key replica

count = 2), the maximum throughput is observed to improve

by 17%, and the 99th percentile latency by 24% compared to

the case with no replication. Thus, MBal is able to effectively

offload the heat for hot keys, and mitigate the performance

bottleneck observed in Memcached and Mercury.

Phase 2: Server-Local Cachelet Migration Next, we only

turn on the Phase 2 of MBal and study its performance un-

der our workloads. In Figure 10 we observe that, compared

to the baseline MBal without server-local cachelet migra-

tion, Phase 2 achieves 8% higher maximum throughput and

14% lower tail latency. By migrating entire cachelets to less

loaded threads, we are better able to mitigate the skew in the

load. This not only helps to increase the throughput, but also

improves overall latency characteristics as well. Moreover,

our design ensures that the migration is effectively achieved

by a simple modification of a pointer within the server, and

thus incur little overhead.
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Phase 3: Coordinated Cachelet Migration Figure 10

shows the results with only Phase 3 enabled. We observe

an improvement in the maximum throughput of up to 20%

and 14%, compared to Memcached and MBal (w/o load

balancer), respectively. Coordinated cachelet migration

also decreases the average 99th percentile tail read latency

by 30% and 24% compared to Memcached and MBal (w/o

load balancer), respectively. On the flip side, the migration

incurs a high cost. We observed that migrating one cachelet

at MBal cache server’s peak load takes 5 to 6 seconds on

average. This is the root cause of the long convergence time

of Phase 3. Moreover, the CPU utilization on the central

coordinator was observed to be 100% when doing the ILP

computation. This shows that migration is an effective way

to mitigate load imbalance. However, the increasing traffic

due to migration and the increased CPU load on the central-

ized coordinator suggest that the approach should only be

adopted for sustained hotspots and that too as a last resort.

Workload Characteristics Application Scenario

WorkloadA 100% read, Zipfian User account status info

WorkloadB 95% read, 5% update, Photo tagging

hotspot (95% ops in 5% data)

WorkloadC 50% read, 50% update, Session store recording

Zipfian recent actions

Table 4: Workload characteristics and application scenarios used

for testing the multi-phase operations of MBal.

As part of our future work, we are exploring techniques for

developing a hierarchical/distributed load balancer to reduce

the cost of such migration.

Trade-off Analysis We have seen that for the same work-

load, each of the three phases of MBal are able to im-

prove the throughput and tail latency to some extent. In our

next experiment, we study the trade-offs between the dif-

ferent phases. Figure 11 plots the breakdown of read la-

tency experienced under different cache configurations. The

key replication of Phase 1 provides randomized load balanc-

ing by especially focusing on read-intensive workloads with

Zipfian-like key popularity distributions. Phase 2’s server-

local cachelet migration serves as a lightweight intermedi-

ate stage that offers a temporary fix in response to chang-

ing workload. The limitation of Phase 2 is that it cannot

offload the “heat” of overloaded cache servers to a remote

server that has spare capacity. This is why the performance

improvement under Phase 2 is slightly less than that under

Phase 1. For instance, Phase 1 is 4.2%, 5.1% and 4.4% bet-

ter for 90th, 95th and 99th percentile latency than Phase 2,

respectively, as shown in Figure 11. Phase 3 relies on heavy-

weight coordinated cachelet migration—if other phases can-

not achieve the desired load balance—which can optimally

re-distribute load across the whole cluster and provides a

better solution than the randomized key replication scheme.

4.2.2 Putting It All Together

In our next experiment, we evaluate the adaptivity and ver-

satility of MBal with all three phases enabled. We use a

dynamically changing workload for this test, which is gen-

erated by YCSB and is composed of three sub-workloads

shown in Table 4. The sub-workloads are provided by the

YCSB package for simulating different application scenar-

ios. Note that, we adjust WorkloadB to use YCSB’s hotspot

key popularity distribution generator instead of the original

Zipfian distribution generator. These workloads also resem-

ble characteristics of Facebook’s workloads [46].

Each sub-workload runs for 200 seconds and then switches

to the next one. To get an upper-bound on performance, we

also run the three workloads under uniform load distribution.

