
Concurrency-Informed Orchestration for Serverless
Functions

Qichang Liu
University of Virginia

Charlottesville, Virginia, USA
nzc5ve@virginia.edu

Yue Cheng
University of Virginia

Charlottesville, Virginia, USA
mrz7dp@virginia.edu

Haiying Shen
University of Virginia

Charlottesville, Virginia, USA
hs6ms@virginia.edu

Ao Wang
Alibaba Group

Hangzhou, Zhejiang, China
shenlan.wa@alibaba-inc.com

Bharathan Balaji
Amazon

Seattle, Washington, USA
bhabalaj@amazon.com

Abstract
Cold start delays are a main pain point for today’s FaaS
(Function-as-a-Service) platforms. A widely used mitigation
strategy is keeping recently invoked function containers
alive in memory to enable warm starts with minimal over-
head. This paper identifies new challenges that state-of-the-
art FaaS keep-alive policies neglect. These challenges are
caused by concurrent function invocations, a common FaaS
workload behavior. First, concurrent requests present a trade-
off between reusing busy containers (delayed warm starts)
versus cold-starting containers. Second, concurrent requests
cause imbalanced evictions of containers that will be reused
shortly thereafter. To tackle the challenges, we propose a
novel serverless function container orchestration algorithm
called CIDRE. CIDRE makes informed decisions to specula-
tively choose between a delayed warm start and a cold start
under concurrency-driven function scaling.CIDRE uses both
fine-grained container-level and coarse-grained concurrency
information to make balanced eviction decisions. We evalu-
ate CIDRE extensively using two production FaaS workloads.
Results show that CIDRE reduces the cold start ratio and
the average invocation overhead by up to 75.1% and 39.3%
compared to state-of-the-art function keep-alive policies.

CCS Concepts: • Computer systems organization→ Ar-
chitectures; Distributed architectures; Cloud computing;

Keywords: CloudComputing; Serverless Computing; Function-
as-a-Service; Autoscaling; Container Orchestration; Caching

ACM Reference Format:
Qichang Liu, Yue Cheng, Haiying Shen, Ao Wang, and Bharathan
Balaji. 2025. Concurrency-Informed Orchestration for Serverless
Functions. In Proceedings of the 30th ACM International Conference

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
ASPLOS ’25, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1079-7/2025/03
https://doi.org/10.1145/3676641.3716253

on Architectural Support for Programming Languages and Operating
Systems, Volume 2 (ASPLOS ’25), March 30-April 3, 2025, Rotterdam,
Netherlands. ACM, New York, NY, USA, 15 pages. https://doi.org/
10.1145/3676641.3716253

1 Introduction
Serverless computing enables building and scaling applica-
tions by breaking monolithic applications into fine-grained
functions [32]. Developers supply function logic while the
serverless provider performs the tasks of provisioning, scal-
ing, and caching backend servers on which the functions exe-
cute [28]. Serverless computing has become awell-established
paradigm, with FaaS (Function-as-a-Service) offerings widely
adopted in commercial platforms (e.g., AWS Lambda [10],
Azure Functions [11]) and supported by open-source frame-
works (e.g., OpenWhisk [8], Knative [2], OpenLambda [44]).

FaaS workloads are fundamentally different from tradi-
tional computing services. Serverless functions are ephemeral
and typically have short execution time, ranging from mil-
liseconds (ms) to seconds [49]. The transient nature of func-
tion execution poses significant challenges to FaaS provisioning
decisions. Serverless functions are executed in isolated sand-
box environments such as virtual machines (VMs) [4] and/or
containers [43, 57]. A function startup process involves down-
loading and installing the environment (OS image, language
runtime, and dependencies) before the function code can be
executed. This “cold start penalty” can be substantial com-
pared to function execution time. It may experience delays up
to two orders of magnitude longer than a warm start [23, 52]
before function execution begins, ultimately affecting end-
to-end application performance and user experience.

Another challenge is that FaaS workloads are highly con-
current [6, 18, 19, 53]. It is not uncommon for a single func-
tion to spike up to thousands of requests concurrently [34].
To sustain the high concurrency, FaaS platforms provision
many containers replicated from the same function deploy-
ment [16, 53]. This workload behavior further exacerbates
the impact of cold starts on function invocation overhead.

A straightforward approach to alleviating cold starts is to
keep invoked function containers alive in host memory for a
configurable period of time [27, 49, 54, 55, 63]. By doing so,

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3676641.3716253
https://doi.org/10.1145/3676641.3716253
https://doi.org/10.1145/3676641.3716253

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Qichang Liu, Yue Cheng, Haiying Shen, Ao Wang, and Bharathan Balaji

subsequent function invocation requests can directly execute
within the already-initialized containers, thereby reducing
startup latency. Caching is one of the most well-studied prob-
lems [3, 12, 25, 38, 39] in online computation. State-of-the-
art function keep-alive policies such as FaasCache [27] and
OpenFaaS [42] treat keep-alive as a traditional caching prob-
lem. Specifically, a caching-based keep-alive policy treats a
warm function as a cached object, a warm function execution
as a cache hit, and reclaiming a warm function as evicting an
object from the cache, with objectives of maximizing warm
starts (hits) and minimizing execution delay.

In this paper, by analyzing production FaaS workloads, we
identify challenges that the state-of-the-art (SOTA) function
keep-alive policies neglect. These challenges are caused by
concurrent function invocations, a common FaaS workload
behavior. Specifically, we make two key observations:
• Delayed warm starts: FaaS concurrency introduces a
new tradeoff between reusing a busy warm container (i.e.,
a delayed warm start that incurs a queuing delay) versus
creating a new container (that incurs a cold start delay).
Existing FaaS platforms neglect the subtle opportunity to
exploit busy warm containers in the face of concurrent
requests. This oversight leads to excessive cold starts and
more containers created, affecting the overall performance.
• Imbalanced evictions: FaaS concurrency causes imbal-
anced, bulk evictions of containers that might be soon
reused. Traditional caching-based keep-alive policies fail
to accurately capture fine-grained container-level and coarse-
grained function-level behaviors. Ill-suited priorities suffer
suboptimal ordering of warm containers, resulting in less-
informed eviction decisions and ultimately contributing
to higher function invocation overhead.
To address the challenges, based on the observations, we

propose a novel serverless function container orchestration
algorithm called concurrency-informed delayed reuse and
eviction (CIDRE). CIDRE synergies two innovative and effec-
tive concurrency-aware orchestration policies listed below to
inform function container orchestration decisions through-
out the entire lifecycle, from function scaling to eviction.
• A better function scaling policy that maximizes the
utilization of warm containers. Informed by an intelli-
gent speculative scaling policy, CIDRE reuses busy warm
containers whenever it can reduce invocation delays. By in-
telligently deciding whether to (1) reuse a busy warm con-
tainer, (2) issue a cold start, or (3) do both simultaneously—
a techniquewe call conditional speculative scaling—CIDRE
optimizes function scaling to minimize functions’ invoca-
tion overhead and reduce the number of cold starts.
• A better cache eviction policy that minimizes unnec-
essary warm container evictions.CIDRE uses both fine-
grained container-level information and coarse-grained
function-level information to determine which warm con-
tainers should be replacedwith cold starts to avoid evicting
containers that will be reused shortly.

Scheduler

Worker1 Worker2 Worker3

Fn1 Fn2 Fn3

Fn1 Fn3 Fn1 Fn1 Fn4

Warm Cold Cold IdleWarm Warm

Function

cache
Fn2Fn2

Cold

Figure 1. Function invocation process. In this example, four func-
tion containers are cached, with three being actively used and one
in the idle state. Concurrent invocation requests to Function 1 (Fn1)
result in two warm starts (hits) and one cold start (miss), while
concurrent invocation requests to Fn2 see two cold starts.

We make the following contributions in this paper.
• We conduct comprehensive analyses on production FaaS
workloads and identify the challenges and the limitations
of traditional-caching-based function keep-alive policies
to address the challenges.
• We present a new tradeoff between delayed warm starts
and cold starts, and the notion of balanced evictions.
• We propose CIDRE with two effective techniques: a specu-
lative scaling policy and a concurrency-informed priority
eviction policy. To minimize invocation overhead, CIDRE
reuses busy containers whenever desirable during func-
tion scaling and uses comprehensive workload knowledge
to inform eviction decision.
• We implement CIDRE in OpenLambda [30, 44] and evalu-
ate CIDRE using production FaaS traces from Azure Func-
tions [49] and Alibaba Cloud Function Compute (FC) [1].
Results show that CIDRE reduces the cold start ratio and
the average invocation overhead by up to 75.1% and 39.3%
compared to SOTA FaaS keep-alive solutions.

Real-World Impact and Artifact Availability. CIDRE’s
speculative scaling has received adoption and is deployed
in production at Alibaba Cloud FC. CIDRE is open-sourced
and available at: https://github.com/nzc5ve/cidre_asplos25.

2 Background and Motivation
2.1 Overview of FaaS

Function Deployment and Invocation. A user deploys a
serverless function by pushing function code to a function
registry. A deployed function can be invoked, e.g., through
an HTTP URL. Each invoked function runs in a sandbox
environment, e.g., a container [22, 29] or a VM [4]. Without
loss of generality, we assume containers as the underlying
sandbox technique for function execution and isolation.
Function Lifecycle. A FaaS platform typically consists of a
scheduler and a cluster of workers (see Figure 1). Function
invocation requests are forwarded to a cluster of servers
through the scheduler. Each server in the cluster runs a
worker which is responsible for managing the lifecycle of
containers hosted on that server. Upon receiving multiple
concurrent invocation requests, the worker starts multi-
ple containers of the function to serve the requests (i.e.,

https://github.com/nzc5ve/cidre_asplos25

Concurrency-Informed Orchestration for Serverless Functions ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

10 2 100 102

Ratio of
(cold start latency / exe time)

0.0

0.5

1.0

CD
F

Azure
(f=1)
Azure
(f=2)
Azure
(f=3)
FC

Figure 2. Distribution of the
cold start latency to function ex-
ecution time ratio.

101 103 105

Function concurrency
[# reqs / min]

0.0

0.5

1.0

CD
F

Azure Functions
Alibaba Cloud FC

Figure 3. Function concurrency
CDFs (each point in the curve:
𝑟𝑒𝑞𝑠/𝑚𝑖𝑛 of a function).

concurrency-driven container scaling). The cold start process
involves downloading and installing the container image,
language runtime, and dependencies of the function before
the function code can be executed. When a function finishes
execution, the worker may choose to keep its containers alive
in the server’s memory for a short period of time. A warm
start incurs a much smaller invocation overhead, as it reuses
an already provisioned container for request execution.