We conduct two baseline runs, one under Memcached and

the other under MBal with load balancer disabled. To quan-

titatively understand how each single phase reacts under the

different workload characteristics of this test, we first per-

form three tests, each with one single phase enabled (simi-
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the multi-phase test.

larly as for individual phase tests). Then we perform a fourth

run with all three phases enabled to study the end-to-end be-

havior of MBal. Figure 12 plots the 90th percentile read tail

latency change5. Next, Figure 13 depicts the breakdown of

phase triggering events that corresponds to the execution of

the multi-phase test of Figure 12. We see that MBal reacts

quickly to workload changes and employs an appropriate

load balancing strategy accordingly.

Adaptivity and Versatility Under WorkloadA, Phase 1 and

Phase 2 stabilize after around 70 s and 50 s, respectively,

while it takes longer, i.e., around 150 s, for Phase 3 to sta-

bilize the latency. Phase 3 eventually achieves slightly lower

latency, compared to Phase 1, though only a limited num-

ber of cachelets are migrated. This is because, as observed

before, Phase 3’s optimal migration solutions perform better

than randomized key replication of Phase 1. With all three

phases combined, the clients see steady reduction of latency

in a more smooth fashion. This is mainly due to Phase 2 serv-

ing as an effective backup approach for cache servers where

key replication cannot gracefully bring the load back down

to normal. As observed in Figure 13, Phase 3 is eventually

triggered on a small number (≈ 12% of all the triggered

events) of servers where all worker threads are overloaded.

Thus, the impact of the overhead of Phase 3 is reduced by

the use of other phases. These results demonstrate the effec-

5 We observed a similar trend for write latency.

tiveness of a multi-phase load balancing mechanism where

the phases complement each other.

WorkloadB begins at 200 s. At this time, Phase 2’s

scheme immediately starts to re-balance the load. Note

that Phase 1’s effectiveness dramatically diminishes dur-

ing this sub-workload, since hotspot distribution generator

uniformly generates requests that are concentrated in 5%

of all tuples. The effect of this is that the load distribution

across the cache cluster is semi-uniform, whereas within

each server, worker threads see non-uniformly distributed

load. Phase 2 captures this behavior and promptly adapts

the latency accordingly. Note that, if Phase 3 were the only

available approach, it would eventually improve latency, but

with a significantly long convergence duration. However,

in this case, Phase 2 is triggered and ends up adapting the

latency throughout the duration of WorkloadB. This result

demonstrates that not only can Phase 2 serve as an interme-

diate and complementary phase for smoothing out latency

variations, it can also serve as the main load balancing solu-

tion when necessary under some scenarios.

WorkloadC is a write-heavy sub-workload that starts at

400 s. Once again, Phase 1 is unable to detect hotspots as its

key tracking counter uses weighted increments on read and

weighted decrements on writes. This is because otherwise

the overhead of propagating the writes to the key replicas

would outweigh the benefits of load balancing. Here, Phase 2

can in itself effectively lower down the latency to some

extent. However, Phase 3 kicks in for some of the servers

to ensure that the system as a whole does not suffer from

load imbalance. Thus, MBal is able to achieve its overall

load-balancing goals.

Figure 13 shows that, unlike Phase 1 and Phase 2 that

are actively invoked to balance the load throughout the

three workloads, only 13% (on average) of the load balanc-

ing events involve Phase 3. This further demonstrates that

Phase 3 is only sparingly used and thus is not the bottleneck

in our load balancing framework.



5. Related Work

High Performance In-Memory Key-Value Stores Improv-

ing performance of in-memory key-value storage systems

is the focus of much recent research [19, 35, 37, 45].

Specifically, systems such as Memcached on Tilera [13],

Chronos [30] and MICA [36] use exclusively accessed per-

core partitions to eliminate global lock contention. Similarly,

MBal exploits per-core partitioning to improve performance.

MBal, in addition, provides load balancing across servers as

well as the ability to scale-up to fully exploit the multi-core

architecture.