2.2 Real-World Workload Analysis

Quantifying Cold Start Overhead.We sampled 1, 267 cold-
started function invocations from a production FaaS work-
load collected in Alibaba Cloud FC. In the FC production en-
vironment, a cold start refers to the process of starting a new
container. This includes downloading/loading the container
image, initializing the language runtime, loading the func-
tion code and user data, and establishing any network/DB
connections. A warm start occurs when a function request
is executed in an available container. A warm start skips
image loading and runtime initialization butmay still involve
a warmup phase. A warmup phase during a warm start can
include tasks like JIT compilation, ML model downloading,
and establishing connections, which are request-driven.
Figure 2 shows the ratio of cold start latency to execu-

tion time. Among all cold starts, 40.4% of requests have a
ratio greater than 1 with non-trivial invocation overhead.
We also randomly sampled 750 unique functions from Day
1 of the Azure Functions workload [49]. The full trace con-
tains function invocation requests of 82, 375 unique func-
tions spanning 14 days. Given that the original dataset lacks
information about cold starts, we calculated the estimated
cold start latency by applying one of three scaling factors,
1𝑚𝑠/𝑀𝐵, 2𝑚𝑠/𝑀𝐵, and 3𝑚𝑠/𝑀𝐵, to the average allocated
memory [52]. We found that the estimated cold start over-
head follows the same distribution as that of the FC trace,
suggesting a huge impact of cold start cost on the end-to-end
function performance and user experience.
Quantifying Function-level Concurrency. Concurrent
invocation requests are common in FaaS applications such
as stateless image processing [48] and burst-parallel, stateful
workflow processing [6, 26, 31]. Concurrent requests tar-
get the same function and are often issued at roughly the
same time, leading to the creation of multiple containers

Timeline

C0

T0
(R0)

T1
(R1)

Execute R0

C1

te

Provision C1

tp

tq

1 2 3a 3b

Execute R1

Execute R1 A delayed

warm start

A cold start

Figure 4. Concurrent invocation requests (𝑅0 and 𝑅1) to the same
function 𝐹 present a tradeoff. 1: 𝑅0 arrives at timestamp 𝑇0 and
a warm container 𝐶0 is already kept alive to directly serve 𝑅0; it
takes 𝑅0 a duration of 𝑡𝑒 to execute. 2: A concurrent request 𝑅1 to
the same function arrives at 𝑇1, where 𝑇1 −𝑇0 < 𝑡𝑒 . 3: Serving 𝑅1
involves a decision making. 3a: reusing the busy container 𝐶0 will
incur a queuing delay of 𝑡𝑞 ; 3b: provisioning a new container 𝐶1
to serve 𝑅1 will incur a cold start latency of 𝑡𝑝 . Then, the optimal
decision is to reuse 𝐶0 as 𝑡𝑞 < 𝑡𝑝 .

in one or multiple servers (Fn1 in Figure 1). To quantify
this, we measured the request concurrency of a 30-minute
FC workload. As shown in Figure 3, the {90𝑡ℎ%-ile, 99𝑡ℎ%-
ile} concurrency is {120, 4,482}, respectively, suggesting that
real-world production FaaS workloads are highly concurrent.
The sampled set of 750 functions in the Azure Functions
workload exhibit a similar distribution pattern, although
the concurrency level of Azure Functions is slightly lower
than that of Alibaba Cloud FC. Since the Azure traces only
provide coarse-grained, minute-level concurrency informa-
tion, we modeled second-level concurrency by following the
concurrency distribution from FC traces.

2.3 Problems with Concurrent Invocation Requests

New Tradeoff.We find that concurrent invocations to the
same function introduce a new tradeoff as illustrated in Fig-
ure 4: reusing a busy container that is actively serving a
request incurs a queuing delay, while provisioning a new
container introduces a cold start latency. In the example
shown in Figure 4, invocation request 𝑅1 would have waited
for an extra duration of 𝑡𝑝 − 𝑡𝑞 if the scheduler decides to
provision a new container 𝐶1 and waits for 𝐶1 to be fully
initialized before executing 𝑅1.
Traditional Caching Models. A caching policy is an algo-
rithm designed to determine, given a cache size and a work-
load of object access requests, whether or not to admit a new
object into the cache upon a miss, i.e., the admission policy,
and if so, which object to evict, i.e., the eviction or replace-
ment policy. Caching policy targets to achieve a particular
objective, e.g., to minimize the miss ratio or to maximize
the hit ratio. Existing FaaS platforms model the function
keep-alive problem as a classic caching problem [27, 42].
ProblemswithCaching-basedKeep-Alive.The new trade-
off subverts the expectation of traditional-caching-based
keep-alive when it comes to function invocation overhead, i.e.,
the waiting time incurred before a function starts execution.
Traditional caching models ignore the compound impact of
function concurrency, and therefore, suffer from two main
problems. The two problems are logically correlated and can
significantly affect workload performance.

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Qichang Liu, Yue Cheng, Haiying Shen, Ao Wang, and Bharathan Balaji

0 500 1000 1500 2000 2500
Time [ms]

0.0

0.5

1.0

CD
F

Queuing latency
Cold start latency

Figure 5. Tradeoffs of reusing
busy warm containers vs. cold
starts (Azure trace).

10 3 10 1 101 103

Time [ms]

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

Queuing
latency
Cold start
latency

Figure 6. Tradeoffs of reusing
busy warm containers vs. cold
starts (FC trace).

• Problem of Delayed Warm Starts: Traditional caching
policies such as GDSF (Greedy-Dual-Size-Frequency) [20]
and LRU have only two states for each request, a cache hit
or a cache miss. The new tradeoff under function concur-
rency introduces a new intermediate state between a true
“hit” (i.e., a warm start) and a true “miss” (i.e., a cold start)—
a delayed hit [9] (i.e., a delayed warm start, which reuses a
busy warm container but waits for a queuing delay before
the function can execute, as illustrated in Figure 4).
• Problem of Imbalanced Eviction: Concurrency causes
another interesting problem: a function can have multi-
ple containers kept alive; all containers associated with
a function construct an elastic, compound, logical object,
which can grow and shrink, driven by function concur-
rency. Traditional caching policies make independent evic-
tion decisions by evicting the least important objects but
are compound-object-oblivious. As such, blindly evicting
the least important functions may lead to imbalanced evic-
tion, thus affecting overall performance.
In the presence of function concurrency, the correlated

problems of delayed warm starts and imbalanced eviction
present a unique opportunity to further reduce function in-
vocation overhead. During concurrency-driven container
scaling, some requests could reuse a busy, warm container
with shorter waiting time than the case if the requests were
to be provisioned with new containers. Moreover, the FaaS
scheduler should be intelligent enough to dynamically bal-
ance the cache space allocated for each compound function
object. As a consequence of this gap, state-of-the-art caching-
based keep-alive policies fail to minimize function invocation
overhead, which we demonstrate next in §2.4.

2.4 What-If Analysis

In this section, we present a what-if analysis to quantify our
identified tradeoff and to better understand its implications.
All experiments throughout the paper were conducted using
a warmed-up function cache.
Quantifying the Tradeoff. Our first what-if experiment
analyzes what the cost and benefit would be if a GDSF-based
FaasCache has the option to reuse a busy container. We
replayed the 14.7 million function requests from the 750
sampled Azure functions (see Table 1) using a simulator de-
veloped by ourselves, which simulates a modified version of
FaasCache. Since vanilla FaasCache does not reuse a busy

Table 1. Production workload statistics. AF: Azure Functions. FC:
Alibaba Cloud Function Compute. Rps: requests per second. GBps:
the aggregate memory size of all requests per second in GBs.

Trace # invoke reqs Rps (avg / min / max) GBps (avg / min / max)
24h AF 14,704,439 170 / 90 / 683 38.6 / 19.2 / 154.6
30m AF 3,231,319 1,795 / 1,158 / 4,551 804.5 / 502.1 / 2,014.7
30m FC 2,745,241 1,525 / 894 / 2,980 773.1 / 188 / 2,767

warm container, we modified its policy so that, if a request
triggers a cold start (i.e., no idle warm containers are avail-
able to serve this request), the modified policy will instead
route this request to a busy warm container that has the
shortest waiting time. This way, the modified policy avoids
cold starts but enforces a queuing delay. Figure 5 quanti-
fies this tradeoff. Interestingly, the two CDF curves cross at
464ms. Around 69.4% of requests would have experienced sig-
nificantly shorter invocation delays (< 464 ms) if FaasCache
had reused a busy warm container instead of creating a new
container. On the other hand, there is a 30.6% possibility that
having a cold start would be the optimal choice.
We did the same experiment using the 30-minute FaaS

trace collected from Alibaba Cloud FC (Table 1). Figure 6
reveals a different pattern: all cold start requests encounter
lower invocation overhead if FaasCache had opted to reuse
a busy warm container. This result suggests a larger oppor-
tunity space potentially exposed by this tradeoff.
What If Delayed Warm Start is Enabled? Next, we ana-
lyze the impact of reusing busy warm containers on function
invocation overhead. In this what-if experiment, we varied
the queue length of busy warm containers from 0 to 2 and ran
the same Azure Functions workload trace with a modified
FaasCache. A queue length of 𝐿 means a FaasCache policy
that: (1) allows up to 𝐿 enqueued function requests on any
busy warm container, and (2) only creates a new container
when delayed warm start queues are filled up for all busy
warm containers. An 𝐿 set to 0 means the vanilla FaasCache
policy, which always creates a new container if all warm
containers of the requested function are busy, representing
an extreme end in the tradeoff spectrum.

The overhead ratio of a request is the ratio of its wait time
and the sum of its wait time and execution time (Overhead
ratio = wait time

wait time+exe time). Figure 7 shows the overhead ratio
averaged across all requests. Allowing each busy warm con-
tainer to enqueue up to one outstanding request reduces the
average overhead ratio by 9.3% compared to vanilla Faas-
Cache. Increasing the queue length from 1 to 2 results in a
higher average overhead ratio than vanilla FaasCache. One
should note that this policy, albeit sub-optimal, still outper-
forms FaasCache when the queue length is set to 1.

Observation 1
• For an incoming function request, the queuing delay on a
reused, busy, warm container might be shorter than the cold
start latency of creating a new container.

Concurrency-Informed Orchestration for Serverless Functions ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

0
(FaasCache)

1 240

50

60

70

Av
er

ag
e

ov
er

he
ad

ra
tio

 (%
)

52.7
47.8

70.5

20

40

60

80

100

W
ar

m
 st

ar
t r

at
io

 (%
)

37.8
30.2

22.1

75.1 80.9
Overhead ratio
Warm start
Delayed
warm start

Figure 7. Impact of varying
warm containers’ queue length.

FaasCache FaasCache-C40

45

50

55

Av
er

ag
e

ov
er

he
ad

ra
tio

 (%
) 52.7

46.5

35

40

45

W
ar

m
 st

ar
t r

at
io

 (%
)

37.8

41.2

Overhead ratio
Warm start

Figure 8. Impact of concurrency
aware eviction.

• A new policy is needed to make informed decisions about
whether to choose a delayed warm start or a cold start.