Storage/Memory Load Balancing Distributed hash tables

(DHT) have been extensively used to lower the bandwidth

consumption of routing messages while achieving storage

load balancing in peer-to-peer networks. Virtual server [17]

based approaches [22, 32, 43] have also been studied in this

context. MBal differs from these works in that it focuses on

adaptive and fast-reactive access load balancing for cloud-

scale web workloads.

Proteus [34] is a dynamic server provisioning frame-

work for memory cache cluster, which provides determin-

istic memory load balancing under provisioning dynamics.

Similarly, Hwang et al. [27] proposed an adaptive hash space

partitioning approach that allows hash space boundary shifts

between unbalanced cache nodes without further dividing

the hash space. The associated framework relies on a central-

ized proxy to dispatch all requests from the web servers; and

the centralized load balancer is actively involved in trans-

ferring data from old cache nodes to new ones. In contrast,

MBal considers the memory utilization for cross-server mi-

gration for access load balancing. MBal also has the benefit

of avoiding a centralized component that is inline with the

migration; the centralized coordinator of MBal is used for

directing only global load balancing when needed.

Access Load Balancing Replication is an effective way

for achieving access load balancing. Distributed file sys-

tems such as Hadoop Distributed File System (HDFS) [44]

place block replicas strategically for fault tolerance, better

resource efficiency and utilization. At a finer granularity,

SPORE [23] uses an adaptive key replication mechanism to

redistribute the “heat” on hot objects to one or more shadow

cache servers for mitigating the queuing effect. However,

workloads can develop sustained and expanding unpre-

dictable hotspots (i.e., hot shards/partitions) [24], which in-

crease the overhead of maintaining key-level metadata on

both the client and server side. In contrast, MBal is effective

in handling such load imbalance as it employs a multi-phase

adaptation mechanism with different cost-benefits at differ-

ent levels.

Research has looked at handling load imbalance on the

caching servers by caching a small set of extremely popu-

lar keys at a high-performance front-end server [20]. While

Fan et al. [20] focus on achieving load balancing for an

array of wimpy nodes by caching at a front-end server,

Zhang et al. [47] propose hotspot redirection/replication us-

ing a centralized high-performance proxy placed in front of a

cluster of heterogeneous cache servers. MBal tries to handle

load imbalance within the existing caching servers without

introducing another layer of indirection or other centralized

bottlenecks. The centralized coordinator in MBal is spar-

ingly used only when other phases are not sufficient to han-

dle the hotspots. In our future work, we plan to investigate

the use of distributed/hierarchical coordinators to further re-

duce the bottleneck of our existing coordinator if any.

Chronos [30] uses a greedy algorithm to dynamically re-

assign partitions from overloaded threads to lightly-loaded

ones to reduce Memcached’s mean and tail latency. Similar

to Chronos, MBal also adopts a partition remapping scheme

as a temporary fix to load imbalance within a server. How-

ever, MBal has a wider scope in handling load imbalance,

covering both a single server locally, as well as globally

across the whole cache cluster.

Memcached community has implemented virtual buck-

ets [9] as a library for supporting replication and online

migration of data partitions when scaling out the cache

cluster. Couchbase [16] uses this mechanism for smoothing

warm-up transitioning and rebalancing the load. MBal uses

a similar client-side hierarchical mapping scheme to achieve

client-side key-to-server remapping. However, MBal differs

from such work in that it uses cachelet migration across

servers as a last resort only, and preserves the distributed

approach of the original Memcached except in the small

number of cases when the global rebalancing is necessitated.

6. Conclusion

We have presented the design of an in-memory caching tier,

MBal, which adopts a fine-grained, horizontal per-core par-

titioning mechanism to eliminate lock contention, thus im-

proving cache performance. It also cohesively employs dif-

ferent migration and replication techniques to improve per-

formance by load balancing both within a server and across

servers to re-distribute and mitigate hotspots. Evaluation for

single-server case showed that MBal’s cache design achieves

12× higher throughput compared to a highly-optimized

Memcached design (Mercury). Testing on a cloud-based 20-

node cluster demonstrates that each of the considered load

balancing techniques effectively complement each other,

and compared to Memcached can improve latency and

throughput by 35% and 20%, respectively.
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