What If Concurrency-Aware Eviction is Enabled? In
this experiment, we study the impact of concurrency-aware
eviction on function invocation overhead. FaasCache adopts
a GDSF-based keep-alive policy, which computes the priority
of each container using the following equation:

𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 = 𝐶𝑙𝑜𝑐𝑘 + 𝐹𝑟𝑒𝑞 × 𝐶𝑜𝑠𝑡
𝑆𝑖𝑧𝑒

(1)

where 𝐶𝑙𝑜𝑐𝑘 captures the recency of the function; 𝐹𝑟𝑒𝑞 is
the aggregate number of invocations received by all cached
containers of a function; 𝐶𝑜𝑠𝑡 is the time required to provi-
sion the container; and 𝑆𝑖𝑧𝑒 denotes the memory footprint
of the container. FaasCache evicts the containers with the
lowest priorities. Since all containers of a function have the
same𝐶𝑜𝑠𝑡 , 𝑆𝑖𝑧𝑒 , and 𝐹𝑟𝑒𝑞, FaasCache would evict the oldest
and least-recently-used containers.
We modified FaasCache’s eviction policy by incorporat-

ing a new metric 𝐾 to represent concurrency and call it
FaasCache-C:

𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 = 𝐶𝑙𝑜𝑐𝑘 + 𝐹𝑟𝑒𝑞 × 𝐶𝑜𝑠𝑡

𝑆𝑖𝑧𝑒 × 𝐾 (2)

𝐾 denotes the number of warm containers currently cached
for a function. With the updated policy, a function with more
warm containers cached is more likely to be evicted, and the
priority of a function tends to increase if more of its contain-
ers are evicted. Figure 8 shows the average overhead ratio of
these two policies. Being concurrency-aware, FaasCache-C
exhibits a 11.8% reduction in the average overhead ratio com-
pared to vanilla FaasCache. Vanilla FaasCache tends to evict
an entire function or a substantial portion of it, likely because
these containers of victim functions happen to be clustered
towards the lowest-priority end of the priority queue. In
contrast, FaasCache-C leads to more balanced evictions with
a 9% higher warm start ratio than vanilla FaasCache.

Observation 2
• Traditional caching-based keep-alive policy that makes in-
dependent, container-level eviction decisions performs worse
than a simple, concurrency-aware eviction policy.
•We need to find a more effective priority policy that can
capture both container- and function-level behavior.

0 50 100 150 200
of opportunities

0.00

0.25

0.50

0.75

1.00

CD
F

of
 re

qu
es

ts

1.0x cold
0.75x cold
0.5x cold
0.25x cold

Figure 9. Impact of varying the
cold start overhead.

0 50 100 150 200
of opportunities

0.00

0.25

0.50

0.75

1.00

CD
F

of
 re

qu
es

ts 1.0x exec
1.5x exec
2.0x exec

Figure 10. Impact of varying the
execution time.

2.5 Quantifying Theoretical Opportunity Space

In this section, we present an in-depth trace analysis to quan-
tify the opportunity space exposed by delayed warm starts.
Notations, Definition, and Analysis Methodology.We
denote 𝑡𝑎 as the arrival time of a newly arrived invocation
request for function 𝑓 , 𝑡𝑐 as 𝑓 ’s cold start overhead, and 𝑡𝑒
as the function execution time. We define the opportunity
space window as [𝑡𝑎, 𝑡𝑎 + 𝑡𝑐]. We analyzed all invocation
requests in the 30-minute Azure Functions trace (Table 1).
For each new request for a function 𝑓 with an opportunity
space window of [𝑡𝑎, 𝑡𝑎 + 𝑡𝑐], we calculated the completion
times 𝑡𝑎 + 𝑡𝑒 for all other requests associated with 𝑓 . We
then identified and counted how many of these requests
had completion times falling within the opportunity space
window of the current new request. When analyzing the op-
portunity space of each newly arrived request, we make two
assumptions. First, we assume that the new request always
causes the creation of a new container, i.e., a cold start, The
rationale behind this assumption is a what-if ananlysis: what
if there is a cold start, then how many delayed warm start
opportunities this request could get during the creation of
the cold-started container. Second, we assume that all other
requests associated with the same function in the trace have
ideally zero invocation overhead. The rationale behind this
assumption is that, unlike a simulation study, our theoretical
analysis relies solely on the request information from the
original trace and does not generate runtime information for
each request, such as whether it experiences a cold start or
a warm start. Therefore, we assume that all other requests,
regardless of whether they fall within the opportunity space
window, have ideally zero invocation overhead, that is, an
ideal warm start without any extra overhead1.
Analysis Results. Figure 9 shows the CDF of the number of
delayed warm start opportunities with varied cold start over-
head, specifically at 1.0×, 0.75×, 0.5×, and 0.25× the original
cold start overhead 𝑡𝑐 . As 𝑡𝑐 decreases, the opportunity space
window [𝑡𝑎, 𝑡𝑎 + 𝑡𝑐] becomes smaller, reducing the number
of delayed warm start opportunities. However, even with
a 0.25× original cold start overhead, about 60% of requests
still have more than 25 delayed warm start opportunities,
making them likely to benefit from reduced queueing delays.

1We also tested the scenario where all other requests are assumed to be cold
starts and the trend remained nearly identical.

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Qichang Liu, Yue Cheng, Haiying Shen, Ao Wang, and Bharathan Balaji

Figure 10 depicts the CDF of the number of delayed warm
start opportunities with varied execution time, specifically
at 1.0×, 1.5×, and 2.0× the original execution time 𝑡𝑒 . In-
terestingly, varying the execution time does not affect the
opportunity space [𝑡𝑎, 𝑡𝑎 + 𝑡𝑐]. This is because changing the
execution time only proportionally shifts the absolute posi-
tions of all request completion times, resulting in a uniform
shift across the entire trace as all request execution times
are adjusted simultaneously.
Observation 3
•While varying the cold start overhead impacts the poten-
tial opportunity space of delayed warm starts, varying the
execution time alone does not.
• Delayed warm starts exposes a big opportunity space to
reduce latency compared to cold starts.

2.6 Challenges of Exploiting the Tradeoff

One way to exploit the tradeoff is by accurately predicting
the costs associated with delayed warm starts and cold starts
to inform function scaling decisions. The cost of a function
cold start is relatively predictable since it consistently ac-
cesses the same container image data across cold starts [52].
Predicting the cost of a delayed warm start, however, is
challenging. The cost of a delayed warm start is the remain-
ing execution time of the current function request that is
being served by a busy warm container. The challenge is
two-fold: (1) Different invocations of the same function may
have variable execution time. (2) Keeping track of this cost
requires fine-grained bookkeeping with extra overhead. A
FaaS platform may have an enormous number of busy warm
containers with different delayed warm start costs. Thus,
finding the best busy warm container with the smallest cost
is cost-prohibitive for large FaaS deployments.
We analyze the variance of function execution time for

both the Azure and FC traces. We find that the majority of
functions in both workloads have a marginally high vari-
ance of 25%—this accounts for 68% of functions for the Azure
trace and 59% of functions for the FC trace. The observations
indicate that using historical knowledge to estimate function
execution time is error-prone. In fact, existing research sug-
gests that the function execution time may be correlated to
various factors such as input sizes [15, 37, 60] and function
memory footprint [24, 47]. Therefore, in this work, we make
a practical assumption that the execution time of a given
function is volatile.
The aforementioned challenge requires us to find a so-

lution that (1) can exploit the new tradeoff we identify in
§2 to inform function scaling decisions and (2) effectively
addresses the issue of function execution variance.

3 The CIDRE Orchestration Policy
Motivated by the observations from §2 and §2.6, we propose
the CIDRE function orchestration policy.

Fn1’s concurrent
requests

Req2 Req3 Req4Req1 …

Fn1 Fn1 Fn1 Fn1 Fn4 Fn2 Fn5Fn3

Highest priority Lowest

PQ
(Cache) X X

Container

Eviction

Delayed

warm

start

Delayed

warm

start

Warm

start

Priority Updating (§3.3)3

Idle container

Busy container

1a 1b

2a

2c

Fn1

Fn1 Fn12b
Cold

start
Fn1

Scaling (§3.2) and
Eviction (§3.3)

Figure 11. CIDRE architecture. CIDRE organizes all cached warm
containers using a priority queue (PQ). In this example, CIDRE uses
(conditional) speculative scaling to serve Req2-4 by speculatively
choosing a busy warm container or a cold start, whichever has a
shorter queueing delay; CIDRE replaces two idle warm containers
of Fn2 and Fn5 with the lowest priority.

3.1 Design Overview

Figure 11 depicts the architecture of CIDRE and examples
of delayed warm start and cold start paths. A detailed dis-
cussion about individual components appears in the next
subsections, but the following gives a global picture of how
CIDRE works. The main component of a CIDRE-managed
function cache is a PQ structure, which sorts all busy and
idle warm function containers by their priority values (§3.3).
Unlike traditional caching models that process each request
independently, CIDRE incorporates function concurrency in
its orchestration policy spanning both function scaling and
eviction. Invocation requests targeting a specific function
may arrive in a burst, requiring the provisioning of multiple
containers to serve concurrent requests.

In Step 1a , when a function’s concurrent requests arrive,
CIDRE first dispatches requests to available idle containers.
In Step 1b , for the rest of requests for which CIDRE can-
not find idle containers, CIDRE performs speculative scal-
ing (SS) (§3.2) to determine whether to reuse a busy warm
container or use a newly created container, given the cur-
rent system state. The objective of SS is to minimize the
invocation overhead incurred while waiting for container
resources to become available. Step 1b occurs concurrently
with Step 1a . CIDRE then performs the following two steps
concurrently: CIDRE dispatches the outstanding requests to
a queue managed by the speculative scheduler to wait for
containers to become available (Step 2a) while provisioning
new containers (Step 2b); CIDRE then executes function
requests using containers that become available at the ear-
liest. For example, if the first two busy warm containers of
Fn1 become available sooner than the corresponding cold
starts, CIDRE would execute Req2 and Req3 of Fn1 to these
two just-vacant warm containers; then one cold start com-
pletes before the third busy warm container Fn1 finishes
serving its current function request, therefore, CIDRE would

Concurrency-Informed Orchestration for Serverless Functions ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

execute Req4 in the newly created container. We discuss an
enhanced SS policy (conditional speculative scaling or CSS)
that minimizes the cold start waste in §3.2.
CIDRE’s CSS approach minimizes functions’ invocation

overhead with less cold starts. In existing FaaS platforms
such as OpenLambda [30] and OpenWhisk [45], the function
scheduler dispatches invocation requests to containers using
a predefined scheduling policy such as round-robin, where
the function workers (the PQ layer in Figure 11) are passively
serving requests dispatched from the scheduler. This design
results in higher invocation overhead and lower resource
utilization. In contrast, CIDRE is work-conserving by serving
requests whenever any busy/not-ready resources become
available. In Step 2c , CIDRE evicts some warm containers
from the lower-priority end of the PQ to provision new con-
tainers (§3.3). Note that Step 2c is concurrent with Step 2a

and 2b . Lastly, in Step 3 , CIDRE updates priorities for all
containers touched during previous steps (§3.3 and §3.4).

3.2 Speculative Scaling

Basic Speculative Scaling. CIDRE uses a simple yet ef-
fective technique called speculative scaling to address the
issue of function execution time variance. Instead of pre-
dicting the delayed warm start cost and the cold start cost,
CIDRE speculatively chooses between a delayed warm start
and a cold start. This strategy provisions new containers
while monitoring the state of busy warm containers that
are currently serving requests of the function. If any busy
warm container finishes execution and becomes available,
the scheduler dispatches the pending request to that vacant
container without needing to wait for a new container to be
fully created. If otherwise the provisioning process of a new
container completes first, then the scheduler simply sends
the request to the newly created container.
Basic SS (CIDRE_BSS or BSS) provides a worst-case per-

formance guarantee: it guarantees that any function requests
will experience an invocation overhead at least as good as
that of a cold start. BSS achieves reduced invocation over-
head without relying on sophisticated, often error-prone,
cost modeling and prediction.
CIDRE_BSS has a drawback. It enforces a cold start for

each speculative waiting action. The containers provisioned
from these cold starts might become wasteful in hindsight if
they will not be reused soon, or in the worst case, be evicted
without being reused. Furthermore, cold starts evict existing
warm containers that might be reused shortly afterward,
causing cache thrashing and performance degradation. We
present an enhancement to BSS next.
Conditional Speculative Scaling. While BSS minimizes
the request waiting time, it might bewasteful to over-provision
containers that will not be used in the near future. A newly
provisioned container might stay idle without being invoked
for a while, suggesting that: (1) there are enough warm con-
tainers to sustain the requests for that particular function,

Algorithm 1 Conditional speculative scaling (CSS).
Input: Trigger to turn on/off basic SS: 𝐵𝑆𝑆 ; for the current request
targeting Function 𝐹 : estimated execution time𝑇𝑒 , cold start time𝑇𝑝 ,
last created container’s idling time𝑇𝑖 , and last busy warm container’s
waiting time𝑇𝑑 .

1: if 𝐵𝑆𝑆 = 𝑇𝑟𝑢𝑒 then ⊲ BSS has been enabled.
2: if 𝑇𝑖 > 𝑇𝑒 then
3: 𝐵𝑆𝑆 ← 𝐹𝑎𝑙𝑠𝑒 ⊲ Disable BSS.
4: Perform a delayed warm start and update𝑇𝑒 and𝑇𝑑
5: else if 𝑇𝑖 ≤ 𝑇𝑒 then ⊲ BSS path.
6: if a busy warm container becomes available first then
7: Perform a delayed warm start and update𝑇𝑒 and𝑇𝑖
8: else if the new container finishes provisioning first then
9: Perform a cold start and update𝑇𝑒
10: else ⊲ BSS has been disabled.
11: if 𝑇𝑑 > 𝑇𝑝 then
12: 𝐵𝑆𝑆 ← 𝑇𝑟𝑢𝑒 ⊲ Re-enable BSS.
13: if a busy warm container becomes available first then
14: Perform a delayed warm start and update𝑇𝑒 and𝑇𝑖
15: else if the new container finishes provisioning first then
16: Perform a cold start and update𝑇𝑒
17: else if 𝑇𝑑 ≤ 𝑇𝑝 then ⊲ Keep BSS disabled.
18: Perform a delayed warm start and update𝑇𝑒 and𝑇𝑑

and (2) the last cold start brought by BSS is wasted. On the
other hand, the newly provisioned containermight be evicted
before being invoked, suggesting that the current working
set is around other functions. Worse, a wasted cold start
causes the eviction of another function’s container, affecting
the performance of that function.
To address the problem, we propose an enhancement to

BSS, called conditional speculative scaling or CSS. Rather
than always provisioning a new container during the specu-
lative wait, CSS performs a cost-benefit analysis to determine
if it is worth creating a new container for the new request.
Algorithm 1 presents the logic of our CSS policy. Start-

ing off, CIDRE performs BSS with both the delayed warm
start path and cold start path enabled. CIDRE keeps track
of the idling time of the last container that has been created
via a cold start from the previous BSS process, defined as 𝑇𝑖 .
Specifically,𝑇𝑖 measures the duration between the time when
the new container finishes provisioning to the time when
it is reused. If 𝑇𝑖 is longer than the expected execution time
of that function 𝑇𝑒 (defined as the median of all historical
execution times of that function), it suggests that at least
one busy warm container may become available during the
idling period𝑇𝑖 (line 1-2). Thus, CSS determines that the pre-
vious cold start for that function is wasteful and could have
been avoided. Then CIDRE disables the cold start path and
will enforce this function to choose the delayed warm start
path for all its upcoming invocation requests (line 3-4). CSS
updates 𝑇𝑒 and 𝑇𝑑 (which is defined below) by incorporating
the new requests (line 4). Otherwise, CSS determines that it
might still be beneficial to do BSS (line 5-9).
CSS may toggle the cold start path back on if CIDRE

predicts that none of the busy warm containers will become
available within a short time. CSS makes this decision by

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Qichang Liu, Yue Cheng, Haiying Shen, Ao Wang, and Bharathan Balaji

comparing two metrics: the duration that CIDRE waits to
find an idle container since the last request arrives, defined as
the delayed warm start cost, 𝑇𝑑 , and the estimated container
provisioning time obtained using the median of all historical
cold start latency, defined as𝑇𝑝 . Assuming the cold start path
is disabled for a function (line 10), CSS will re-enable the
cold start path if 𝑇𝑑 is longer than 𝑇𝑝 . A longer 𝑇𝑑 suggests
that the cost of a delayed warm start is greater than that of
a cold start, and thus, the system needs to provision more
warm containers to sustain the invocation requests for that
function. If so, CSS re-enables the cold start path (line 11-12)
and falls back to BSS (line 13-16). Otherwise, CSS determines
that it is still worth just doing speculative wait without the
need to enable the cold start path (line 17-18). All historical
data, including 𝑇𝑖 , 𝑇𝑒 , 𝑇𝑝 , and 𝑇𝑑 , are collected using a 15-
minute sliding window, whose size is configurable.

A novel take of our enhanced CSS policy is that it evaluates
the probability that a cold start might be unnecessary using
a simple, lightweight, hint-based classification. This method
mitigates potential cache thrashing, as previously described,
using a minimal set of metrics collected from historical execu-
tions. We evaluate the effectiveness of CSS in §5.1 and the
impact of different historical sliding window sizes in §5.5.

3.3 Concurrency-Informed Priority

CIDRE evicts containers based on a new concurrency-informed
priority (CIP) model. CIDRE assigns each cached warm con-
tainer 𝑐 a keep-alive priority. The priority is computed based
on: (1) its container-level statistics including its reuse time,
memory footprint, and the cold start latency, and (2) its
function-wise concurrency statistics including the aggregate,
function-wise invocation frequency, and the number ofwarm
containers of that function (Observation 2 in §2.4):

𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 = 𝐶𝑙𝑜𝑐𝑘 (𝑐) + 𝐹𝑟𝑒𝑞(F (𝑐)) × 𝐶𝑜𝑠𝑡 (𝑐)
𝑆𝑖𝑧𝑒 (𝑐) × |F (𝑐) | (3)

Containers are sorted by priority which is updated during
one of the following cases: (1) an idle warm container is used
to execute the request, which is a true warm start, (2) a busy
warm container is used to execute the request, in which case
a queuing delay will incur and we call it a delayed warm start,
and (3) a new container is provisioned and started due to
insufficient resources, in which case some containers with
the lowest priorities are reclaimed to release the resources.
Container-level Statistics. Size(c) and Cost(c) of a con-
tainer 𝑐 has the same definition as in FaasCache [27] (§2.4).
•Clock(c) captures the reuse recency of a container 𝑐 .𝐶𝑙𝑜𝑐𝑘 (𝑐)
is updated each time when 𝑐 is invoked. When the cache is
not full, newly created containers start with a clock value of 0.
However, if CIDRE needs to evict some warm containers to
make space for a new container 𝑐 , 𝑐 is assigned a clock value
equal to the largest 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 value among all evicted con-
tainers: 𝐶𝑙𝑜𝑐𝑘 (𝑐) = max𝑒∈Evicted 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 (𝑒). This equation
guarantees that the new container will always have a mono-
tonically increasing clock value greater than those that are

evicted, akin to the idea of a logical clock [35]. When a new
request is served by a warm container, whether it is a true
warm start or a delayed warm start, the clock value of the
container is updated as the value of its current 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 (𝑐)
before 𝑐’s priority gets updated per Equation (3).
Function-level Statistics. Next, we discuss the intuition
behind function-wise concurrency statistics. F (𝑐) returns a
set of all containers belonging to the same function as 𝑐 .
• |F (c)| is the number of warm containers associated with
F (𝑐). The intuition is that caching excess warm containers
for a function increases the likelihood of it occupying more
resources than necessary.
• Freq(F (c)) computes the average number of invocations
per minute for a function associated with F (𝑐), providing
an approximation of the average concurrency of a function:

𝐹𝑟𝑒𝑞(F (𝑐)) =
𝑛F(𝑐)
𝑡

(4)

Where 𝑛F(𝑐) is the total number of invocations that the func-
tion associated with F (𝑐) has ever received over its entire
history, and 𝑡 denotes the total duration in minutes since the
first request of this function. Unlike traditional frequency-
based caching policies that use the reuse count as object
frequency (e.g., LFU and GDSF), 𝐹𝑟𝑒𝑞(F (𝑐)) measures a
function’s average invocation rate per minute. This method
allows 𝐹𝑟𝑒𝑞(F (𝑐)) to adapt well to changing patterns since
it can age stale containers with high reuse counts that may
no longer be useful. If a function’s warm containers are not
being used for an extended period, the value of 𝐹𝑟𝑒𝑞(F (𝑐))
will decay as 𝑡 increases while 𝑛F(𝑐) remains unchanged.
Consequently, warm containers of this function may have a
higher chance of eviction due to decreased priorities.

FaasCache’s frequency captures the aggregate number of
invocations across all warm containers for a function: a func-
tion with fewer warm containers tends to have a lower pri-
ority and is more likely to be evicted. CIDRE’s function-level
priority, in contrast, captures per-container frequency with
a denominator |F (𝑐) |: with a fixed 𝐹𝑟𝑒𝑞(F (𝑐)), a smaller
𝐹𝑟𝑒𝑞 (F(𝑐))
| F (𝑐) | indicates that there are sufficient warm contain-

ers for this function. This suggests that retaining additional
containers in the cache is unnecessary.

3.4 CIDRE: Putting It All Together

Putting it all together (Figure 11), we have the complete
design of CIDRE container orchestration policy shown in
Algorithm 2. CIDRE handles each arrived request targeting
a function 𝐹 in one of the following two cases.
• Case I: If there is an idle warm container in the cache,
CIDRE simply dispatches the request to this warm con-
tainer, resulting in a true warm start (best-case scenario).
After the request is served, CIDRE updates the priority for
the touched container (Subroutine UPDATE()).
• Case II: If the function cache does not have any available
warm container to serve the request, CIDRE triggers CSS

Concurrency-Informed Orchestration for Serverless Functions ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Algorithm 2 CIDRE FaaS orchestration algorithm.
Input: Target function 𝐹 . Priority queue 𝑃𝑄 for all warm containers.
Case I. If an idle warm container is found, serve the request directly.

UPDATE(𝑃𝑄, 𝐹). ⊲ PQ updated asynchronously.
Case II. If no available warm containers can be found:

Algorithm 1.
REPLACE(𝑃𝑄, 𝐹) and UPDATE(𝑃𝑄, 𝐹). ⊲ PQ updated asynchronously.

Subroutine UPDATE(𝑃𝑄, 𝐹): ⊲ Update priorities.
For reused container 𝑐 of 𝐹 ,𝐶𝑙𝑜𝑐𝑘 (𝑐) = 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 (𝑐) .
For newly created container 𝑐 of 𝐹 ,

𝐶𝑙𝑜𝑐𝑘 (𝑐) = max𝑒∈Evicted 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 (𝑒) .
For each container 𝑐 of 𝐹 , 𝑛F(𝑐) + + as in Eq. (4).
For newly created container 𝑐 of 𝐹 , | F (𝑐) | increases by 1.
For each container 𝑐 of each victim function associated with F(𝑐) with

𝐸F(𝑐) evicted containers from 𝑃𝑄 , | F (𝑐) | decreases by 𝐸F(𝑐) .
For each container 𝑐 touched in previous steps, update its priority

using Eq. (3).
Subroutine REPLACE(𝑃𝑄, 𝐹): ⊲ Perform container replacement.

For the newly created container 𝑐 of 𝐹 , compute
𝐸 = argmin𝐸′ (𝑆𝑐 ≤

∑𝐸′
𝑖=1 𝑆𝑖) , where 𝑆𝑐 and 𝑆𝑖 are the required memory

size of cold-started container 𝑐 and victim idle container 𝑆𝑖 , respectively.
Evict 𝐸 idle warm containers with the lowest priorities from 𝑃𝑄 .
Create a new container of 𝐹 .

(Algorithm 1). If CIDRE decides to provision a new con-
tainer during CSS, a container replacement is triggered
and Subroutine REPLACE() is called to evict 𝐸 idle warm
containers with lowest priorities. CIDRE then updates the
priorities for all containers that are involved in this case.

Time Complexity. Since all the historical data used in Al-
gorithm 1 and the PQ are collected and updated periodically
and asynchronously, these steps are not on the critical path
of request scheduling. The primary responsibility of Algo-
rithm 1 is to decide when to turn on/off the BSS based on the
collected historical data. The algorithm has a time complex-
ity of𝑂 (1), and our measurement indicates that Algorithm 1
introduces a negligible overhead of 36us.

4 Experimental Methodology
Implementation.We have implemented CIDRE in Open-
Lambda [44], an open-source FaaS platform written in Go.
We implemented CSS in OpenLambda’s worker and function
management components. We added a new channel (a FIFO
queue) in each function manager to buffer all requests that
do not immediately find an available warm container. The
implemented CSS strategy evaluates various metrics (§3.2)
to determine the most cost-effective way to execute the next
outstanding request from the head of the channel. CIDRE
then pulls that request and takes action as informed by Algo-
rithm 1. Compared to OpenLambda’s existing policy, our CSS
strategy is: (1) work-conserving as it serves requests using
any vacant resources that become available the earliest, and
(2) cost-effective as it conservatively stops provisioning new
containers if there are sufficient resources to serve requests.

We implemented the concurrency-informed priority (CIP)
cache eviction policy in OpenLambda’s worker component
by replacing its time-to-live keep-alive policy. CIDRE main-
tains updated container-level statistics within each container

instance and updated function-level statistics within Open-
Lambda’s function manager. For efficiency, CIDRE updates
the PQ lazily: upon a cache eviction, the PQ is resorted based
on the latest container- and function-level statistics.
Production FaaS Traces. We sampled two large-scale FaaS
workloads from the 30-minute Azure Functions and the 30-
minute FC listed in Table 1. The new 30-minute Azure work-
load includes 330 sampled functions with around 598k invo-
cation requests, and the new 30-minute FCworkload includes
220 sampled functions with around 410k invocation requests.
All the function apps used in the experiments are collected
from two publicly available FaaS benchmarks [21, 33].
Compared Baselines. We compare CIDRE with a wide
range of classic and SOTA baselines listed below:
• TTL: a time-to-live keep-alive policy that evicts containers
based on container lifespan (10-minute expiration time),
which is OpenLambda’s default keep-alive policy.
• LRU: a least-recently-used (LRU) keep-alive policy that
evicts containers based on recency.
• FaasCache [27]: an effective function keep-alive policy
based on GDSF caching.
• RainbowCake [61]: a SOTA function pre-warming and
keep-alive technique that warms up containers and keeps
functions alive using layer-wise container sharing.
• IceBreaker [46]: a SOTA function pre-warming and keep-
alive policy that exploits server heterogeneity to optimize
the keep-alive cost.
• CodeCrunch [13]: a SOTA function keep-alive policy that
exploits function compression and server heterogeneity
to reduce the service time under high memory pressure.
• Flame [59]: a SOTA function keep-alive solution that uses
a globally centralized cache manager for managing func-
tion caching.
• ENSURE [50]: a SOTA FaaS auto-scaler, which dynami-
cally scales containers based on workload traffic to reduce
cold starts and deactivates the unneeded containers to
improve resource management.
• Offline: an offline CIDRE function orchestration policy,
which utilizes future workload knowledge to make in-
formed scaling and eviction decisions. Offline uses Be-
lady’s MIN [14] as its keep-alive policy, which evicts func-
tion containers that will be reused the furthest in the future.
Offline makes informed scaling decisions by exhaustively
searching all busy warm containers in the current and
future cache state to find a container with the shortest
waiting time; if the cold start cost is lower than a delayed
warm start for all busy warm containers, Offline starts a
new function container.

5 Evaluation
We evaluated our prototype CIDRE on a cluster of three
servers, each with 64GB RAM and 64-core Intel CPUs run-
ning Ubuntu 22.04.1 LTS. Due to its effectiveness and sim-
plicity, CIDRE_BSS has been deployed in Alibaba Cloud FC,

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Qichang Liu, Yue Cheng, Haiying Shen, Ao Wang, and Bharathan Balaji

80 100 120 140 160
Memory capacity [GB]

20

40

60

80

100

Av
er

ag
e

ov
er

he
ad

ra
tio

 (%
)

TTL
LRU
FaasCache
RainbowCake
Flame
ENSURE

IceBreaker
CodeCrunch
CIDRE_BSS
CIDRE
Offline

(a) Avg overhead ratio (Azure).

80 100 120 140 160
Memory capacity [GB]

0

20

40

60

80

100

Ra
tio

 (%
)

F I SC F I SC F I SC F I SC F I SC

Cold start
Delayed
warm start
Warm start

(b) Invocation breakdown (Azure).

80 100 120 140 160
Memory capacity [GB]

20

40

60

80

100

Av
er

ag
e

ov
er

he
ad

ra
tio

 (%
)

TTL
LRU
FaasCache
RainbowCake
Flame
ENSURE

IceBreaker
CodeCrunch
CIDRE_BSS
CIDRE
Offline

(c) Avg overhead ratios (FC).

80 100 120 140 160
Memory capacity [GB]

0

20

40

60

80

100
Ra

tio
 (%

)

F I SC F I SC F I SC F I SC F I SC

Cold start
Delayed
warm start
Warm start

(d) Invocation breakdown (FC).

Figure 12. Comparison with a series of baselines for various cache
sizes with a step of 20GB. In Figure 12(b) and 12(d), F: FaasCache, I:
IceBreaker, S: CIDRE_BSS, C: CIDRE.

serving 110k function invocation requests per second. To
test CIDRE’s effectiveness, we also evaluated a production-
quality CIDRE_BSS deployed in production FC platform.

5.1 Baseline Comparison

Invocation Overhead. Figure 12(a) and 12(c) show that
baseline policies spend a significant amount of time waiting
for containers to be provisioned. CIDRE and CIDRE_BSS
have a much smaller average overhead ratio than all the
seven online baselines for all cache sizes, while the Offline
achieves the highest efficiency. CIDRE maintains a similar
improvement rate for other cache sizes.
CIDRE outperforms FaasCache and LRU (by up to 43.8%

and 47.0% for average invocation overhead ratio, respec-
tively), which both rely on caching-driven keep-alive for
container eviction, by taking it a step further and specu-
latively selecting delayed warm starts under concurrency.
RainbowCake uses fine-grained, layer-based pre-warming
strategy to reduce the cold start cost. Pre-warming largely
relies on future workload prediction for performance im-
provement. Compared to existing whole-container-based
keep-alive policies (FaasCache and LRU), RainbowCake’s
layer-based warm-up strategy exposes higher chances of
container sharing, thus having smaller invocation overhead.
However, in highly concurrent workloads, the chances of
finding enough available common layers in the cache get
significantly reduced, and therefore, RainbowCake needs to
either wait for a common layer to become available or create
a new container, both of which incur a waiting time. There-
fore, CIDRE achieves up to 33.7% lower average invocation
overhead ratio compared to RainbowCake.

For an 100GB cache under the Azure workload, the invo-
cation overhead ratio accounts for an average of 43.2% and

0 100 200 300 400 500 600 700
Invocation overhead [ms]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

TTL
LRU
FaasCache
RainbowCake
Flame
ENSURE
IceBreaker
CodeCrunch
CIDRE_BSS
CIDRE
Offline

(a) Overhead CDF (Azure).

0 100 200 300 400 500 600 700
Invocation overhead [ms]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(b) Overhead CDF (FC).

0 200 400 600 800 1000
E2E FCT [ms]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(c) E2E service time CDF (Azure).

0 200 400 600 800 1000
E2E FCT [ms]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(d) E2E service time CDF (FC).

Figure 13. Invocation overhead and end-to-end service time of
different systems with a 100GB cache.

42.2% for IceBreaker and CodeCrunch, whileCIDRE achieves
an average invocation overhead ratio of 27.5%, a reduction of
36.3% and 34.8%, respectively. For the controlled experiment,
we ran IceBreaker and CodeCrunch on the same three-node,
homogeneous cluster. The homogeneous setting diminishes
the potential benefit of IceBreaker’s sophisticated optimizer.
IceBreaker performs offline profiling to record the statistics
about cold start costs, execution time, and memory usage
of the entire workload and then runs optimization during
real-time workload replay [46].
ENSURE proposes an autoscaling method (FnScale) that

reserves additional capacity as “burst buffers” to handle
bursts of workload demand. However, proactively reserv-
ing additional containers under high concurrency, especially
with restricted global memory resources, can be challeng-
ing, thereby reducing the effectiveness of ENSURE. CIDRE
demonstrates a performance improvement of up to 38.8%
in average invocation overhead ratio compared to ENSURE.
Flame exploits workload skewness by evicting rarely invoked
cold functions but performs worse than CIDRE under high
concurrency and high load.
Effectiveness of CSS. Figure 12(a) and 12(c) show that
CIDRE with CSS achieves consistently lower average over-
head ratio—reduced by 7.5%-17.6%—across all cache sizes
compared to CIDRE_BSS with only basic SS enabled. BSS
always creates a new container, even when opting for a de-
layed warm start, with the possibility that the new container
may or may not be reused later. In contrast, CSS adopts a
more conservative approach and chooses not to create a new
container when the cache has sufficient warm containers to

Concurrency-Informed Orchestration for Serverless Functions ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

0 100 200 300 400 500
Invocation overhead [ms]

0.95
0.96
0.97
0.98
0.99
1.00

CD
F

BSS enabled
BSS disabled

Figure 14. Invocation overhead
in an FC production cluster.

FC CIP BSS CSS CIDRE20
25
30
35
40
45
50

Av
er

ag
e

ov
er

he
ad

ra
tio

 (%
)

44.8 43.2

33.6
29.4 27.6

Figure 15. Ablation study of
techniques in CIDRE.

handle new requests, thereby improving resource utilization
and reducing the overhead. Thus,CIDRE reduces the number
of (wasted) cold starts compared to CIDRE_BSS (Figure 12(b)
and 12(d)), leading to more efficient use of the limited cache
space with a higher warm start ratio than CIDRE_BSS.
Cold Start Ratio.As shown in Figure 12(b) and 12(d),CIDRE
and CIDRE_BSS have dramatically smaller cold start ratios
compared to FaasCache and IceBreaker. By speculatively
waiting for busy warm containers and executing requests on
them, CIDRE and CIDRE_BSS effectively convert an enor-
mous amount of cold starts into delayed warm starts. For
example, CIDRE reduces the cold start ratio of FaasCache by
75.1% for a 100GB cache under the Azure workload.
End-to-End Service Time. Figure 13(c) and 13(d) show how
CIDRE and CIDRE_BSS help with improving the end-to-end
service time. Service time measures the time span from the
arrival of the request to the completion of the request. By
minimizing the invocation overhead,CIDRE andCIDRE_BSS
reduce the E2E service time as well, with CIDRE approach-
ing the best-case baseline Offline. CIDRE, FaasCache, and
CodeCrunch have a 50𝑡ℎ-ile (90𝑡ℎ-ile) E2E service time of:
249.76 ms (438.32 ms), 342.23 ms (548.89 ms), and 330.50 ms
(542.43 ms) under the Azure workload, respectively.

5.2 CIDRE in Alibaba Cloud FC Production Cluster

We tested CIDRE in a production FC cluster by toggling the
BSS setting on and off. The workload consists of around 410k
invocation requests sampled from the FC trace (Table 1). The
production cluster contains 37 bare-metal machines, each
having 384GB RAM and 104 CPUs, hosting 1,500 function con-
tainer instances, sharing a global resource pool with other FC
FaaS tenants. It follows the same production configurations
as the overall platform, ensuring low latency and high SLO.
The test exhibited a cold start ratio of 1.10% with BSS

disabled, consistent with production cold start statistics re-
ported in Flame [59]. Enabling BSS helps reduce the cold
start ratio by 34.5%, bringing it down to 0.72%. As shown
in Figure 14, BSS reduces the 99𝑡ℎ-ile invocation overhead
(254.67 ms) by 10.01% compared to when BSS is disabled
(283 ms). This result demonstrates that CIDRE is simple and
effective, and is easily deployable to already sophisticated
production systems.

5.3 Ablation Study

Figure 15 shows the contributions of each technique of CIDRE
in reducing the invocation overhead with 100 GB cache. We
tested the following threeCIDRE configurations: (1)CSS_alone:
CIDRE with CSS enabled and CIP disabled, (2) BSS_alone:
CIDREwith basic SS enabled and CIP disabled, (3)CIP_alone:
CIDRE with CIP enabled and BSS/CSS disabled. CIP_alone
reduces the overhead of FaasCache by 3.6% due to more bal-
anced concurrency-informed evictions across all functions.
With a basic SS strategy, BSS_alone sees a huge improve-
ment in average overhead compared to CIP_alone, thanks to
more efficient use of existing warm containers. CSS_alone
further reduces the average overhead by 12.5% compared
to BSS_alone. With both CSS and CIP enabled, CIDRE ex-
hibits a 6.1% reduction in average overhead compared to
CSS_alone, demonstrating the efficacy of CIDRE’s overall
concurrency-informed orchestration strategy.

5.4 Concurrency-Driven Scaling

166.1 249.2 332.2 415.3 498.4
Average concurrency level [RPS]

0

20

40

60

80

100

Ra
tio

 (%
)

0

50

100

150

200

250

Av
er

ag
e

m
em

or
y

us
ag

e
[G

B]

FaasCache (GB)
RainbowCake (GB)
CIDRE_BSS (GB)

CIDRE (GB)
Cold start (%)
Delayed warm
start (%)

Figure 16. Concurrency-driven scal-
ing. RPS: requests per second.

In this test, we var-
ied the average level
of concurrency and
measured the cor-
responding average
memory resource us-
age in gigabytes (GB)
given a concurrency
level. Figure 16 shows
the results with a
100GB cache. The
memory usage, i.e.,
the number of con-
tainers created, increases as the concurrency level scales
out across all four systems tested. CIDRE_BSS’s basic SS
policy has lower memory usage at all concurrency levels
when compared to FaasCache, since CIDRE_BSS’s specula-
tive waiting reduces the cold start ratio. As the concurrency
level increases, this gap becomes smaller as excessive cold
starts cause cache thrashing. CIDRE requires the least num-
ber of containers to sustain a burst of concurrent requests,
with a saving of up to 22% compared to FaasCache, under
the highest concurrency level. The reduction in created con-
tainers is because CIDRE disables the cold start path when
it detects potential cache thrashing where provisioning a
new container would cause the eviction of an existing warm
container that will be reused soon. With a more conservative
cold start control, CIDRE achieves a lower cold start ratio
than both FaasCache and CIDRE_BSS.

RainbowCake uses the least memory for handling concur-
rent requests when the average concurrency level is below
498.4, achieving memory savings of 24.7% and 5.6% at con-
currency levels of 166.1 and 415.3, respectively, compared
to CIDRE. However, this comes with significantly higher

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Qichang Liu, Yue Cheng, Haiying Shen, Ao Wang, and Bharathan Balaji

CIDRE_BSSMean 25%-ile 50%-ile 75%-ile20
22
24
26
28
30
32
34

Av
er

ag
e

ov
er

he
ad

ra
tio

 (%
)

31.7

29.2
27.8 27.6

30.3

Figure 17. Average invocation
overhead ratio with different ex-
ecution time thresholds 𝑇𝑒 .

All 5 min 10 min 15 min24

25

26

27

28

29

30

Av
er

ag
e

ov
er

he
ad

ra
tio

 (%
) 27.5

28.6
27.9 27.6

Figure 18. Average invocation
overhead ratio in varying the his-
torical data window.

cold start ratios, demonstrating an interesting tradeoff be-
tween performance (cold start ratio or invocation overhead)
and memory usage. At the highest concurrency level, Rain-
bowCake shows only 0.5% more memory usage than CIDRE.
At lower concurrency levels, RainbowCake benefits from
sufficient common layers in the cache for sharing, minimiz-
ing memory requirements for container layers. However, as
concurrency increases, incoming requests may not find idle
common layers available, leading to the creation of additional
containers and higher memory consumption.
The results can be explained from the classic spatial vs.

temporal locality perspective. RainbowCake introduces an
intermediate caching state at the memory space dimension,
sharing fine-grained layers to reduce overall memory cost
and startup overhead. However, under high concurrency,
new layers or containers must be provisionedwhen no idle or
shareable layers are available, increasing memory usage. In
contrast,CIDRE introduces a new caching state that operates
in the temporal dimension, strategically waiting for a “delayed
hit” beyond traditional cache hit/miss decisions.

5.5 Sensitivity Analysis

Thus far we have focused on default configurations. In this
section we perform a sensitivity study to understand the
impact of various configurations on invocation overhead.
All experiments in this section were conducted using the
Azure workload with a 100 GB cache.
Estimated Execution Time Threshold.We first study the
impact of different estimated execution time threshold 𝑇𝑒
on invocation overhead. We tested different configurations
(mean, 25𝑡ℎ%-ile, 50𝑡ℎ%-ile, and 75𝑡ℎ%-ile) of the historical
execution time used in CSS (Algorithm 1). Figure 17 plots the
invocation overhead ratio for the Azure workload. CIDRE
Mean and CIDRE 75𝑡ℎ%-ile perform better than CIDRE_BSS
but worse than CIDRE 50𝑡ℎ%-ile. This result suggests that a
25𝑡ℎ%-ile threshold might be a little small while a 75𝑡ℎ%-ile
could be too large. Therefore, we empirically selected the
50𝑡ℎ%-ile as 𝑇𝑒 throughout our evaluation.
Historical Sliding Window Sizes. We evaluate how vary-
ing the amount of historical data impacts the invocation
overhead for CSS. To do this, we examined different sliding
window lengths (all, 5 minutes, 10 minutes, and 15 minutes)

0 100 200 300 400 500 600
Invocation overhead [ms]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

FaasCache (0.5x)
FaasCache (1.0x)
FaasCache (2.0x)
CIDRE_BSS (0.5x)
CIDRE_BSS (1.0x)
CIDRE_BSS (2.0x)
CIDRE (0.5x)
CIDRE (1.0x)
CIDRE (2.0x)

Figure 19. CDFs of invocation
overhead with different IAT lev-
els.

1.0x exec 1.5x exec 2.0x exec0

50

100

150

200

250

300

Av
er

ag
e

ov
er

he
ad

 [m
s]

73

155162

90

171178

107

193194

CIDRE
FaasCache

LRU

Figure 20. Impact of varying the
function execution time on invo-
cation overhead.

Table 2. Sensitivity experiment for different execution times. CR:
cold start ratio (%). WR: warm start ratio (%). DR: delayed warm
start ratio (%).

Method CR (1.0× / 1.5× / 2.0×) WR (1.0× / 1.5× / 2.0×) DR (1.0× / 1.5× / 2.0×)
CIDRE 18.5 / 22.3 / 27.6 37.5 / 22.1 / 8.5 44.0 / 55.6 / 63.9
FaasCache 74.4 / 82.2 / 92.6 25.6 / 17.8 / 7.4 N/A
LRU 78.3 / 85.5 / 93.2 21.7 / 14.5 / 6.8 N/A

for collecting historical data for CSS as outlined in Algo-
rithm 1. Figure 18 shows the invocation overhead ratio for
each time window. Collecting all available historical data
results in the lowest overhead ratio. Using 10-minute and
15-minute time windows slightly underperforms compared
to the all-data configuration. The results suggest that the 10-
minute and 15-minute windows yield reasonably acceptable
performance. Therefore, we chose a 15-minute sliding win-
dow for historical data collection throughout the evaluation.
Inter-Arrival Times. Next, Figure 19 shows the impact of
different IAT levels on invocation overhead. We varied the
IAT factor from 0.5× to 2×, where 1× means the original
workload’s IAT behavior, and a longer (shorter) IAT means a
lower (higher) average load. As the load increases (reduced
IAT), the invocation overhead increases and the warm start
ratio reduces. CIDRE achieves a warm start ratio of 60.4%,
39.5%, and 15.0% under the IAT level of 2×, 1×, and 0.5×,
respectively. However, CIDRE’s performance benefit holds
consistently against other baselines across all IAT levels.
Function Execution Time. Next, we explore how different
execution times impact the invocation overhead. We varied
the inputs for each function to adjust the execution time
to 1.0×, 1.5×, and 2.0× of the original execution time. For
this analysis, we present performance metrics in terms of
invocation overhead rather than invocation overhead ratios,
which can be influenced by execution time. Figure 20 and
Table 2 show the invocation overheads and their breakdowns
for each execution time. As the execution time increases, the
likelihood of incoming requests finding an idle container
for a warm start decreases. This results in a higher cold
start ratio (Table 2) and an increase in average invocation
overhead (Figure 20). With delayed warm starts for CIDRE,
70.4%, 71.4%, and 69.9% of non-warm starts were executed
as delayed warm starts for execution times of 1.0×, 1.5×,
and 2.0×, respectively. These results are consistent with the
analysis of the delayed warm start opportunity space shown

Concurrency-Informed Orchestration for Serverless Functions ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

in Figure 10 (§2), indicating that while varied execution times
may shift completion times, they do not fundamentally alter
the overall distribution of delayed warm start opportunities.
Number of Intra-Container Threads. Finally, we exam-
ined the impact of varying number of intra-container threads.
An 𝑁 -thread function container is capable of handling 𝑁
simultaneous requests, and a new container will only be
provisioned if the maximum allowable number of threads
𝑁 or the maximum memory limit is reached. We compared
FaasCache and CIDRE with function containers configured
for 1 to 8 threads. The 1-thread configuration serves as the
baseline (our default setting), representing the method in
which each container processes only one request at a time.

1-thrd 2-thrd 4-thrd 8-thrd0

10

20

30

40

50

Av
er

ag
e

ov
er

he
ad

ra
tio

 (%
)

44.6

27.5
30.7

17.3 19.4

10.2 12.4
6.2

FaasCache
CIDRE

Figure 21. Impact of varying the
number of intra-container threads.

Figure 21 shows
the invocation over-
head ratio for Faas-
Cache and CIDRE
across various thread
configurations. As the
number of threads
increases, both Faas-
Cache and CIDRE
show a decrease in
the average overhead
ratio. By allowing multiple requests to be processed in paral-
lel within the same container, a larger number of requests can
utilize available CPU resources for execution as warm starts,
leading to a significant reduction in the cold start ratio and
the average overhead ratio. Although CIDRE chooses a de-
layed warm start only when containers reach their maximum
thread capacity, it consistently achieves a lower average over-
head ratio compared to FaasCache across all thread numbers.
This enhancement occurs because CIDRE effectively min-
imizes invocation overheads by enabling more cold starts
to be executed as delayed warm starts with reduced latency.
This result demonstrates that CIDRE’s speculative scaling re-
mains effective even when function containers are equipped
with additional CPU power.

6 Related Work

Mitigating Cold Start Costs. A line of work focuses on
optimizing the cold start costs of serverless functions [4, 5, 7,
23, 27, 40, 41, 46, 49, 50, 52, 56]. A common practice to tackle
cold start penalty is to cache provisioned function sandboxes
in memory [51, 55]. RainbowCake [61] shares container lay-
ers from idle warm containers to speed up the cold start.
Icebreaker [46] exploited heterogeneous function hosts to
reduce the keep-alive cost. SAND [5] and Pagurus [36] share
and reuse container runtimes to alleviate cold starts. Re-
searchers proposed to use snapshot loading [7, 16, 17, 23, 52]
to jump start function cold start from disk images. CIDRE
exploits a new tradeoff and optimizes function scaling and
eviction spanning the entire serverless function lifecycle.

Latency-aware Caching. Atre et al. [9] found that tradi-
tional caching policies fail to minimize latency in the pres-
ence of delayed hits, where under high throughput, multiple
I/O requests to the same object queue up before an outstand-
ing cache miss is resolved [58]. Delayed warm starts in FaaS
may seem similar to delayed I/O hits as both involve delayed
accesses to cached objects. However, they are fundamen-
tally different: (1) Root causes and contexts: Delayed hits
stem from the slow process of loading missed objects from
a backing store into the cache, while delayed warm starts
are caused by FaaS concurrency. (2) Impacts: Delayed hits
cause latency increase for subsequent “hits” accumulated in
the queue, while delayed warm starts present opportunities
for reducing the invocation latency.
Delay Scheduling. Zaharia et al. [62] proposed delay sched-
uling, which addresses the tension between fair-sharing
scheduling and data locality for traditional MapReduce clus-
ter computing workloads. Enforcing a task to wait for a
limited time on a busy slot could expose better data locality.
CIDRE’s speculative scaling is similar in that CIDRE im-
poses a delay when scheduling serverless function requests
for “better container locality”. CIDRE’s speculative scaling
is different from delay scheduling in that it tackles new chal-
lenges of how to balance cold starts vs. delayed warm starts
to avoid cache thrashing and resource wastage in a novel
context of highly concurrent FaaS workloads.

7 Conclusion
The key insight of this paper is that function keep-alive
should be optimized for FaaS concurrency behavior. We iden-
tify a new tradeoff between delayed warm starts and cold
starts. Intelligently reusing busy warm containers not only
reduces the latency but also reduces cold starts, leading to
improved warm start ratios and cost-effective function scal-
ing. We also find that function keep-alive must consider both
container-level statistics and function-level concurrency to
inform eviction decisions.We builtCIDRE atop OpenLambda
and evaluated it using production workloads. Results show
that CIDRE significantly outperforms state-of-the-art FaaS
keep-alive solutions. CIDRE’s speculative scaling policy has
been adopted by Alibaba Cloud Function Compute. Deploy-
ing CSS in production is part of our future work.

Acknowledgments
We thank the anonymous reviewers and our shepherd, Kostis
Kaffes, for their valuable feedback and comments. This re-
searchwas supported in part by U.S. NSF grants NSF-2350425,
NSF-2319988, NSF-2206522, NSF-2322860, NSF-2318628, NSF
CloudBank, Microsoft Research Faculty Fellowship 8300751,
Amazon research award, AWS Cloud Credit for Research,
and the Commonwealth Cyber Initiative (CCI), an invest-
ment in the advancement of cyber research, innovation and
workforce development. For more information about CCI,
visit cyberinitiative.org.

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Qichang Liu, Yue Cheng, Haiying Shen, Ao Wang, and Bharathan Balaji

References
[1] Alibaba Cloud Function Compute. https://www.alibabacloud.com/pro

duct/function-compute.
[2] Knative: An Open-Source Enterprise-level solution to build Serverless

and Event Driven Applications. https://knative.dev/docs/.
[3] Dimitris Achlioptas, Marek Chrobak, and John Noga. Competitive anal-

ysis of randomized paging algorithms. Theoretical Computer Science,
234(1-2):203–218, 2000.

[4] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony
Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. Fire-
cracker: Lightweight virtualization for serverless applications. In 17th
USENIX symposium on networked systems design and implementation
(NSDI 20), pages 419–434, 2020.

[5] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus
Satzke, Andre Beck, Paarijaat Aditya, and Volker Hilt. {SAND}: To-
wards {High-Performance} serverless computing. In 2018 Usenix
Annual Technical Conference (USENIX ATC 18), pages 923–935, 2018.

[6] Lixiang Ao, Liz Izhikevich, Geoffrey M. Voelker, and George Porter.
Sprocket: A serverless video processing framework. In Proceedings of
the ACM Symposium on Cloud Computing, SoCC ’18, page 263–274,
New York, NY, USA, 2018. Association for Computing Machinery.

[7] Lixiang Ao, George Porter, and Geoffrey M. Voelker. Faasnap: Faas
made fast using snapshot-based vms. In Proceedings of the Seventeenth
European Conference on Computer Systems, EuroSys ’22, page 730–746,
New York, NY, USA, 2022. Association for Computing Machinery.

[8] Apache OpenWhisk. https://openwhisk.apache.org/, 2016.
[9] Nirav Atre, Justine Sherry, WeinaWang, and Daniel S. Berger. Caching

with delayed hits. In Proceedings of the Annual Conference of the ACM
Special Interest Group on Data Communication on the Applications,
Technologies, Architectures, and Protocols for Computer Communication,
SIGCOMM ’20, page 495–513, New York, NY, USA, 2020. Association
for Computing Machinery.

[10] AWS Lambda. https://aws.amazon.com/lambda/, 2014.
[11] Azure Functions. https://azure.microsoft.com/en-us/services/functi

ons/, 2019.
[12] Sorav Bansal and Dharmendra S. Modha. CAR: Clock with adaptive

replacement. In 3rd USENIX Conference on File and Storage Technologies
(FAST 04), San Francisco, CA, March 2004. USENIX Association.

[13] Rohan Basu Roy, Tirthak Patel, Rohan Garg, and Devesh Tiwari. Code-
crunch: Improving serverless performance via function compression
and cost-aware warmup location optimization. In Proceedings of the
29th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Volume 1, pages 85–101,
2024.

[14] Laszlo A. Belady. A study of replacement algorithms for a virtual-
storage computer. IBM Systems journal, 5(2):78–101, 1966.

[15] Vivek M Bhasi, Jashwant Raj Gunasekaran, Aakash Sharma, Mah-
mut Taylan Kandemir, and Chita Das. Cypress: Input size-sensitive
container provisioning and request scheduling for serverless platforms.
In Proceedings of the 13th Symposium on Cloud Computing, pages 257–
272, 2022.

[16] Marc Brooker, Mike Danilov, Chris Greenwood, and Phil Piwonka.
On-demand container loading in AWS lambda. In 2023 USENIX Annual
Technical Conference (USENIX ATC 23), pages 315–328, Boston, MA,
July 2023. USENIX Association.

[17] James Cadden, Thomas Unger, Yara Awad, Han Dong, Orran Krieger,
and Jonathan Appavoo. Seuss: Skip redundant paths tomake serverless
fast. In Proceedings of the Fifteenth European Conference on Computer
Systems, EuroSys ’20, New York, NY, USA, 2020. Association for Com-
puting Machinery.

[18] Benjamin Carver, Runzhou Han, Jingyuan Zhang, Mai Zheng, and Yue
Cheng. 𝜆fs: A scalable and elastic distributed file system metadata
service using serverless functions. In Proceedings of the 28th ACM

International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 4, ASPLOS ’23, page 394–411,
New York, NY, USA, 2024. Association for Computing Machinery.

[19] Benjamin Carver, Jingyuan Zhang, Ao Wang, Ali Anwar, Panruo Wu,
and Yue Cheng. Wukong: a scalable and locality-enhanced framework
for serverless parallel computing. In Proceedings of the 11th ACM
Symposium on Cloud Computing, SoCC ’20, page 1–15, New York, NY,
USA, 2020. Association for Computing Machinery.

[20] Ludmila Cherkasova. Improving WWW proxies performance with
greedy-dual-size-frequency caching policy. Hewlett-Packard Laborato-
ries Palo Alto, CA, 1998.

[21] Marcin Copik, Grzegorz Kwasniewski, Maciej Besta, Michal Pod-
stawski, and Torsten Hoefler. Sebs: A serverless benchmark suite
for function-as-a-service computing. In Proceedings of the 22nd Inter-
national Middleware Conference, pages 64–78, 2021.

[22] Docker: Accelerated Container Application Development. https://ww
w.docker.com/, 2013.

[23] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang
Qin, Qixuan Wu, and Haibo Chen. Catalyzer: Sub-millisecond startup
for serverless computingwith initialization-less booting. In Proceedings
of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 467–481,
2020.

[24] Simon Eismann, Long Bui, Johannes Grohmann, Cristina Abad, Niko-
las Herbst, and Samuel Kounev. Sizeless: Predicting the optimal size
of serverless functions. In Proceedings of the 22nd International Mid-
dleware Conference, pages 248–259, 2021.

[25] Amos Fiat, Richard M Karp, Michael Luby, Lyle A McGeoch, Daniel D
Sleator, and Neal E Young. Competitive paging algorithms. Journal of
Algorithms, 12(4):685–699, 1991.

[26] Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett, Karthikeyan Vasuki
Balasubramaniam, William Zeng, Rahul Bhalerao, Anirudh Sivara-
man, George Porter, and Keith Winstein. Encoding, fast and slow:
Low-Latency video processing using thousands of tiny threads. In
14th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 17), pages 363–376, Boston, MA, March 2017. USENIX
Association.

[27] Alexander Fuerst and Prateek Sharma. Faascache: keeping serverless
computing alive with greedy-dual caching. In Proceedings of the 26th
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 386–400, 2021.

[28] Jim Gray. Why do computers stop and what can be done about it?,
1985.

[29] gVisor: The Container Security Platform. https://gvisor.dev/, 2018.
[30] Scott Hendrickson, Stephen Sturdevant, Tyler Harter, Venkateshwaran

Venkataramani, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. Serverless computation with OpenLambda. In 8th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud 16), Denver,
CO, June 2016. USENIX Association.

[31] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Ben-
jamin Recht. Occupy the cloud: Distributed computing for the 99%.
In Proceedings of the 2017 Symposium on Cloud Computing, SoCC ’17,
page 445–451, New York, NY, USA, 2017. Association for Computing
Machinery.

[32] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai,
Anurag Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl
Krauth, Neeraja Yadwadkar, Joseph E. Gonzalez, Raluca Ada Popa,
Ion Stoica, and David A. Patterson. Cloud programming simplified: A
berkeley view on serverless computing. arXiv preprint arXiv:1902.03383,
2019.

[33] Jeongchul Kim and Kyungyong Lee. Functionbench: A suite of work-
loads for serverless cloud function service. In 2019 IEEE 12th Interna-
tional Conference on Cloud Computing (CLOUD), pages 502–504. IEEE,
2019.

https://www.alibabacloud.com/product/function-compute
https://www.alibabacloud.com/product/function-compute
https://knative.dev/docs/
https://openwhisk.apache.org/
https://aws.amazon.com/lambda/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://www.docker.com/
https://www.docker.com/
https://gvisor.dev/

Concurrency-Informed Orchestration for Serverless Functions ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

[34] Lambda function scaling. https://docs.aws.amazon.com/lambda/lates
t/dg/lambda-concurrency.html, 2014.

[35] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558–565, jul 1978.

[36] Zijun Li, Linsong Guo, Quan Chen, Jiagan Cheng, Chuhao Xu, Deze
Zeng, Zhuo Song, Tao Ma, Yong Yang, Chao Li, and Minyi Guo. Help
rather than recycle: Alleviating cold startup in serverless computing
through Inter-Function container sharing. In 2022 USENIX Annual
Technical Conference (USENIX ATC 22), pages 69–84, Carlsbad, CA,
July 2022. USENIX Association.

[37] Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick Shankar, Eshaan
Minocha, Sameh Elnikety, Saurabh Bagchi, and Somali Chaterji.
Wisefuse: Workload characterization and dag transformation for
serverless workflows. Proceedings of the ACM on Measurement and
Analysis of Computing Systems, 6(2):1–28, 2022.

[38] Lyle A McGeoch and Daniel D Sleator. A strongly competitive ran-
domized paging algorithm. Algorithmica, 6(1-6):816–825, 1991.

[39] Nimrod Megiddo and Dharmendra S. Modha. ARC: A Self-Tuning,
low overhead replacement cache. In 2nd USENIX Conference on File
and Storage Technologies (FAST 03), San Francisco, CA, March 2003.
USENIX Association.

[40] Anup Mohan, Harshad Sane, Kshitij Doshi, Saikrishna Edupuganti,
Naren Nayak, and Vadim Sukhomlinov. Agile cold starts for scalable
serverless. In 11th USENIXWorkshop on Hot Topics in Cloud Computing
(HotCloud 19), 2019.

[41] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter,
Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. {SOCK}: Rapid
task provisioning with {Serverless-Optimized} containers. In 2018
USENIX Annual Technical Conference (USENIX ATC 18), pages 57–70,
2018.

[42] OpenFaaS: Dude where’s my coldstart. https://www.openfaas.com/b
log/what-serverless-coldstart/, 2022.

[43] OpenFaaS: Server Functions, Made Simple. https://www.openfaas.com,
2016.

[44] OpenLambda. https://github.com/open-lambda, 2016.
[45] Apache OpenWhisk. Open source serverless cloud platform. Executes

functions in response to events at any scale, 2020.
[46] Rohan Basu Roy, Tirthak Patel, and Devesh Tiwari. Icebreaker: warm-

ing serverless functions better with heterogeneity. In Proceedings of
the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 753–767, 2022.

[47] Gor Safaryan, Anshul Jindal, Mohak Chadha, and Michael Gerndt.
Slam: Slo-aware memory optimization for serverless applications. In
2022 IEEE 15th International Conference on Cloud Computing (CLOUD),
pages 30–39. IEEE, 2022.

[48] Serverless image handler. https://aws.amazon.com/solutions/imple
mentations/serverless-image-handler/, 2014.

[49] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry,
Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark
Russinovich, and Ricardo Bianchini. Serverless in the wild: Character-
izing and optimizing the serverless workload at a large cloud provider.
In 2020 USENIX Annual Technical Conference (USENIX ATC 20), pages
205–218. USENIX Association, July 2020.

[50] Amoghavarsha Suresh, Gagan Somashekar, Anandh Varadarajan,
Veerendra Ramesh Kakarla, Hima Upadhyay, and Anshul Gandhi. En-
sure: Efficient scheduling and autonomous resource management in
serverless environments. In 2020 IEEE International Conference on
Autonomic Computing and Self-Organizing Systems (ACSOS), pages
1–10. IEEE, 2020.

[51] Understanding Container Reuse in AWS Lambda. https://aws.amazon
.com/blogs/compute/container-reuse-in-lambda/, 2014.

[52] Dmitrii Ustiugov, Plamen Petrov, Marios Kogias, Edouard Bugnion, and
Boris Grot. Benchmarking, analysis, and optimization of serverless
function snapshots. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’21, page 559–572, New York, NY, USA,
2021. Association for Computing Machinery.

[53] Ao Wang, Shuai Chang, Huangshi Tian, Hongqi Wang, Haoran Yang,
Huiba Li, Rui Du, and Yue Cheng. {FaaSNet}: Scalable and fast provi-
sioning of custom serverless container runtimes at alibaba cloud func-
tion compute. In 2021 USENIX Annual Technical Conference (USENIX
ATC 21), pages 443–457, 2021.

[54] Ao Wang, Jingyuan Zhang, Xiaolong Ma, Ali Anwar, Lukas Rupprecht,
Dimitrios Skourtis, Vasily Tarasov, Feng Yan, and Yue Cheng. In-
finiCache: Exploiting ephemeral serverless functions to build a Cost-
Effective memory cache. In 18th USENIX Conference on File and Storage
Technologies (FAST 20), pages 267–281, Santa Clara, CA, February 2020.
USENIX Association.

[55] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and
Michael Swift. Peeking behind the curtains of serverless platforms.
In 2018 USENIX Annual Technical Conference (USENIX ATC 18), pages
133–146, Boston, MA, July 2018. USENIX Association.

[56] Xingda Wei, Tianxia Wang, Jinyu Gu, Yuhan Yang, Fangming Lu, Rong
Chen, and Haibo Chen. Booting 10k serverless functions within one
second via rdma-based remote fork. arXiv preprint arXiv:2203.10225,
2022.

[57] Working with Lambda container images. https://docs.aws.amazon.co
m/lambda/latest/dg/images-create.html, 2014.

[58] Gang Yan and Jian Li. Towards latency awareness for content delivery
network caching. In 2022 USENIXAnnual Technical Conference (USENIX
ATC 22), pages 789–804, Carlsbad, CA, July 2022. USENIX Association.

[59] Yanan Yang, Laiping Zhao, Yiming Li, Shihao Wu, Yuechan Hao, Yuchi
Ma, and Keqiu Li. Flame: A centralized cache controller for serverless
computing. In Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 4, pages 153–168, 2023.

[60] Hanfei Yu, Christian Fontenot, HaoWang, Jian Li, Xu Yuan, and Seung-
Jong Park. Libra: Harvesting idle resources safely and timely in server-
less clusters. In Proceedings of the 32nd International Symposium on
High-Performance Parallel and Distributed Computing, HPDC ’23, page
181–194, New York, NY, USA, 2023. Association for Computing Ma-
chinery.

[61] Hanfei Yu, Rohan Basu Roy, Christian Fontenot, Devesh Tiwari, Jian
Li, Hong Zhang, Hao Wang, and Seung-Jong Park. Rainbowcake:
Mitigating cold-starts in serverless with layer-wise container caching
and sharing. In Proceedings of the 29th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2024.

[62] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmele-
egy, Scott Shenker, and Ion Stoica. Delay scheduling: a simple tech-
nique for achieving locality and fairness in cluster scheduling. In
Proceedings of the 5th European conference on Computer systems, pages
265–278, 2010.

[63] Jingyuan Zhang, Ao Wang, Xiaolong Ma, Benjamin Carver,
Nicholas John Newman, Ali Anwar, Lukas Rupprecht, Vasily Tarasov,
Dimitrios Skourtis, Feng Yan, and Yue Cheng. Infinistore: Elastic
serverless cloud storage. Proc. VLDB Endow., 16(7):1629–1642, March
2023.

https://docs.aws.amazon.com/lambda/latest/dg/lambda-concurrency.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-concurrency.html
https://www.openfaas.com/blog/what-serverless-coldstart/
https://www.openfaas.com/blog/what-serverless-coldstart/
https://www.openfaas.com
https://github.com/open-lambda
https://aws.amazon.com/solutions/implementations/serverless-image-handler/
https://aws.amazon.com/solutions/implementations/serverless-image-handler/
https://aws.amazon.com/blogs/compute/container-reuse-in-lambda/
https://aws.amazon.com/blogs/compute/container-reuse-in-lambda/
https://docs.aws.amazon.com/lambda/latest/dg/images-create.html
https://docs.aws.amazon.com/lambda/latest/dg/images-create.html

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Overview of FaaS
	2.2 Real-World Workload Analysis
	2.3 Problems with Concurrent Invocation Requests
	2.4 What-If Analysis
	2.5 Quantifying Theoretical Opportunity Space
	2.6 Challenges of Exploiting the Tradeoff

	3 The CIDRE Orchestration Policy
	3.1 Design Overview
	3.2 Speculative Scaling
	3.3 Concurrency-Informed Priority
	3.4 CIDRE: Putting It All Together

	4 Experimental Methodology
	5 Evaluation
	5.1 Baseline Comparison
	5.2 CIDRE in Alibaba Cloud FC Production Cluster
	5.3 Ablation Study
	5.4 Concurrency-Driven Scaling
	5.5 Sensitivity Analysis

	6 Related Work
	7 Conclusion
	References

